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Abstract

Background: Adeno-associated virus has attracted great attention as vehicle for body-wide gene delivery. However, for the
successful treatment of a disease such as Duchenne muscular dystrophy infusion of very large amounts of vectors is
required. This not only raises questions about the technical feasibility of the large scale production but also about the
overall safety of the approach. One way to overcome these problems would be to find strategies able to increase the in vivo
efficiency.

Methodology: Here, we investigated whether polymers can act as adjuvants to increase the in vivo efficiency of AAV2. Our
strategy consisted in the pre-injection of polymers before intravenous administration of mice with AAV2 encoding a murine
secreted alkaline phosphatase (mSeAP). The transgene expression, vector biodistribution and tissue transduction were
studied by quantification of the mSeAP protein and real time PCR. The injection of polyinosinic acid and polylysine resulted
in an increase of plasmatic mSeAP of 2- and 12-fold, respectively. Interestingly, polyinosinic acid pre-injection significantly
reduced the neutralizing antibody titer raised against AAV2.

Conclusions: Our results show that the pre-injection of polymers can improve the overall transduction efficiency of
systemically administered AAV2 and reduce the humoral response against the capsid proteins.
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Introduction

Adeno-associated virus mediated gene transfer has a great

potential due to its capacity to transduce a wide spectrum of both

dividing and non-dividing cell types. For example, widespread

transduction of skeletal muscles in adult mice and hamster after a

single intravenous administration of recombinant adeno-associated

virus has been described [1,2]. These results open new hopes for

the treatment by gene therapy of neuromuscular diseases such as

Duchenne muscular dystrophy (DMD). However, the broad

tropism of the AAV vectors presents also a drawback since it

precludes specific in vivo targeting. Another consequence when

considering a gene therapy approach for a disorder such as DMD

is that because a majority of the diseased cells have to be

transduced in order to have a therapeutic benefit, whole-body

AAV transduction of muscle requires the injection of very large

amounts of vectors. For human application, this raises not only

safety concerns but it also represents a hurdle at the level of large

scale production of rAAVs. One way to overcome both problems

would be to find strategies able to increase the transduction

efficiency in vivo, without increasing the safety risks. Attempts to

increase the transduction efficiency or to modify the tropism have

been done by using genetic capsid modification approaches. These

include for example site-directed mutagenesis of surface-exposed

tyrosine residues [3–5] and incorporation of targeting peptides

selected by phage display on the surface of AAV capsids [6,7].

Alternatively, to engineer gene vectors that target a given tissue,

random libraries of adeno-associated virus (AAV) can be

generated by shuffling the capsid genes [8].

A few non-genetic strategies for enhancing the efficiency of

recombinant AAV have also been developed. Walters and co-

workers for example have shown that incorporation of AAV2 in a

calcium phosphate co-precipitate improves gene transfer to airway

epithelia after intranasal instillation [9]. More recently, it was

shown that addition of cationic lipids to AAV2/9 increased the

transduction efficiency of the lung [10]. Covalent modification of

the capsid by either polyethyleneglycol chains [11] or by HPMA

copolymers have also been evaluated [12].

In the present work, we investigated two original non-genetic

strategies to enhance the in vivo efficiency of AAV. For our study,

we focused on AAV2 because among the currently used AAV

serotypes, it is the most studied and best characterized serotype, as

well as the most used in clinical trials. The strategies that we have

studied here consisted in the pre-injection of cationic or anionic

polymers a few minutes before intravenous infusion of the AAV2

viral particles. The anionic polymer which we focused on was

polyinosinic acid (pI). This compound was chosen since it has been

previously reported to bind scavenger receptors and because it has

been shown that an injection of pI prior to adenovirus

administration results in enhanced transgene expression [13]. It

was therefore of interest to test whether the pre-injection of pI

could prevent infection by AAV2 of Kupffer cells or other antigen
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presenting cells, and thus, not only enhance the transduction of

other tissues but also reduce the humoral immune response against

AAV2 capsid proteins.

We have also evaluated the effect of pre- or co-injection of a

series of cationic polymers, namely polylysines (pLys) with different

degrees of polymerization (dp). The rationale was that AAV2 uses

cell membrane-associated heparan sulfate proteoglycan (HSPG) as

its primary binding receptor [14,15]. This binding is driven by

electrostatic interaction between negative HSPG and five

positively charged amino acids [16]. Notably, the insertion of

negatively charged peptides in this HSPG binding motif was

shown to ablate HSPG binding, whereas positively charged

peptides could restore the interactions [17]. Since polylysine is

able to bind through electrostatic interactions to HSPG [18], we

hypothesized that this polymer could alter the AAV biodistribution

and transduction efficiency.

