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Abstract 
Often, basal cell carcinoma (BCC) displays local aggressiveness, and when developed in the head and neck presents with deep tissue 
invasion and recurrence. Previous studies have pointed out the necessity of systematic assessment of primary and recurrent BCC based on 
a better understanding of the biology and function of its microenvironment. Although hedgehog-dependent tumor cells signaling to the 
underlying stroma, and vice versa, have been demonstrated to be implicated in the pathogenesis of BCC, little is known about peculiarities 
of the tumor microenvironment and the above-mentioned signaling in the head and neck. The occurrence and distribution of 79 primary and 
recurrent BCCs developed in the head and neck region were estimated. The data were coupled with the immunohistochemical assessment 
of type IV collagen, laminin, alpha-smooth muscle actin (α-SMA), and Sonic hedgehog (Shh). The frequency of the mixed BCCs and the 
predominance of the nose and cheek region affection by primary and recurrent tumors were demonstrated. Furthermore, the increase of 
peritumoral and entire stromal α-SMA immunoreactivity in the mixed recurrent BCC was confirmed using statistics. We found the increase of 
strong levels of Shh immunoexpression in the aggressive variants of BCC – infiltrative, mixed, and micronodular. Surprisingly, we confirmed 
the upregulation of Shh paralleled by the downregulation of α-SMA immunoexpression in the superficial subtype of the tumor. Our results 
suggest the necessity of further studies assessing the nature of the tumor along with the peculiarities of signaling in BCCs of head and neck. 
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 Introduction 
Basal cell carcinoma (BCC) is the most common 

malignant cutaneous neoplasm with an annual incidence 
increasing worldwide [1]. It develops from cells of the 
basal epidermal layer and adnexal epithelium [1, 2]. 
According to the literature and our observations, the age 
of patients affected by BCC has been shifted from 50  
to 40 and even 30 years [1, 2]. The most common histo-
pathological (HP) subtypes of BCC recognized are nodular, 
mixed, infiltrating, adenoid, micronodular, superficial, 
and basosquamous with the first two reported to be 
predominant [3]. Other studies reporting on the incidence 
of the tumor have demonstrated that the nodular ulcerative 
subtype represents 40–60% of BCCs, the superficial type 
comprises 15–30% and 1–2% is the pigmented BCC [4]. 
Progression of BCC is slow, and it rarely metastasizes 
due to its downregulated vascularization [5, 6], however, 
it often appears locally invasive and shows destructive 
growth [7]. The recurrence rates of BCC reported by the 
literature are greatly varying – from 10% up to 67% [6, 
8, 9], whereas the distinguished rates of residual tumors 
vary between 7% and 45% [9]. It is worth noting that BCC 
has been described not only to spontaneously progress 
but also regress and disappear [8, 10, 11], and the 

potential ability of the residual tumor to regress has been 
acknowledged previously [8]. It has been pointed out that 
despite sufficient progress achieved in diagnostics of BCC 
and progress made in its treatment options, recurrent, 
aggressive, and metastatic variants of the tumor still pose 
a significant challenge for the healthcare system [12]. 

It has been shown that BCC appears intimately 
connected to its stromal component by use of the basement 
membrane (BM) molecules, and the interaction between 
tumor mass and its stroma is essential to the disease 
pathogenesis. Loss of BM material around individual 
tumor cell nests occurs with progression from indolent- 
to aggressive-growth BCC [13]. These authors have 
emphasized that in the superficial and nodular variants  
of BCC tumor nests are surrounded by a continuous BM 
comprised of type IV and V collagen admixed with laminin, 
while infiltrative and morpheaform variants show an absent 
BM and pronounced stromal desmoplasia. Furthermore, 
previous studies have demonstrated that the immuno-
expression of collagen and laminin, the major molecules 
of the BM, differs in primary and recurrent BCC [14]. 

Much success has been achieved in the understanding 
of the architecture of the tumor microenvironment (TME). 
A multifaceted structure, which includes: (i) heterogeneous 
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cellular constituents both residential, often expressing a 
fibroblast-like appearance and blood-borne, characterized 
by phagocytic and immune system cell features; (ii) extra-
cellular matrix molecules and matrix-degrading enzymes, 
and (iii) sprouting vascular networks have been recognized 
[15]. Furthermore, recent studies of BCC have demonstrated 
that the cancer-associated fibroblasts (CAF) expressing 
different cellular phenotypes appear to be important 
contributors to the formation of TME [16]. It should be 
noted that the development of the actin-rich phenotype in 
stromal cells was demonstrated in aggressive variants of 
BCC – micronodular and morpheaform –, when compared 
to nodular [17]. The results of other studies have suggested 
an increase of stromal alpha-smooth muscle actin (α-SMA) 
immunoexpression in aggressive BCCs [5, 18–22]. Various 
autocrine and paracrine communications between TEM 
cells and cancer cells are crucial in the initiation and 
progression of tumors [23]. Other scientists have shown 
that modern technologies including those assessing the 
composition of TME might represent novel predictive 
and prognostic biomarkers in BCC [12]. 

