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Rising fluoroquinolone resistance 
in Campylobacter isolated from 
feedlot cattle in the United States
Yizhi Tang1, Orhan Sahin1,2, Nada Pavlovic1, Jeff LeJeune3, James Carlson4, Zuowei Wu1, Lei 
Dai1 & Qijing Zhang1

Antibiotic resistance, particularly to fluoroquinolones and macrolides, in the major foodborne pathogen 
Campylobacter is considered a serious threat to public health. Although ruminant animals serve as 
a significant reservoir for Campylobacter, limited information is available on antibiotic-resistant 
Campylobacter of bovine origin. Here, we analyzed the antimicrobial susceptibilities of 320 C. jejuni and 
115 C. coli isolates obtained from feedlot cattle farms in multiple states in the U.S. The results indicate 
that fluoroquinolone resistance reached to 35.4% in C. jejuni and 74.4% in C. coli, which are significantly 
higher than those previously reported in the U.S. While all fluoroquinolone resistant (FQR) C. coli 
isolates examined in this study harbored the single Thr-86-Ile mutation in GyrA, FQR C. jejuni isolates 
had other mutations in GyrA in addition to the Thr-86-Ile change. Notably, most of the analyzed FQR C. 
coli isolates had similar PFGE (pulsed field gel electrophoresis) patterns and the same MLST (multilocus 
sequence typing) sequence type (ST-1068) regardless of their geographic sources and time of isolation, 
while the analyzed C. jejuni isolates were genetically diverse, suggesting that clonal expansion is 
involved in dissemination of FQR C. coli but not C. jejuni. These findings reveal the rising prevalence 
of FQR Campylobacter in the U.S. and provide novel information on the epidemiology of antibiotic-
resistant Campylobacter in the ruminant reservoir.

Campylobacter is a leading cause of bacterial foodborne gastroenteritis worldwide and is a major public health 
problem1, 2. Although the majority of Campylobacter infections are self-limited and do not require antimicrobial 
treatment, antibiotics are indicated for severe and chronic conditions3. Clinical treatment of campylobacteriosis 
requires the use of fluoroquinolone (FQ) or macrolide antibiotics. However, antibiotic-resistant Campylobacter 
is becoming increasingly prevalent. Due to the rising resistance, especially to FQ, the Centers for Disease Control 
and Prevention (CDC) has recently identified drug-resistant Campylobacter as a serious antibiotic resistance 
threat in the United States4. The CDC reported that almost 25% of human Campylobacter isolates were resistant to 
ciprofloxacin in the USA4. Development and transmission of antibiotic resistant Campylobacter is complicated by 
the fact that Campylobacter is a zoonotic pathogen and is exposed to antibiotics used in both animal production 
and human medicine.

Contaminated poultry meat is frequently recognized as the major source for human infections5. However, 
ruminants also play a significant role in epidemiology of human Campylobacter infections and are increas-
ingly reported as the implicated source6–9. Ruminant Campylobacter contributes to human disease via multi-
ple transmission routes including direct contact (e.g. petting zoo and occupational exposure), consumption of 
unpasteurized milk (and associated dairy products), and environmental contamination (e.g., water and pro-
duce)10–12. Molecular typing methods, such as multilocus sequence typing (MLST) and pulsed field gel electro-
phoresis (PFGE), revealed that certain genotypes of C. jejuni from ruminants are indistinguishable from human 
isolates12–14, linking ruminant Campylobacter to human diseases. Raw milk is a well-recognized transmission 
route as a number of raw milk associated outbreaks of campylobacteriosis have been documented15–18. Ruminant 
Campylobacter may also contaminate water supplies via agricultural runoff. A waterborne outbreak associated 
with Campylobacter was reported to be the result of contamination of the town’s water supply with Campylobacter 
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originating from a cattle farm in the vicinity11. Thus, control of Campylobacter in ruminants will have a direct 
impact on food safety and human health.

Despite the importance of ruminant Campylobacter in foodborne disease, few studies have been conducted 
to understand antibiotic-resistant Campylobacter from cattle. Earlier reports from the U.S. (including the Feedlot 
1999 and Dairy 2002 NAHMS studies) and Canada indicated very low levels of FQ resistance (less than 5%) in 
Campylobacter isolates from cattle19–22. Bae et al.23 also reported a low level (ca. 5%) of resistance to ciprofloxacin 
in C. jejuni from different cattle production types in Western U.S., although C. coli isolates from the same study 
had much higher (ca. 45%) resistance rate to this drug during 2002–2003. Similarly, a study on Campylobacter 
from dairy cattle in the Midwest U.S. during mid-2000s indicated that less than 1% of isolates were resistant to 
ciprofloxacin24. However, a slaughterhouse survey25 conducted during late 2008 in the U.S. found that high per-
centage of both C. jejuni and C. coli (27.3% and 49.2%, respectively) from different types of cattle types (including 
both feedlot cattle and adult cows and bulls) were resistant to ciprofloxacin.