The experiments were conducted using a murine secreted

alkaline phosphatase (mSeAP), whose production can be quanti-

fied in blood samples as well as on tissue sections. Vector

biodistribution was further evaluated in different tissues by real

time PCR of the recombinant viral genomes. Our results show

that the pre-injection of polylysine resulted in a 5 to 12-fold

increase of plasmatic mSeAP levels while the injection of

polyinosinic acid resulted in a 2-fold increase of mSeAP

expression. Interestingly, the polyinosinic acid pre-injection also

resulted in a significant reduction of the neutralizing antibody titer

raised against the AAV2 capsid.

Materials and Methods

Ethics Statement
Care and manipulation of mice were performed in accordance

with national and European legislations on animal experimenta-

tion. The experiments were approved by the veterinary office of

Essonne, France (Agreement number 91–89).

Materials
Polyinosinic acid potassium salt, Poly-L-arginine hydrochloride

(pArg) and Poly-L-lysine hydrobromide (pLys) of different

molecular weights were obtained from Sigma (France). Polymer

solutions for pre-injection were prepared extemporaneously by

solubilization of the desired amount in 5% glucose.

Recombinant AAV2 vector production
AAV2 vectors were produced in an adenovirus-free system by

triple transfection using polyethylenimine (PEI 25 kDa; Sigma-

Aldrich, France) as described previously [19]. Briefly, human

embryonic kidney 293 cells were transfected in 15 cm plates with

the trans-complementing adenovirus helper plasmid pXX6 [20],

the pRepCap4 packaging plasmid expressing AAV2 rep and cap

genes, and a cis acting AAV vector plasmid (pXL3937-CMV-

mSeAP, pXL3937-MCK-mSeAP, pGG2-CMV-Luc or pGG2-

CMV-LacZ). The AAV vector plasmids pXL3937-CMV-mSeAP,

pGG2-CMV-Luc and pGG2-CMV-LacZ contain, respectively,

the cDNA of a murine secreted alkaline phosphatase (mSeAP)

[21], the luciferase gene and the cytosolic LacZ bacterial gene

subcloned into an AAV plasmid backbone which has the ITRs of

AAV2. The resulting AAV vector plasmids are under the

transcriptional control of the cytomegalovirus immediate-early

(CMV IE) promoter and the SV40 polyA sequence. The CMV

promoter was replaced with a functional truncated muscle creatine

kinase (MCK) promoter (CK6; [22]) in pXL3937-CMV-mSeAP

to obtain pXL3937-MCK-mSeAP. After 72 h of transfection the

cells underwent 4 cycles of freeze/thaw, the crude lysate was then

treated with 25 U/ml benzonase, and AAV vectors were

precipitated with cold saturated ammonium sulfate before

purification by double CsCl2 ultracentrifugation gradient. This

step was followed by extensive dialysis against sterile phosphate-

buffered saline containing Ca2+ and Mg2+. The concentration of

encapsidated viral genomes was determined by real-time quanti-

tative PCR against a standard plasmid range and titers were

expressed as viral genomes per ml (vg/ml). Titers were

7.361011 vg/ml for AAV2-CMV-mSeAP, 361011 vg/ml for

AAV2-MCK-mSeAP, 2.461011 vg/ml for AAV2-Luc and

4.561011 vg/ml for AAV2-LacZ.

In vivo experiments
Eight to ten week-old female Balb/C mice (Charles River,

France) were injected in the tail vein with 200 ml of polymer

solution 5 minutes before a second tail vein injection of the vector

solution containing 161011 vg (unless otherwise stated) of the

AAV in a final volume of 450 ml of sterile phosphate-buffered

saline supplemented with Ca2+ and Mg2+. Co-injection consisted

in a single tail vein injection of 650 ml of the mix of the polymer

and AAV solutions. Retro-orbital plexus blood samples were

obtained from anaesthetized mice the day before the injection and

thereafter every week using heparinized capillary tubes. Plasma

was obtained by centrifugation at 4000 g for 15 min and either

analysed immediately or stored at 220uC. Mice were sacrificed by

cervical dislocation. Several tissues were collected and frozen in

liquid nitrogen-cooled isopentane.