Sonic hedgehog (Shh) morphogen is an essential 
regulator of various cellular processes during embryonic 
and adult life. The mechanism driven by the ligand and 
leading to tumor development has been extensively explored 
for more than a decade. Early in the research, the Shh 
ligand molecule is shown to be implicated as an autocrine 
signaling factor [24]. Furthermore, induction of the genes 
regulating epithelial–mesenchymal transition driving tumors 
to metastasize has been shown when the activation of the 
hedgehog pathway by the overexpression of zinc finger 
transcription factors took place [25, 26]. Previous studies 
have suggested Shh overexpression leading to pathway 
activation, tumor proliferation, survival, and/or metastasis 
[27]. Later, tumor cells were shown to exit a paracrine 
mechanism secreting Shh and activating the pathway in 
neighboring stromal cells [28], which were proved to be 
of myofibroblast lineage. Finally, in inverse paracrine 
hedgehog activation mode, stromal cells produce the ligand 
molecules, which bind and activate the signaling pathway 
in tumor cells [29]. More recent morphological studies have 
demonstrated the contribution of hedgehog signaling in 
the pathogenesis of BCC [30]. Since BCC presents with 
different variants, and tumors developed in the head and 
neck region often behave more aggressively with deep 
tissue invasion and recurrence, conduction of studies 
identifying new prognostic markers of BCC aggressiveness 
is very much acknowledged. 

Aim 

The purpose of the present study was to analyze the 
occurrence and distribution of primary and recurrent BCCs 
of head and neck; to estimate immunohistochemically 
constituents of the BM – type IV collagen and laminin – 
appearing at the tumoral interface; to assess the biology 
of cancer cells and TME as a whole by studying α-SMA 
and Shh immunoexpression. 

 Patients, Materials and Methods 
Seventy-nine patients presented with BCC of head and 

neck treated prospectively in Department of Maxillofacial 
Surgery, Institute of Stomatology, Riga Stradins University, 

and the Oncology Centre of Latvia from September 1, 
2016, to September 1, 2019, were enrolled in this study. 
In total, 46 female and 33 male patients were enrolled. 
The age range was 32–95 years. The clinical data of 
patients were obtained concerning duration and type of 
the lesion at the time of presentation, clinical features, 
anatomic location, and course of the tumor. The skin types 
were assessed according to the Fitzpatrick Classification 
Scale [31]. The disease relapse was monitored over a 
two-year follow-up period. The study was approved by 
the Ethics Committee of Riga Stradins University, and 
written informed consent was obtained from all patients. 
The tumor tissue samples were taken following the tenets 
of the Declaration of Helsinki. 

Dermoscopy was performed before the tumor mass 
excision. The diagnosis of BCC was confirmed following 
recommendations of Trigoni et al. (2012) [32], Wozniak-
Rito et al. (2018) [33], and Lupu et al. (2019) [34] when 
fulfilled classical dermoscopy algorithm ‒ lack of pigment 
network and the presence of at least one of the following 
criteria: ulceration, maple-leaf like structure, blue-gray 
globules, blue-ovoid nests, arborizing vessels, and spoke-
wheel structures. Furthermore, we included some additional 
features recognized as translucency, white areas, and milky 
pink or red background when diagnosing BCC. Vascular 
patterns were described as either clustered, diffuse, 
homogeneous or, sometimes, avascular. Background 
differences between white-red colors, observed at the 
lesion sites, are defined as white-red structureless areas 
as recommended [35]. 

Only fully excised primary and recurrent BCCs with 
10 mm deep indention into healthy tissue were used in 
this investigation. Sixty-one of 79 (77.2%) were primary 
tumors whereas 18 (22.8%) – recurrent BCC. In seven 
(38.9%) cases, recurrent BCC developed from the surgically 
removed primary tumors obtained in a frame of the given 
study. Patients relapsed in six months up to two years 
were submitted to re-treatment. Eleven (61.1%) patients 
developed BCC recurrence after the use of less invasive 
treatment techniques. These less invasive treatment 
techniques used and recorded were cryotherapy ‒ six 
cases, CO2 laser treatment ‒ three cases, topical immune 
response modifier ‒ Imiquimod cream ‒ two cases, 
respectively. Eight patients presented with the nodular-
type BCC, one ‒ with superficial, and two ‒ with baso-
squamous carcinoma. 

Formalin-fixed, paraffin-embedded tumor tissues were 
processed and sectioned conventionally, and the sections 
were mounted on HistoBond+ slides (Marienfeld, Lauda-
Königshofen, Germany). Consecutive sections were used 
as negative controls of the immunohistochemical (IHC) 
reactions, and for Hematoxylin–Eosin (HE) staining to 
confirm the diagnosis. The histopathology of the tumor 
was assessed by two independent observers following the 
World Health Organization (WHO) Classification System 
for BCC. 