These observations point to a possible rising trend of FQ-resistance in the U.S. and highlight the need for 
conducting surveillance studies on a national scale to assess antibiotic resistance in ruminant Campylobacter. 
Although the National Antimicrobial Resistance Monitoring System (NARMS) operated by USDA monitors the 
occurrence of antimicrobial resistance in Campylobacter isolates from food animals at slaughter, the sampling 
and testing strategy does not include cattle and is limited to chicken carcass rinsates (http://www.ars.usda.gov/
Main/docs.htm?docid=6750&page=2). To understand the ecology and facilitate control of antimicrobial resist-
ant Campylobacter in the ruminant reservoir, we determined in this study the antimicrobial susceptibility of 
Campylobacter isolates derived from feedlot cattle operations in geographically diverse regions in the U.S.

Results
Prevalence of Campylobacter in feedlot cattle. The overall prevalence rate of Campylobacter in the 
feedlot cattle feces was 72.2% (2298/3184), and ranged between 69.2–78.2% among the different states from 
which the samples were derived. Of the Campylobacter isolates, 82.1% (1886/2298) were identified as C. jejuni, 
and 15.0% (344/2298) were determined to be C. coli by PCR (Fig. S1). The remaining 68 isolates (2.9%) were 
of different Campylobacter spp. than C. jejuni and C. coli and were not characterized further to species level 
(Table 1).

Antimicrobial susceptibility of the C. jejuni and C. coli isolates from feedlot cattle. Of the 320 
representative cattle C. jejuni isolates selected across the 35 feedlots tested in this study, 281 (88.1%) were found 
to be resistant to tetracycline, 114 (35.6%) were resistant to ciprofloxacin, and 110 (34.3%) were resistant to nali-
dixic acid. Resistance to azithromycin, clindamycin, erythromycin, florfenicol, gentamicin and telithromycin was 
low (one isolate for each) (Table 2). Among the 115 representative cattle C. coli isolates tested, 86 (74.8%) were 
found to be resistant to tetracycline, 89 (77.4%) were resistant to ciprofloxacin, 95 (82.6%) were resistant to nali-
dixic acid, and 5 (4.3%) were resistant to florfenicol and clindamycin. None of the C. coli isolates were resistant 

State Feedlot herds Cattle samples Positive cattle (%) C. jejuni (%) C. coli (%)

Iowa 8 800 554 (69.2) 487 (87.9) 56 (10.1)

Texas 8 576 414 (71.9) 367 (88.6) 35 (8.5)

Missouri 3 300 210 (70.0) 191 (91.0) 16 (7.6)

Colorado 8 758 593 (78.2) 438 (81.5) 124 (20.9)

Kansas 8 750 527 (70.3) 403 (76.5) 113 (21.4)

Total 35 3184 2298 (72.2) 1886 (82.1) 344 (15.0)

Table 1. Campylobacter species isolated from fecal samples of feedlot cattle from five states in the U.S.

Antibiotics Range tested (μg/ml) Resistance breakpoint (μg/ml)

No. (%) of resistance in cattle

C. jejuni C. coli

Azithromycin 0.015–64 ≥8 1 (0.3) 0

Ciprofloxacin 0.015–64 ≥4 114 (35.6) 89 (77.4)*

Clindamycin 0.03–16 ≥8 1 (0.3) 5 (4.3)

Erythromycin 0.03–64 ≥32 1 (0.3) 0

Florfenicol 0.03–64 ≥16 1 (0.3) 5 (4.3)

Gentamicin 0.12–32 ≥8 1 (0.3) 0

Nalidixic acid 4.0–64 ≥32 110 (34.3) 95 (82.6)*

Telithromycin 0.015–8 ≥16 1 (0.3) 0

Tetracycline 0.06–64 ≥16 281 (88.1) 86 (74.8)

Table 2. Prevalence of antimicrobial resistance in Campylobacter jejuni (n = 320) and C. coli (n = 115) from 
feedlot cattle. *Significantly different resistance (P < 0.05) compared with C. jejuni.
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http://www.ars.usda.gov/Main/docs.htm?docid=6750&page=2
http://S1


www.nature.com/scientificreports/

3Scientific RepoRts | 7: 494  | DOI:10.1038/s41598-017-00584-z

to azithromycin, erythromycin, gentamicin or telithromycin (Table 2). The ciprofloxacin resistance in C. coli 
(77.4%) was significantly (P < 0.05) higher than in C. jejuni (35.6%), as was the resistance rate for nalidixic acid 
(82.6% vs. 34.3%), whereas resistance to tetracycline was comparable (74.8% vs. 88.1%) between C. coli and C. 
jejuni (P > 0.05), respectively (Table 2). The resistance rates of either C. jejuni or C. coli isolates for tetracycline, 
ciprofloxacin and nalidixic acid did not vary substantially among different states (Data not shown). These results 
indicated an overall high rate of FQ resistance in feedlot cattle Campylobacter isolates, especially in C. coli.