Histological analysis
In situ stainings were performed on 8 mm muscle transversal

cryosections. The mSeAP and b-galactosidase detections on

muscle sections were performed on slices fixed with 0.5%

glutaraldehyde. For mSeAP detection, fixed slices were washed

twice with PBS and endogenous alkaline phosphatase was heat-

inactivated for 30 min at 65uC before overnight incubation at

37uC in 0.165 mg/ml 5-bromo-4-chloro-3-indolylphosphate

(BCIP) and 0.33 mg/ml of nitroblue tetrazolium in 100 mM

Tris-HCl, 100 mM NaCl and 50 mM MgCl2. For b-galactosidase

detection fixed slices were washed twice with PBS containing

1 mM MgCl2 and incubated in 1 mg X-Gal/ml (5-bromo-4-

chloro-3-indolyl-b-D-galactopyranoside), 5 mM K3Fe(CN)6,

5 mM K4Fe(CN)6, and 1 mM MgCl2 in PBS for 5 hours. mSeAP

or b-galactosidase revealed sections were finally counterstained

with nuclear fast red, mounted and analysed by light microscopy.

Non-overlapping tiled images of complete transverse muscle

sections were obtained using Cartograph software (Microvision,

France) and a Nikon ECLIPSE E600 microscope with a Sony

3CCD DSP camera system using a 46magnification objective.

Blood and tissue analysis
mSeAP levels in plasma and in tissue extracts were quantified by

chemiluminescent detection of the enzyme activity. Briefly,

endogenous alkaline phosphatase was heat-inactivated for 5 or

30 min at 65uC (for plasma and tissue, respectively) and the heat-

resistant mSeAP was quantified by addition of the reaction buffer

and CSPD chemiluminescent substrate, according to the manu-

facturer’s instructions (Phosphalight kit TROPIX, Applera).

Chemiluminescence was measured in 96-well plate format with

a luminometer (Perkin Elmer, Victor2 1420 Multilabel counter).

Expression levels were determined using a standard curve of

purified human placental alkaline phosphatase and expressed as

ng of mSeAP per ml of plasma. Tissues were quantified for protein

content by fluorimetry using NanoOrange kit (Molecular Probes)
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to normalize mSeAP expression, and results were expressed as ng

of mSeAP per mg of total protein in the extract.

DNA isolation and real-time PCR
DNA isolation from tissues was performed using the Wizard

Genomic DNA Purification Kit (Promega, France) in accordance

with the manufacturer’s protocol. Total DNA concentration was

determined using a Nanodrop ND-8000 spectrophotometer

(Nanodrop Technologies, France), and 70 ng of DNA of each

sample was used as the template material for real-time-PCR.

Taqman real-time PCR was performed on each sample for both

the CMV promoter in order to determine copies of the viral

genome, and the mouse titin gene, to standardize for number of

mouse genomes present in each sample. Primers and probe used

for CMV amplification were: 59-CATCAATGGGCGTGGA-

TAGC-39 (forward), 59-GGAGTTGTTACGACATTTTGGA-

AA-39 (reverse) and 59-ATTTCCAAGTCTCCACCC-39 (probe).

Primers and probe used for titin were: 59-AAAACGAGCAGT-

GACGTGAGC-39 (forward), 59-TTCAGTCATGCTGCTAG-

CGC-39 (reverse), and 59-TGCACGGAAGCGTCTCGTCT-

CAGTC-39 (probe). The PCR amplifications were performed

using 70 ng of DNA diluted in Absolute QPCR ROX Mix (Thermo

Fischer scientific, France), 0.1 mM of Taqman probes, and 0.2 mM

primers (forward and reverse) in a final volume of 18 ml. Cycling

conditions consisted of a Thermo-Start DNA Polymerase activation

step at 95uC for 15 min followed by 40 cycles of two steps, 15 s of

denaturation at 95uC and 60 s of annealing and extension at 60uC.

The PCR was performed on a 7900 HT thermocycler (Applied

Biosystem, France). A standard dilution range of a plasmid

containing CMV and titin sequences was used on each real-time-

PCR plate as copy number control. All samples and controls were

run in duplicate. Data are expressed as the number of viral genome

copies per diploid genome (copies/nucleus).