IHC reactions were performed using dewaxed and then 
conventionally treated and processed paraffin sections. 
Heat-induced antigen retrieval was accomplished with 
the sections placed in 10 mM citrate buffer for 15 minutes 
in a vapor lock. Tissue antigens were detected using a panel 
of primary antibodies: mouse anti-human monoclonal  
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α-SMA, Abcam, Cambridge, MA, USA, clone 1A4, 1:200), 
which decorates cells expressing the smooth muscular 
phenotype [36, 37]; mouse anti-human monoclonal 
collagen IV (Dako Denmark A/S, Glostrup, Denmark, 
clone CIV 22, 1:25), which labels the lamina densa of 
BM [38]; mouse anti-human monoclonal laminin (Dako 
Denmark A/S, Glostrup, Denmark, clone 4C7, 1:20), 
which reacts with the laminin family glycoproteins of the 
epidermal BM [39]; rabbit anti-human monoclonal Shh 
(Abcam, Cambridge, MA, USA, clone EP1190Y, 1:200), 
which recognizes full length and c-product subunit of 
human Shh protein [40, 41]. The primary antibodies were 
applied overnight (4ºC) following the manufacturer’s 
recommendations. Amplification of primary antibody and 
visualization of reaction products was performed applying 
HiDef Detection Horseradish Peroxidase (HRP) Polymer 
system (Cell Marque, Rocklin, CA, USA) – after rinsing in 
phosphate-buffered saline (PBS) solution, sections were 
incubated with HiDef Detection™ Amplifier for 10 minutes 
at room temperature (RT) and HiDef Detection™ HRP 
Polymer Detector for 10 minutes (RT), respectively. Finally, 
the antigen sites were visualized with 3,3’-Diaminobenzidine 
(DAB) tetrahydrochloride kit (DAB + Chromogen and 
DAB + Substrate buffer, Cell Marque, Rocklin, CA, USA) 
applied for 5 minutes. Sections were counterstained with 
Mayer’s Hematoxylin, washed, dehydrated, cleared, mounted 
in Roti® Histokitt (Carl Roth, Karlsruhe, Germany), and 
coverslipped. Immunolabeling for α-SMA was identified 
by brown stain confined to the cell cytoplasm. Positive 
immunostaining of Shh was characterized by apparent 
brown either membranous or membranous/cytoplasmic 
pattern. The pattern of α-SMA and Shh immunoexpression 
was separately evaluated in the tumor cells and stroma. 
Immunostaining for type IV collagen and laminin was 
confined to the BM and displayed a linear (continuous 
and discontinuous) pattern. 

Sections were photographed by a Leica light microscope 
(Leica DMRB, Leitz Wetzlar, Germany) using a DFC 450C 
digital camera and scanned by a Glissando Slide Scanner 
(Objective Imaging Ltd., Cambridge, UK) 0.5 μm/pixel 
resolution with 20× objective, 0.275 μm/pixel resolution 
with 40× objective. Therefore, additional reproducible 
measurements (Aperio ImageScope ver. 12.2.2.5015 
software) of tissue immunomarkers along with their spatial 
distribution were obtained. 

The assessment of immunostaining was performed 
semiquantitatively in 20 randomly selected visual fields of 
each sample (magnification 400×) representing the tumor 
and stroma of the regions of interest. Overall patterns of 
collagen IV and laminin immunoexpression were evaluated 
as showing either absent immunoexpression or extensive 
discontinuous immunoreactive areas (low levels), 
discontinuous areas (moderate levels), and continuous 
immunoexpression (high levels) following recommend-
ations of Agarwal & Ballabh (2013) [42]. Immunoexpression 
of these proteins in sebaceous, sweat glands, and blood 
vessels’ walls were not considered in this evaluation. The 
amount (the percentage of immunopositive cells) for Shh 
and tumoral α-SMA immunostaining was estimated semi-
quantitatively as (‒) negative if no positively stained cells 
were found; (+) weak if ≤10%; (++) moderate if 11–50%; 
(+++) strong if >51%. Stromal α-SMA immunoreactivity 
was assessed as (‒) negative if no staining apart of vascular 
(for α-SMA) was found; (+) weak if only a few myo-

fibroblasts showed positivity around the tumor islands; 
(++) moderate if <50% of the islands were surrounded by 
α-SMA-positive cells, and (+++) strong if >50% of the 
islands were diffusely surrounded by α-SMA-positive cells 
as described previously [18]. 

Statistical data analysis was performed to assess the 
immunohistochemistry results and applying Statistical 
Package for the Social Sciences (SPSS) ver. 24.0 software. 
To test whether the collected numerical data are normally 
distributed, a Kolmogorov–Smirnov normality test was 
applied. The quantitative data were expressed as means ± 
standard deviation (SD), whereas categorical parameters 
were expressed as frequencies and percentages. P-values 
of <0.05 were considered significant. The Spearman’s rank 
correlation coefficient was used to estimate the relationships 
between immunostaining patterns of the antibodies used 
in this study. The correlation between antigen immuno-
expression, pattern of the tumor (primary, recurrent), and 
HP type of BCC was studied by χ2 (chi-squared) statistics. 

 Results 
Clinically, the skin types were assessed as I–III, 

according to the Fitzpatrick Classification Scale. No 
patients with phototype IV–VI were recorded. Out of 79 
subjects enrolled in the study, only two (2.5%) patients 
were recognized to have type I, 59 (74.7%) ‒ type II, and 
18 (22.8%) ‒ type III. One man and one woman presented 
with type I. The man has blond hear and blue eyes, the 
woman ‒ freckles and red hair. Both always burn. Apart 
from BCC, the man demonstrated multiple actinic keratosis 
lesions on his face and shoulders. More women ‒ 34 out 
of 59 –, and 25 men presented with type II. Similarly, more 
women ‒ 11 out of 18 –, and seven men presented with 
type III. Skin easily burned after longer solar exposure 
when type II was recorded; these patients present with 
fair skin, light hair, and blue or gray-blue eyes. Patients 
with phototype III presented with fair to light brown skin 
color, often dark hair, and varying eye color. 