Multiple drug resistance in C. jejuni and C. coli from cattle was observed frequently. Of the 320 C. jejuni iso-
lates tested, 114 (35.6%) were resistant to two or more antimicrobial agents, 100 (31.2%) were resistant to three or 
more antibiotics, 3 were resistant to four or more agents, 2 were resistant to five or more drugs, and 1 was resistant 
to seven antibiotics including azithromycin, ciprofloxacin, erythromycin, gentamicin, tetracycline, nalidixic acid 
and telithromycin (Table 3). None of the C. jejuni isolates were resistant to all nine drugs tested. Of the 115 C. coli 
isolates, 89 (77.3%) were resistant to two or more antimicrobial agents, 63 (54.7%) were resistant to three or more 
drugs, and 5 (4.3%) were resistant to five antibiotics (Table 3). None of the C. coli isolates were resistant to six or 
more antimicrobial agents included in the MIC test. Only one C. jejuni isolate was co-resistant to both ciproflox-
acin and erythromycin, while none of the C. coli isolates displayed co-resistance to these two antibiotics (Table 3). 
The most common multidrug resistance pattern was to ciprofloxacin, nalidixic acid, and tetracycline, which was 
observed in ~30% of C. jejuni and 50% of C. coli isolates, respectively (Table 3).

Genetic diversity of FQR Campylobacter from cattle. To determine if FQR Campylobacter isolates are 
genetically related, we analyzed the genetic diversity of representative isolates using PFGE and MLST. A total of 
26 FQR C. coli isolates were randomly selected for this purpose. Based on the 90% similarity level, the 26 isolates 
were grouped into five separate clusters, with the vast majority of isolates (76.9%, 20/26) grouped in cluster I, two 
isolates in cluster II and IV and one isolate in each of the remaining two clusters (Fig. 1a). The first four clusters 
had closely related PFGE profiles; the only noticeable difference among the patterns was the presence of extra one 
or two bands in some isolates (Fig. 1a). The 26 C. coli isolates tested came from 15 different feedlot cattle farms in 

Antimicrobial agent C. jejuni (n = 320) C. coli (n = 115) Total (n = 435)

TN 2 (0.6%) 4 (3.5%) 6 (1.4%)

CNT 97 (30.3%) 58 (50.4%) 155 (35.6%)

CNTG 1 (0.3%) 0 1 (0.2%)

CNTFL 1 (0.3%) 5 (4.3%) 6 (1.4%)

CNTAEI 1 (0.3%) 0 1 (0.2%)

Table 3. Multidrug resistance patterns among C. jejuni and C. coli isolates from feedlot cattle. A, Azithromycin; 
C, Ciprofloxacin; E, Erythromycin; T, Tetracycline; F, Florfenicol; N, Nalidixic acid; I, Telithromycin; L, 
Clindamycin.

Figure 1. Dendrogram constructed using the PFGE patterns of KpnI digested FQR C. coli (Fig. 1a) and C. jejuni 
(Fig. 1b) isolates. Numbers of bootstraps represent similarity. Clusters are determined using a cut off of 90% 
similarity. Isolate names are listed on the right side of each dendrogram. Tx: Texas; Co: Colorado; IA: Iowa; Ks: 
Kansas; Mo: Missouri; Fc: Feces.
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five different states that were sampled at different times. The 20 strains that grouped together in cluster I included 
those from 11 different farms in three different states, 10 from Colorado, 6 from Kansas, 4 from Texas while those 
in Cluster II were from 2 different farm in two states, the two isolates in Cluster IV came from the same farm 
in Missouri. MLST showed that the isolates grouped in cluster I, II, III and IV had the same sequence type (ST-
1068), while the isolate in cluster V was ST-5446.

Additionally, 24 FQR C. jejuni isolates were examined for genetic diversity via PFGE. In contrast to the sit-
uation with C. coli, no predominant genotypes were observed among the C. jejuni isolates. There were a total 
of 17 different PFGE profiles using 90% similarity as the cut off (Fig. 1b). MLST analysis of 7 C. jejuni isolates 
(Ks-3-Fc-56, Co-4-Fc-1, Co-1-Fc-22, Ks-4-Fc-1, IA-5-Fc-63, IA-3-Fc-18, Mo-1-Fc-27) representative of different 
PFGE pattern showed 6 different sequence types (ST982, ST3855, ST219, ST45, ST6751, ST459, ST3855 respec-
tively). The MLST result confirmed the genetic diversity of FQR C. jejuni isolates. All together the PFGE and 
MLST findings suggest that clonal expansion is not involved in dissemination of FQR C. jejuni on the cattle farms.