Neutralization assay
On day 1, 48-well plates were seeded with 56104 Hela cells/well

and incubated for 24 h. On day 2, recombinant AAV2-CMV-Luc

was diluted in DMEM (Invitrogen Life Technology, Auckland, CA,

USA) supplemented with 10% fetal calf serum and incubated with a

10-fold dilution, then 2-fold serial dilutions (1:20 to 1:12800) of heat

inactivated (at 56uC for 30 min) plasma samples for 1 h at 37uC.

Subsequently, the plasma-AAV2-CMV-Luc vector mixtures corre-

sponding to 56103 viral genome/cell, were added to cells plated on

day 1 and incubated in DMEM +10% FCS for 48 h at 37uC and

5% CO2. Each mix was performed in duplicate. Cells were then

washed in PBS and lysed for 10 minutes in 0.2% Triton Lysis Buffer

at 4uC. The lysate was transferred to 96-well plates then the

luciferase activity was read on a luminometer (VICTOR2 1420

multilabel counter, Perkin Elmer/Life Sciences). Transduction

efficiency was measured as relative light units (RLU), per second per

well and normalized per amount of protein per well expressed as

optical density (RLU/sec/w/OD). The percentage of transduction

inhibition is then calculated for each plasma dilution relatively to the

maximal transduction efficiency which is determined by a control

AAV infection in presence of PBS. We added sera from 5 mice

before injection as negative control and we checked the absence of

pI interference in the neutralizing assay using sera from mice

injected with pI alone at 200 mg/mouse. The neutralizing antibody

factors (NAF) were defined as the reciprocal plasma dilution

inhibiting maximal transduction by 50%.

Figure 1. Kinetic of mSeAP secretion following the pre-injection of various cationic polymers. The mSeAP secretion in blood was
measured after pre-injection of pArg64 or with pLys of different degrees of polymerization followed five minutes later by an intravenous injection of
161011 vg of AAV2-CMV-mSeAP. Plasma concentration of mSeAP was monitored every week until day 28 (A and C) or day 42 (B). (A) Mice were
injected with AAV alone (dotted line), or pre-injected with 120 mg (dashed lines) or 150 mg (solid line) of pLys before AAV2 infusion with n = 2 animals
per condition (each curve represents a mouse). Notably, one mouse died in the group injected with 150 mg pLys238. (B) Comparison of mSeAP
secretion in blood after a pre-injection of pLys45 or pLys238 followed five minutes later by an intravenous injection of 161011 vg of AAV2-CMV-
mSeAP. Mice were injected with AAV alone (dotted line and filled circles; n = 20), or pre-injected with 150 mg of pLys45 (triangles; n = 9) or 150 mg of
pLys238 (squares; n = 14) before AAV2 infusion. (C) Mice were injected with AAV alone (dotted line), or pre-injected with 120 mg (dashed lines) or
150 mg (solid line) of pArg64 before AAV2 infusion (n = 2 and each curve represents a mouse). Results are expressed as the average value +/2 SD.
doi:10.1371/journal.pone.0015576.g001
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Statistical analysis
All data are expressed as means +/2 standard deviation (SD).

Differences between two groups were tested by using the unpaired

T test with Welch correction as SDs could be different between the

two populations tested. Statistical significance was defined by a

two-tail p value below 0.05.

Results

Effect of pre-injection of cationic polymers on the AAV2
transduction efficiency

To monitor gene expression, we used as reporter gene a murine

secreted alkaline phosphatase (mSeAP). mSeAP expression results

in the production of a non immunogenic protein which allows

specific detection in blood and tissues. Notably, the background is

very low due to a higher thermostability of mSeAP as compared to

the endogenous phosphatases [21].

As mentioned in the introduction, we hypothesized that pre-

injection of cationic polymers could increase the transduction

efficiency of AAV2. Since the size of the polymer may play a role,

we evaluated four different poly-L-lysines (pLys) with increasing

degrees of polymerization (dp): pLys12, pLys45, pLys107, and

pLys238. The polymers diluted in 200 ml of a 5% glucose solution

were injected 5 minutes prior administration of 450 ml containing

161011 vg of AAV2. The kinetics of the secretion of the reporter

protein was followed over a period of 28 days using the blood

samples which were taken once per week. The results indicate a

critical effect of the size of the polymer. Indeed, while pLys12 did

not alter the mSeAP levels at any time point as compared to the

non pre-treated AAV2 group, the 3 pLys with higher degrees of

polymerization enhanced the expression of reporter gene at all

time points (Figure 1A). In this first experiment, the pLys of dp 238

displayed some toxicity since one of the 2 mice died after the

150 mg injection. Further experiments indicated that pLys238 was

lethal in 50% of cases after injection of 175 to 200 mg. However, at

the doses used to perform the study (i.e. 150 mg) mortality never

exceeded 20% of injected mice (not shown).