Dermoscopically, primary BCC presented with arborizing 
vessels, thin and superficial telangiectasias, ulceration with 
crust formation, shiny white and milky-pink regions, and 
sometimes ‒ blue-gray ovoid nests (Figure 1). Shiny white-
and-red structureless areas suspected as more fibrotic were 
further correlated with the HP findings. Short white streaks 
were common in mixed and recurrent BCC (Figure 2). 

Among 79 patients, 15 (19%) presented with the nodular 
HP subtype of the tumor, 18 (23%) – superficial, 10 (12%) 
– infiltrative, seven (9%) – micronodular subtype, and 29 
(37%) – mixed subtype. The most frequent combinations 
of the mixed BCCs included nodular-infiltrative, superficial-
nodular, and nodular-micronodular subtype. No statistical 
differences in gender distribution were found among 
histological subtypes (p=0.102). The distribution of BCC 
by anatomical location and histological subtype is presented 
in Table 1. Analysis of the anatomical location of the lesion 
confirmed that the nose and cheek were predominant 
regions affected by both primary and recurrent tumors 
constituting 36.7% and 29.1%, respectively. Furthermore, 
according to our study, the nose area was very susceptible 
to tumor recurrence – nine of 18 (50%) cases. The second 
half of recurrent tumors presented with five BCCs on the 
cheek, three on the eyelid, and one – on the ear. In our study, 
the third most often lesioned region was the eyelid (10.1%). 
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Figure 1 – A well-defined, pearl, translucent 
nodule with a homogeneous milky-pink 
background and arborized blood vessels; 
tumor surface with crust over a wound, 
milia-like cyst, and blue-gray ovoid nest 
demonstrated dermoscopically in the case of 
primary nodular basal cell carcinoma. 

Figure 2 – A homogeneous white-to-pink coloration of the area of 
interest and ulceration (white arrow) demonstrated dermoscopically 
in the case of recurrent basal cell carcinoma. 

Table 1 – Distribution of primary and recurrent BCCs by histological subtype and anatomical location 

Description of 
sample/diagnosis 

Anatomical location 
Total 

Nose Temple Cheek Eyelid Scalp Lip Ear Neck Forehead 

Primary 
Type 

N 6 1 2 1 2 0 1 1 0 14 

MN 2 0 2 1 0 0 1 0 1 7 

I 2 2 3 0 0 0 1 0 0 8 

S 4 0 7 1 1 0 0 0 0 13 

MIX 6 1 4 2 0 2 1 1 2 19 

Total 20 4 18 5 3 2 4 2 3 61 

Recurrent 
Type 

N 0  1 0   0   1 

I 2  0 0   0   2 

S 0  2 2   1   5 

MIX 7  2 1   0   10 

Total 9  5 3   1   18 

Total 
Type 

N 6 1 3 1 2 0 1 1 0 15 

MN 2 0 2 1 0 0 1 0 1 7 

I 4 2 3 0 0 0 1 0 0 10 

S 4 0 9 3 1 0 1 0 0 18 

MIX 13 1 6 3 0 2 1 1 2 29 

Total 29 4 23 8 3 2 5 2 3 79 

I: Infiltrative subtype; MIX: Mixed subtype; MN: Micronodular subtype; N: Nodular subtype; S: Superficial subtype. 
 

Nodular (in primary tumors) and mixed BCCs (in 
primary and recurrent tumors) were prevalently located 
in the nose than other head and neck regions constituting 
42.9%, 31.6%, and 70%, respectively. Furthermore, the 
prevalence of the mixed subtype in nasal recurrent BCC 
was very high – seven of 10 (70%) cases. In micronodular 
subtype, the anatomical location was: nose, two (29%); 
cheek, two (29%); eyelid, one (14%); ear, one (14%), and 
forehead, one (14%), whereas the specific site of superficial 
BCC was: cheek, nine (50%); nose, four (22%); eyelid, 
three (17%); scalp, one (5.5%); and ear, one (5.5%). 
Infiltrative recurrent BCCs presented exclusively with the 
nasal location, while primary tumors were distributed as 
follows – cheek, three (38%); nose, two (25%); temple, 
two (25%), and ear, one (12%). 

Histopathologically, nodular BCC presented as large 
islands with peripheral palisading of cells, clefting between 
the collagenous stroma, tumor necrosis, and focal cystic 
changes. Microscopic presentation of micronodular subtype 
revealed small tumor nests with less obvious palisading 
and connection to the epidermis, whereas superficial showed 
irregular proliferation of the basal cells budding from the 
epidermis, but infiltrative – cord-like, elongated strands 
of tumor cells infiltrating between collagen bundles. 

Initially, analysis of the IHC results was consistent 
with the detection of immunoexpression levels of major 
molecules of the BM – type IV collagen and laminin – 
establishing a barrier restricting the dissemination of tumor 
cells. Contours of tumor masses labeled by the anti-laminin 
(Figure 3) and anti-collagen IV (Figure 4) antibodies for 
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the presence of these molecules displayed a linear but 
greatly varying immunostaining pattern – both continuous 
and discontinuous. A discontinuous or absent immuno-
staining pattern was often revealed in the infiltrative BCCs. 
Levels of type IV collagen and laminin immunoexpression 
were similarly distributed varying from low to moderate 
and high – 60.3%, 35.6%, 4.1%, and 71.1%, 25.2%, 3.6% 
for collagen IV and laminin, respectively. 

The results of the IHC expression of α-SMA and Shh 
estimated for tumoral and stromal compartments of primary 
and recurrent tumors are summarized in Table 2, whereas 
– in different HP subtypes of BCCs studied – in Table 3. 

Levels of the tumoral α-SMA immunoexpression were 
distributed varying from weak to moderate and strong. 
Simultaneously, we confirmed a decrease in weak stromal 
α-SMA immunoexpression levels in recurrent BCC when 
compared to primary BCC, followed by two times higher 
strong stromal α-SMA immunoexpression levels demon-
strated in recurrent BCC (Table 2). Comparing the levels 
of α-SMA immunoexpression in primary and recurrent 
BCCs studied, we found statistically significant differences 
for both tumoral and stromal compartments (χ2=16.191; 
df=2; p<0.0001; and χ2=26.510; df=2; p<0.0001), 
respectively. 

 

 
Figure 3 – Weak continuous laminin immunoexpression 
appearing along the basal aspect of the surface and 
follicular epithelium, the immunoexpression within the 
basement membrane delineating differently sized and 
shaped nodules and micronodules of the mixed recurrent 
tumor is almost nil. Laminin immunohistochemistry, ×200. 

Figure 4 – The linear and both continuous and 
discontinuous immunostaining decorating the base of the 
tumor nests and vascular beds of the mixed recurrent 
tumor. Type IV collagen immunohistochemistry, ×250. 

Table 2 – Distribution of α-SMA and Shh immunoexpression levels in primary and recurrent BCCs 

Description of 
sample/diagnosis 

Antigens 

Location 
α-SMA Shh 

Weak Moderate Strong Weak Moderate Strong 

Primary BCC 
Tumor 

627 (58.0%) 274 (25.3%) 181 (16.7%) 347 (33.2%) 344 (32.9%) 355 (33.9%) 

Recurrent BCC 195 (60.2%) 52 (16.0%) 77 (23.8%) 96 (30.8%) 101 (32.5%) 114 (36.7%) 

Primary BCC 
Stroma 

914 (75.2%) 216 (17.8%) 85 (7.0%) 929 (76.1%) 223 (18.3%) 68 (5.6%) 

Recurrent BCC 243 (67.5%) 60 (16.7%) 57 (15.8%) 259 (72.0%) 67 (18.6%) 34 (9.4%) 

α-SMA: Alpha-smooth muscle actin; BCC: Basal cell carcinoma; Shh: Sonic hedgehog. *The shown numerical data represent the number of 
visual fields estimated and demonstrated either weak or moderate and strong expression of antigen. 
 

When compared to α-SMA, levels of the tumoral Shh 
immunoexpression were almost equally distributed and 
varied from weak to moderate and strong for primary and 
recurrent BCC (Table 2). Similarly to α-SMA assessment, 
we found an increase in strong stromal Shh immuno-
expression levels in recurrent BCC. Comparing the levels 
of Shh immunoexpression in primary and recurrent BCCs 
studied, we found statistically significant differences for 
stromal but not tumoral compartment (χ2=7.121; df=2; 
p=0.028; and χ2=0.915; df=2; p=0.633), respectively. 

We found that one-fourth of neoplastic cells within the 
samples demonstrating infiltrative BCC subtype revealed 
a strong level of α-SMA immunoexpression followed by 
one-fifth in the nodular, and the mixed subtype (Table 3). 
Simultaneously, almost one-fifth of the stroma of infiltrative 
subtype revealed a strong of α-SMA immunoexpression 
followed by one-tenth in the mixed, and around one-tenth 
in micronodular subtype. Tumor masses and stroma of 
the superficial subtype revealed a negligible amount of 
neoplastic epithelial and stromal cells displaying a strong 
level of α-SMA immunoexpression. Furthermore, when 

assessing the α-SMA immunoexpression displayed in 
different HP subtypes of BCCs, we found that nodular 
BCC demonstrated a weak to moderate and rarely a strong 
level of α-SMA immunopositivity within tumor nests and 
cords (Figure 5) paralleled by very weak or almost nil 
stromal reactivity (Figure 6). By contrast, micronodular, 
mixed and infiltrative subtype of BCC often demonstrated 
a marked, strong stromal α-SMA immunoexpression 
presented either as a diffuse or a peritumoral (Figure 7), 
heavily decorating the base of tumor nests (Figure 8). In 
the case of diffuse immunoexpression, some mixed tumors 
presented with actin-rich stroma enveloping α-SMA negative 
tumors nests and strands (Figure 9). 