As shown in Figure 1A, the pre-injection of pLys238 resulted in

a higher transgene secretion than when using for example the pLys

with dp of 45. To confirm this point, we repeated the experiment

with these two polymers. Figure 1B shows that there is a significant

difference between both polymers. The enhancement factor of

mSeAP secretion was of 4 and 7 at day 42 after pre-injection of

pLys45 and pLys238, respectively (statistical difference was

achieved between pLys45 and pLys238 at every mean point of

the kinetic). Taking into account this result, we used pLys238 in

the subsequent experiments.

In order to check whether this enhancement effect on AAV in

vivo efficiency is restricted to polylysines, we pre-injected another

cationic polymer before the infusion of AAV2: a poly-arginine

with a dp of 64 (pArg64). As shown in Figure 1C, the pre-

treatment with pArg64 allowed for an increase of the secretion of

mSeAP of the same order than the polylysines. This suggests that

the pre-injection of a cationic polymer displays a general

enhancing effect on AAV-mediated gene delivery.

Next, we tested the influence of the time-lapse between cationic

polymer pre-injection and AAV administration. The results

indicated that while co-injection of both, polymer and AAV,

resulted in similar effects than with a 5 minute pre-injection, we

also found that longer periods between the two injections reduced

the effect (data not shown).

In order to check whether the enhancement mediated by pLys is

AAV2 dose-dependent, we pre-injected 150 mg of pLys238 before

infusion of either 2.561010 or 461011 vg. As shown in Figure 2,

the pre-injection of the cationic polymer resulted in an increase of

the mSeAP levels in blood of about a factor 12. These results

clearly show that the pLys effect is AAV2-dose independent.

The mice that received 461011 vg of AAV2 with or without a

pLys pre-injection were analyzed in greater details. First, by using

quantitative real-time PCR, we determined the copy number of

viral genomes present in different tissues. As revealed by the results

(Figure 3A) the pre-injection of the cationic polymer increased the

copy number in all analyzed tissues, the greatest increase being

found in the heart, diaphragm and liver (30-, 15- and 5-fold

increase, respectively as compared to the AAV2 treated group). To

check whether there is a correlation between copy number of viral

genomes and the expression level we quantified the amount of

mSeAP present in the tissue lysate. The mSeAP quantification in

the various tissues showed a good correlation with the Q-PCR

results, except for the liver where the expression levels were

particularly low considering that it was the tissue with the highest

vg copy number (Figure 3B). This can be explained by the well-

documented fact that liver is prone to CMV promoter extinction

[23,24]. Since mSeAP can also be revealed on tissue sections, we

looked whether and to which extent skeletal muscle was

Figure 2. Effect of pLys238 using two AAV2 vector doses. The
mSeAP secretion in blood was measured after pre-injection of pLys238
followed five minutes later by an intravenous injection of either
2.561010 or 461011 vg of AAV2-CMV-mSeAP. Plasma concentration of
mSeAP was monitored every week for 5 weeks. Mice were injected with
AAV2 alone (dotted line and filled circles), or pre-injected with 150 mg
of pLys238 (squares) before AAV2 infusion. Results are expressed as the
average value +/2 SD, with n = 3 in group 2.561010 and n = 4 in group
461011 vg. The fold increase in mSeAP levels induced by the pLys238
treatment is indicated for each time point.
doi:10.1371/journal.pone.0015576.g002
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transduced. As shown in Figure 3C, while no positive fibers could

be seen in the quadriceps of mice from the AAV2 group, a

significant amount of fibers were mSeAP positive in the AAV2

treated mice pre-injected with pLys238. Altogether, the data from

Q-PCR, mSeAP quantification from tissue lysate and histochem-

istry of tissue section are in good agreement and show that pLys

increases the overall transduction of all tested tissues.