The superficial subtype presented with a weak α-SMA 
immunoexpression, both tumoral and stromal, furthermore, 
the last one often diminished in areas with inflammatory 
infiltration (Figure 10). Comparing α-SMA immuno-
expression in subtypes of BCC, we found that tumoral 
immunoexpression revealed in the superficial subtype 
significantly differed when compared to all other subtypes 
– nodular (p<0.0001), micronodular (p=0.003), infiltrative 
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(p<0.0001), and mixed (p<0.0001). Similarly, stromal 
immunoexpression revealed in the infiltrative subtype 
significantly differed when compared to all other subtypes – 
nodular (p<0.0001), micronodular (p=0.036), superficial 
(p<0.0001), and mixed (p<0.001). 

Similarly to α-SMA immunoexpression, nodular tumoral 
masses demonstrated mostly weak Shh immunopositivity 
accompanied by extremely weak stromal immunoreactivity 

(Figure 11). Of note, that almost one half of infiltrative 
BBCs, followed by more than one-third of superficial  
and mixed tumors, and about one-third of micronodular 
displayed a strong Shh immunoexpression within neoplastic 
buds and strands (Figure 12), whereas the others ‒ moderate 
to strong Shh immunoexpression (Figure 13). The highest 
stromal immunoexpression of Shh was found in the 
superficial subtype of BCC (Figure 14). 

Table 3 – Distribution of α-SMA and Shh immunoexpression levels in different histopathological subtypes of BCCs 

Histopathological 
subtype of BCC 

Antigens 

Location 
α-SMA Shh 

Weak Moderate Strong Weak Moderate Strong 

Nodular 
Tumor 132 (51.2%) 69 (26.7%) 57 (22.1%) 127 (47.2%) 86 (32.0%) 56 (20.8%) 

Stroma 221 (75.0%) 55 (18.6%) 19 (6.4%) 262 (87.3%) 36 (12.0%) 2 (0.7%) 

Micronodular 
Tumor 75 (59.5%) 33 (26.2%) 18 (14.3%) 53 (41.4%) 37 (28.9%) 38 (29.7%) 

Stroma 100 (71.4%) 28 (20.0%) 12 (8.6%) 103 (73.6%) 28 (20.0%) 9 (6.4%) 

Infiltrative 
Tumor 92 (49.5%) 48 (25.8%) 46 (24.7%) 39 (22.5%) 56 (32.4%) 78 (45.1%) 

Stroma 120 (60.0%) 45 (22.5%) 35 (17.5%) 135 (67.5%) 53 (26.5%) 12 (6.0%) 

Superficial 
Tumor 210 (79.5%) 43 (16.3%) 11 (4.2%) 52 (23.8%) 83 (38.1%) 83 (38.1%) 

Stroma 289 (80.3%) 55 (15.3%) 16 (4.4%) 265 (73.6%) 61 (16.9%) 34 (9.4%) 

Mixed 
Tumor 313 (54.7%) 133 (23.3%) 126 (22.0%) 172 (30.2%) 183 (32.2%) 214 (37.6%) 

Stroma 427 (73.6%) 93 (16.0%) 60 (10.4%) 423 (72.9%) 112 (19.3%) 45 (7.8%) 

α-SMA: Alpha-smooth muscle actin; BCC: Basal cell carcinoma; Shh: Sonic hedgehog. *The shown numerical data represent the number of 
visual fields estimated and demonstrated either weak or moderate and strong expression of antigen. 

 

 
Figure 5 – Solid nodules of primary BCC demonstrate 
rather diffuse, weak to moderate α-SMA immunopositivity, 
whereas the lower one – more strong and compact 
immunopositivity appearing locally. Vascular α-SMA 
immunopositivity appears in myxoid stroma interspersing 
the nodules. α-SMA immunohistochemistry, ×250. α-SMA: 
Alpha-smooth muscle actin; BCC: Basal cell carcinoma. 

Figure 6 – Immunoexpression of α-SMA, both tumoral 
and stromal, is almost nil; α-SMA immunopositivity is 
restricted to vascular appearing in myxoid stroma 
interspersing the nodules of this primary BCC. α-SMA 
immunohistochemistry, ×250. α-SMA: Alpha-smooth 
muscle actin; BCC: Basal cell carcinoma. 

 

 
Figure 7 – Low power view of mixed recurrent BCC 
demonstrating stromal peritumoral and vascular α-SMA 
immunoexpression appearing in the myxoid stroma.  
α-SMA immunohistochemistry, ×100. α-SMA: Alpha-
smooth muscle actin; BCC: Basal cell carcinoma. 

Figure 8 – Strong stromal peritumoral immunoexpression 
of α-SMA displayed as a heavy decoration at the base of 
tumor nests and cords observed in mixed recurrent BCC; 
α-SMA immunopositivity within vascular channels.  
α-SMA immunohistochemistry, ×200. α-SMA: Alpha-
smooth muscle actin; BCC: Basal cell carcinoma. 
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Figure 9 – α-SMA immunonegative tumor nests and 
strands of mixed recurrent BCC are surrounded by actin-
rich stroma. α-SMA immunohistochemistry, ×200. α-SMA: 
Alpha-smooth muscle actin; BCC: Basal cell carcinoma. 

Figure 10 – Weak tumoral immunoexpression of α-SMA 
observed in primary superficial BCC; stroma is heavily 
infiltrated with inflammatory cells, and α-SMA immuno-
positivity is restricted to vascular beds. α-SMA immuno-
histochemistry, ×100. α-SMA: Alpha-smooth muscle actin; 
BCC: Basal cell carcinoma. 

 

 
Figure 11 – Nodular BCC masses displaying a weak 
immunoexpression of Shh; stromal immunoexpression 
is almost nil. Shh immunohistochemistry, ×250. BCC: 
Basal cell carcinoma; Shh: Sonic hedgehog. 

Figure 12 – Mixed primary BCC demonstrates tumor 
strands revealing partial stromal invasion and heavily 
decorated with the anti-Shh antibody; stromal component 
exhibits Shh immunopositivity as well. Shh immuno-
histochemistry, ×200. BCC: Basal cell carcinoma; Shh: 
Sonic hedgehog. 

 

 
Figure 13 – Moderate to a strong tumoral immuno-
expression of Shh accompanied by weak to moderate 
stromal immunoexpression observed in primary superficial 
BCC; marked stromal infiltration. Shh immunohisto-
chemistry, ×250. BCC: Basal cell carcinoma; Shh: Sonic 
hedgehog. 

Figure 14 – Diffuse, rather regular moderate stromal Shh 
immunoexpression demonstrated in primary superficial 
BCC. Shh immunohistochemistry, ×200. BCC: Basal 
cell carcinoma; Shh: Sonic hedgehog. 

 

The levels of Shh assessed for both BCC compartments 
differed when compared to α-SMA levels. Moderate and 
strong levels of the tumoral Shh immunoexpression 
characterized infiltrative, superficial, mixed, and micro-
nodular subtypes (Table 3). Simultaneously, stromal Shh 
levels were three times lower but two times higher for 
infiltrative and superficial subtype, respectively, when 
compared to α-SMA levels. Comparing Shh immuno-
expression in subtypes of BCC studied, we found that 

tumoral immunoexpression revealed in the nodular subtype 
significantly differed when compared to all other subtypes 
except micronodular – infiltrative (p<0.0001), superficial 
(p<0.0001), and the mixed (p<0.0001). Stromal immuno-
expression revealed in the nodular subtype significantly 
differed when compared to all other subtypes – infiltrative 
(p<0.0001), micronodular (p=0.009), superficial (p<0.0001), 
and mixed (p<0.0001). 
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 Discussions 
In the present study, we have (i) assessed the occurrence 

and distribution of 79 primary and recurrent BCCs 
developed in the head and neck region; (ii) performed 
IHC analysis of major constituents of the BM – type IV 
collagen and laminin – enveloping the tumoral compartment, 
and (iii) analyzed the immunoexpression of α-SMA and 
Shh found in the bulk of the tumor and surrounding stroma 
in different subtypes of BCC, reflecting the complexity 
of the biology and signaling in this neoplasm. 

A high frequency of BCC constituting approximately 
80% of all nonmelanoma skin cancers, and commonly 
appearing on the head and neck – body areas exposed  
to the sun has been demonstrated previously [1, 2, 6]. 
Simultaneously, the absolute incidence of BCC has not 
been determined, since non-melanoma skin cancer is usually 
excluded from cancer-registry statistics [1]. Furthermore, 
HP characteristics of BCC of the head and neck have 
changed over time, and new studies deepening our 
knowledge about the biology of BCC, in general, and 
behavioral peculiarities of TME, in particular, have been 
encouraged. 

In many studies reviewed, men were affected more 
often than women, whereas the reported age was over 60 
years at the first presentation [1, 43, 44]. We found the 
gender distribution similar to that reported by Mawardi  
et al. [45] and demonstrating female predominance, whereas 
the age at the time of diagnosis was similar comparing 
this study to former ones. 

Assessing skin phototype in patients enrolled in the 
given study, we found type II to be most common. It is 
characteristic of the inhabitants living in the Baltic region. 
Simultaneously, subjects with I–III skin phototype are 
recognized as having a higher risk to develop skin cancer 
[46]. 

In the present study, we have demonstrated that BCC 
might cause severe damage due to its local recurrence, 
and the mid-face is more susceptible. The nose, the cheek, 
and the eyelid areas chronically exposed to sunlight were 
more often affected by both primary and recurrent tumors 
than BCCs on the other predilection sites. These results 
are in accordance with those demonstrated by Mawardi 
et al. [45] when local, but not distant recurrence and 
aggressiveness of BCC were studied. In this context,  
the need for a comprehensive follow-up along with the 
correctness of complete tumor excision and application 
of Mohs micrographic surgery at the first surgical 
appointment are pivotal issues in reducing the likelihood 
of recurrence [47, 48]. 

Heterogeneity of the histopathology of BCC has been 
evidenced by other authors and us [49]. Furthermore,  
a high proportion of mixed BCC exhibiting an aggressive 
growth pattern and requiring surgical excision with margin 
control was demonstrated by the previous and current 
study [50]. Histomorphologically, infiltrative, morpheaform, 
micronodular, and superficial BCC, as surprisingly appeared 
in the given study, share some common features of 
aggressiveness ‒ increased cell necrosis, mitotic rate, and 
stromal cell proliferation, lesser stromal retraction, deeper 
invasion, and less circumscription of the tumor [51]. 