Notably, in vitro data from a transfected cell culture showed that

about 90% of mSeAP is secreted, while the remaining 10% are

found in the cell lysate [21]. As most of the mSeAP is secreted, we

probably underestimate the amount of transduced cells in tissues,

especially when using low vector doses. To circumvent this

problem, we made use of an AAV2 vector encoding LacZ. Due to

the fact that we used a non-secreted cytoplasmic form of this

reporter gene, we expected a higher sensitivity as compared to

mSeAP. The results showed again a major improvement of heart

transduction as seen in Figure 4. Indeed, very few cardiomyocytes

expressed b-galactosidase in control mice injected with AAV2

alone whereas pre-injection of pLys238 enabled AAV2 to

transduce a large amount of cardiomyocytes.

It has been previously shown that tail vein injection in mice of

an AAV vector coding for a reporter gene under the control of the

muscle creatine kinase (MCK) promoter results in strong

expression in muscles while expression in nonmuscle tissues

remains #4% of the highest activity seen in most skeletal muscles

[22]. We used the same MCK promoter (AAV2-MCK-mSeAP) in

order to follow more specifically the effect of polylysine pre-

injection on the transduction of skeletal muscles. Our results show

that while in the absence of injection of pLys the plasma level of

mSeAP was extremely low (11 pg/ml on day 34), a pre-treatment

with either pLys45 or pLys238 dramatically increased the reporter

gene expression (Figure 5). This experiment clearly demonstrates

that pre-injection of a cationic polymer improves muscle

transduction.

Effect of pre-injection of polyinosinic acid on AAV2
mediated in vivo transduction

Based on the results obtained by other groups with recombinant

adenoviruses [13], we asked whether the pre-injection of an

anionic polymer such as polyinosinic acid (pI) could increase the

Figure 3. AAV2 tissue transduction and biodistribution following pLys238 pre-injection. (A) The vector tissue biodistribution in mice
injected with 461011 vg of AAV2-CMV-mSeAP with (black bars) or without (white bars) the pre-injection of 150 mg pLys238 was analysed by real time
PCR in genomic DNA extracted from different muscles and from the liver. (B) Tissue lysates were also subjected to the quantification of mSeAP. For
(A) and (B) results are expressed as the average value + SD, with n = 4 in each experimental group. (C) In situ histochemical staining of mSeAP in
quadriceps muscles. Quadriceps muscles were collected on day 35 after injections. mSeAP was revealed using the NBT/BCIP method and
counterstained with nuclear fast red. A representative image of mice injected with the AAV2 alone is presented on the left, and the right panel
corresponds to mice pre-injected with 150 mg of pLys238 before AAV2 infusion. Scale bar represent 200 mm.
doi:10.1371/journal.pone.0015576.g003
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transduction efficiency of AAV2. A putative mechanism could be,

for example, a polyinosinic acid saturation of the scavenger

receptors of Kupffer cells, and this in turn could lead to a

decreased viral uptake. We injected 161011 vg of AAV2-CMV-

mSeAP 5 minutes after infusion of 200 mg of pI. The plasma level

of mSeAP was determined at different time points. As shown in

Figure 6A, the pre-treatment led to a low but significant increase

of the mSeAP plasma level.

Since pI may have reduced, or inhibited, the transduction of

antigen presenting cells (APCs) by binding to scavenger receptors,

we asked whether such a treatment could reduce the humoral

response directed against AAV2 capsid proteins. We quantified

the neutralizing factors (NAF) in mice 28 days after injection.

Neutralizing antibodies from injected mice were titrated in vitro by

a virus neutralization assay, using the plasma from the animals

(Figure 6B). Results indicate that the pI pre-treatment resulted, in

average, in a significant 4-fold lower NAF titer than the control

group (1/1800 vs 1/7400 mean titer). This result clearly suggests

that intravenous injection of pI before infusion of AAV2 particles

results in a reduced uptake of the virus by APCs, which in turn

leads to a reduced production of NAF.

Notably, we also quantified the NAF in 150 mg pLys238-treated

mice. The results showed that this latter treatment did not change

the NAF titer as compared to the AAV2 injected group (Figure

S1). This suggests that pLys238 does not increase the transduction

of professional antigen presenting cells.