Our evidence regarding the entire structure of the 
BM, as exemplified by collagen IV and laminin immuno-

expression, appears to be similar to that published in the 
available literature [52, 53]. Similarly to the previous 
studies, we found that levels of type IV collagen and 
laminin immunoexpression were varying from low to 
moderate and high, with about two-thirds presented by 
low levels. The immunoexpression of the BM molecules 
studied was discontinuous or absent in BCC areas showing 
an aggressive pattern of growth. 

Previous studies have pointed out the necessity of tumor 
assessment based on an understanding of the biology and 
function of TME [54]. Furthermore, the usefulness of 
estimation of the cellular constituents of TME using  
the IHC assessment has been demonstrated very recently 
in studies of local aggressiveness in BCC [55]. The 
development of the actin-rich phenotype in CAF colonizing 
stromal compartment in aggressive variants of BCC – 
micronodular and morpheaform – was demonstrated 
previously [5, 20], and our IHC findings appear to support 
this evidence. Furthermore, recent results obtained  
by Romanian researchers in the case of the upper lip BCC 
suggest the usefulness of α-SMA immunoreactivity 
assessment on the invasion front [22]. This is consistent 
with the results of the present study confirming the increase 
of peritumoral and entire stromal α-SMA immuno-
reactivity in mixed recurrent BCC. Unfortunately, very few 
studies have reported on α-SMA assessments coupled to 
statistical evaluation of the immunomarker expression 
demonstrated either in tumoral and stromal compartments 
found in various subtypes of BCC or the primary and 
recurrent tumors [18]. Our study based on careful statistical 
assessments of the immunomarkers studied provided the 
meaningful evidence – the appearance of strong stromal 
α-SMA immunoexpression levels demonstrated in the 
recurrent BCC should be interpreted with caution consi-
dering the relapsing nature of the tumor. 

Activation of Shh signaling in the TME and its 
association with tumor growth and metastatic activity has 
been shown in studies examining the morphogen expression 
in neoplasms [56, 57]. Previous studies have suggested 
enhancement of resting fibroblasts stimulation and 
conversion into myofibroblasts by Shh, leading to the 
accumulation of collagen and dermal thickening in mice 
[58]. Furthermore, the frequency of hedgehog-related 
genetic alterations in BCC has been demonstrated recently, 
proving the presence of paracrine signaling in the TME 
harboring CAF [29, 59]. 

As described above, very limited data about the Shh 
signaling in primary and recurrent BCC, when the various 
subtypes of the tumor are compared statistically, have 
been reported. In this study, we have assessed the levels 
of Shh in primary and recurrent, and in five different 
subtypes of BCC by use of immunohistochemistry and 
statistics. We proved the increase of strong levels of Shh 
immunoexpression in both – tumoral and stromal – 
compartments. Furthermore, when specifying the subtypes 
of BCC analyzed, we found the increase of strong levels 
of Shh immunoexpression in aggressive variants – 
infiltrative, mixed, and micronodular. These results agree 
with the data demonstrated by Casas et al. [60]. By contrast, 
among the other subtypes of BCC, previously considered 
as aggressive variants, we found upregulation of Shh 
paralleled by downregulation of α-SMA immunoexpression 
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in the superficial subtype of the tumor assumed to be 
nonaggressive. This leads us to propose that Shh 
participates in normal and affected epidermal homeostasis, 
but the molecular pathway of the signaling is not completely 
understood. Finally, we may suggest that the assessment 
of morphological and IHC characteristics of primary and 
recurring forms of skin cancer and possible changes in 
the properties of a tumor is important for determining 
prognostic factors and choosing an adequate method for 
treating a disease. Shh binds to the patched receptor, 
which, in turn, functions in association with smoothened, 
to activate the transcription of target genes. Therefore, 
target therapy of hedgehog-related cancers, including 
BCC, is on its way to a much broader clinical application 
[59, 61–63]. Continued investigation of these processes 
will likely reveal new mechanisms of BCC and TME 
regulation with implications well beyond the control of 
Shh signaling. 

 Conclusions 
The given study deepens our knowledge regarding 

clinical, dermoscopical, and morphological assessment 
of primary and recurrent BCCs of head and neck, and 
explores the peculiarities of TME and Shh signaling in 
these tumors. Two-thirds of the patients enrolled in the 
study presented with skin phototype II. The nose and 
cheek are predominant regions affected by both primary 
and recurrent tumors. The proportion of patients with BCC 
developed in the nose area and relapsed after two years is 
high; it points out the necessity of precise surgical excision 
and HP assessment, especially when mixed tumors are 
considered. BCCs defined as infiltrative, micronodular, 
and superficial, as surprisingly appeared in the given 
study, are more aggressive. These often present with 
discontinuous BM and stromal CAF bearing actin-rich 
phenotype. The increase of peritumoral and entire stromal 
α-SMA immunoreactivity in BCC should be interpreted 
with special caution. Activation of Shh signaling in 
aggressive variants of BCC contributes, at least partly,  
to the changes of nature and interactions of the TME 
constituents. 
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