Discussion

The success of gene therapy for the treatment of genetic diseases

such as muscular dystrophies requires widespread and stable gene

delivery. Adeno-associated viruses (AAV) are, to date, the only

vectors that enable body-wide gene delivery. However, this can

only be achieved by injecting extremely high amounts of viral

particles. For example, using AAV-6, a serotype which efficiently

transduces muscle, 1012 vg (about 561013 vg/kg) have to be

administered for widespread transduction of both cardiac and

skeletal muscles in adult mice [1]. Based on this and other results,

it is hypothesized that $1015 vg will have to be administered

intravenously to obtain similar results in humans. Besides raising

safety questions, the feasibility of producing such large amounts of

AAVs in GMP conditions remains to be shown. Indeed, with the

routine method consisting in the transfection of HEK293 cells

cultured in 15 cm diameter plates, production of 1015 particles

would require 5700 plates [25].

Here, we investigated whether polylysine or polyinosinic acid

could act as adjuvants and improve the in vivo transduction

efficiency. The results obtained with cationic polymers, and in

particular polylysines, showed that co- or pre-injection a few

minutes before infusion of AAV2 particles significantly increases the

overall transduction efficiency. This was shown by quantitative

PCR, as well as by the mSeAP expression in plasma and in different

tissues. However, it is to be noted that the increase was not similar in

all tissues: the greatest effects were obtained in the heart and

diaphragm. The magnitude of the improved transduction was,

depending on the experiment, 5 to 12-fold more mSeAP than in the

control group. Notably, this effect was not AAV2 dose-dependent.

Interestingly, the enhancement of the mSeAP secretion was

correlated to the polymerization degree of the pLys. This suggests

that a minimal size of the polymer is required for boosting the

Figure 4. Intravenous delivery of AAV2-LacZ following
pLys238 injection results in high-level transduction of the
heart. X-gal staining of cross-sections of hearts after systemic
administration of 261011 vg of AAV2-CMV-LacZ. The best results
obtained with both conditions (AAV2 +/2 pLys) are represented here:
the photography on the top left corresponds to a mouse injected with
the vector alone, and the photography on the top right corresponds to
a mouse pre-injected with 150 mg of pLys238 five minutes before AAV2
infusion. Hearts were collected on day 28 post injections, n = 3 in each
experimental group. Complete sections are presented on the top
(1 mm scale bar); black boxes at the top are seen at a higher
magnification below (200 mm scale bar).
doi:10.1371/journal.pone.0015576.g004

Figure 5. Muscle-specific mSeAP secretion following injection
of AAV2-MCK-mSeAP +/2 pLys. The mSeAP secretion in blood was
measured after pre-injection of 125 mg pLys45 (solid lines) or 150 mg of
pLys238 (dashed lines) followed five minutes later by an intravenous
injection of 161011 vg of AAV2-MCK-mSeAP. Plasma concentration of
mSeAP was monitored every week for 5 weeks. Mice injected with the
vector alone (dotted lines; close proximity to the X axis) are also shown
(n = 4). Each curve represents a mouse.
doi:10.1371/journal.pone.0015576.g005
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transduction. The results obtained after the injection of pArg64

(Figure 1C) show that it is also possible to increase the transduction

efficiency of AAV2 by using other cationic polymers than

polylysines. This finding is important since it means that alternative

compounds which may have less toxic effects than pLys238 exist.

The exact reasons for the lethality provoked by injection of high

doses of pLys238 are unknown. Of note however, our results are in

agreement with the study of Arnold and colleagues which showed

that in vivo toxicity of polylysines decreases with the molecular

weight of the polymer [26]. These authors suggest that cytotoxicity

of polylysines results from membrane perturbations which, for

example, affect membrane permeability to small molecules. Besides

the intrinsic toxicity of high doses of pLys238, one could mention

two other parameters that may have played a role in the toxic

effects: firstly, the purity of the polymer. Indeed, pLys238 is a

mixture of polylysines (the molecular weight ranges between 30,000

and 70,000) and we can not exclude the presence of cytotoxic

contaminants. Secondly, the counterion of pLys238 is bromide, a

ion that has been shown to be toxic for cells [27]. Taken together,

high molecular weight polylysines are cytotoxic at high doses but it

may be possible to reduce this toxicity by using a highly purified

polylysine and by exchanging the bromide ion by chloride for

example. Alternatively, in view of clinical applications one could use

polylysines of lower molecular weight which are less toxic or use

other cationic polymers.

How exactly the polymers act to increase the transduction

remains unknown. One possibility could be that the effect results

from the modification of the surface charge of the AAV particles.

Indeed, it has been reported that the surface charge (zeta-

potential) of AAV2 is negative and that addition of a cationic

compound such as protamine modifies its surface charge [28].

The results obtained with AAV2 encoding for mSeAP under the

control of the muscle specific promoter MCK are interesting, since

the increase after pLys treatment of the circulating mSeAP levels is

impressive. It has been reported that the synthesis of heparan

sulfate proteoglycan is down-regulated during murine skeletal

muscle maturation, and this has been proposed to be responsible

for the loss of HSV infectivity [29] (heparan sulfate acts as a co-

receptor for attachment of HSV to cells). Based on this report, we

propose the hypothesis that due to low levels of heparan sulfate

proteoglycan in muscle, cationic polymers improve the transduc-

tion by facilitating the primary interaction between virus and the

muscle fibers. Co-receptors would subsequently intervene for virus

internalization. Alternatively, pLys could neutralize the anionic

charges present on the vascular endothelium and this, in turn,

could favour AAV2 tissue penetration.

Based on results obtained with adenoviruses [13], we evaluated

a second strategy which consisted in pre-injecting the anionic

polymer polyinosinic acid. In fact, we asked whether an injection

of pI could prevent infection by AAV2 of Kupffer cells or other

antigen presenting cells and thus, not only enhance the

transduction of other tissues but also reduce the humoral immune

response against AAV2 capsid proteins. The results showed that a

pI treatment resulted in a two-fold increase of the circulating

mSeAP levels. A second, interesting effect of the pre-treatment was

the fact that it reduced by 4-fold the levels of neutralizing factors

directed against the capsid proteins. We attribute this latter effect

to an inhibition of AAV2 uptake by antigen presenting cells, due to

the inhibition of scavenger receptors by pI. This is of particular

importance when considering the fact that the immune response

against AAV vectors after a first injection hinders future re-

administrations. Although the present reduction in NAF may not

be sufficient to allow a re-administration, it opens new perspectives

for developing strategies that will be more efficient than a pI pre-

administration.

In conclusion, our results show that pre-injection of polymers,

especially cationic ones, have the potential to significantly increase

the transduction efficiency of various tissues, including skeletal

muscle. This strategy potentially allows a reduction of the injected

vector dose as compared to an injection of AAV2 alone. This is

not only a benefit in terms of safety (a lower viral load reduces

potential for immune response to the capsid proteins) but it is also

of real interest from a GMP production perspective. Indeed, if one

can divide by several-fold the production scale this will represent a

very significant reduction of the costs.

Supporting Information

Figure S1 Impact of pre-injection of pLys238 on the
antibody response against AAV2. Neutralizing factors

(NAF) generated against the capsid proteins of the vector in

AAV2 and pLys238/AAV2 treated animals were titrated in

Figure 6. Impact of polyinosinic acid pre-injection on the
transduction efficiency and antibody response against AAV2.
(A) The mSeAP secretion in blood was measured after the pre-injection
of 200 mg pI followed five minutes later by an IV injection of 161011 vg
of AAV2-CMV-mSeAP. Plasma concentration of mSeAP was monitored
every week for 4 weeks. Results are expressed as the average value +/2
SD, with n = 9 for mice injected with the vector alone (solid line), and
n = 5 for mice treated with pI (dotted line). (B) Inhibition of neutralizing
factors (NAF) generated against AAV2 with polyinosinic acid pre-
injection. NAF from plasma collected at day 28 were titrated. Serial
dilutions of plasma from mice injected with AAV2 with or without a pre-
injection of 200 mg pI were incubated with the identical serotype-based
AAV2-Luc encoding the luciferase gene. Residual AAV infectivity was
then measured on HeLa cells. Each curve represents a mouse: dotted
curves represent pI treated mice and solid curves represent control
mice injected with the vector alone.
doi:10.1371/journal.pone.0015576.g006
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plasma collected at day 28. Serial dilutions of plasma from mice

injected with 461011 vg of AAV2 (experiment Figure 2) with or

without a pre-injection of 150 mg pLys238 were incubated with

AAV2-CMV-Luc encoding the luciferase gene. Residual AAV2

infectivity was then measured on HeLa cells. Each curve

represents a mouse: dotted curves represent pLys238 treated mice

(n = 3) and solid curves represent control mice injected with the

vector alone (n = 3).

(TIF)
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