Antibiotic resistance mechanism of FQR Campylobacter. In Campylobacter, FQ resistance is con-
ferred by point mutations in the gyrA gene in conjunction with the function of the CmeABC efflux pump26. To 
examine the mechanisms of FQ resistance, the quinolone resistance determining region (QRDR) in gyrA of 27 
FQR C. coli and 27 FQR C. jejuni isolates were sequenced to determine the mutations associated with FQ resist-
ance. These isolates were selected to represent all farms that were positive with FQR Campylobacter. All C. coli iso-
lates harbored a single Thr-86-Ile mutation in GyrA without any other nucleotide changes in this region (Table 4). 
Among the 27 FQR C. jejuni isolates sequenced in this study, 10 isolates had the Thr-86-Ile point mutation only, 
8 isolates carried the Thr-86-Ile mutation plus the Arg-285-Lys mutation or the Asn-203-Ser change, and 7 iso-
lates carried theAsn-203-Ser and Arg-285-Lys mutations, one of which had an additional Ser-22-Gly change. 
Interestingly, 2 FQR C. jejuni isolates had no point mutations in QRDR. (Table 4, Table S1). Ser-22-Gly and Arg-
285-Lys substitution have not been previously reported to be associated with FQ resistance in Campylobacter. 
However, Arg-285-Lys mutation was also found in ciprofloxacin susceptible isolates, indicating this point muta-
tion alone would not confer FQ resistance.

Additionally, we analyzed the resistance determinant for tetracycline resistance using a tet(O)-specific PCR. 
Among the 20 tetracycline-resistant Campylobacter isolates examined in this study, all were positive with tet(O), 
indicating it is responsible for the resistance phenotype.

Discussion
Results from this study revealed high prevalence of FQR Campylobacter in feedlot cattle in the U.S. The resistance 
rate in C. coli is especially high, reaching to 77%. Such a high-level prevalence of FQ resistance in ruminants was 
not reported in earlier studies conducted in the U.S.19–21, although a recent study conducted in 200825 found that 
27.3% C. jejuni and 49.2% C. coli from different types of cattle productions (including both feedlot cattle and adult 
cows) were resistant to ciprofloxacin. Our findings in this study showed an even higher frequency of resistance to 
ciprofloxacin (35.4% in C. jejuni and 77.3% in C. coli) and nalidixic acid (34.3% in C. jejuni and 82.6% in C. coli). 
All together, these observations clearly indicate a rising trend of FQR Campylobacter in ruminants in the U.S. The 
reason that FQ resistance was much more prevalent in C. coli than in C. jejuni is unknown, but it has been known 
that C. coli is more likely to acquire antibiotic resistance than C. jejuni23, 27–30.

Campylobacter is highly mutable, and multiple independent studies including our work have demonstrated 
the rapid emergence of FQR mutants in animals originally infected with FQS C. jejuni and then treated with an FQ 
antimicrobial2, 31–34. FQR mutants spontaneously occur in Campylobacter populations and use of FQ antimicrobials 
selects and enriches these mutants. In Campylobacter, FQ-resistance is mainly mediated by point mutations in the 
QRDR of DNA gyrase (GyrA) in conjunction with the function of the multidrug efflux pump CmeABC2, 26, 35, 36.  
The most frequent mutation observed in FQR Campylobacter isolates is Thr-86-Ile, followed by Asp-90-Asn, Thr-
86-Lys, Thr-86-Ala, Thr-86-Val, Asp-90-Tyr and Ala-70-Thr2, 37, 38. The Thr-86-Ile mutation confers a high level of 
FQ resistance (ciprofloxacin MIC ≥ 16 µl/ml) in Campylobacter, while other mutations are associated with a low 
to medium level of resistance (MIC = 1–8 µg/ml)2, 39, 40. Double mutations including Thr-86-Ile/Pro-104-Ser and 
Thr-86-Ile/Asp-90-Asn have also been linked to FQ resistance in Campylobacter39.

Consistent with the previous findings discussed above, we found in this study that the FQR C. coli and C. jejuni 
isolates. However, we also identified three additional amino acid substitution in the C. jejuni isolates. One is Asn-
203-Ser, which is known to confer FQ resistance along with Thr-86-Ile mutation27, 41. Another one is Arg-285-Lys, 
which alone may not confer FQ resistance because it was identified in susceptible strains. Six FQR contained both 

Species Mutation(s) Ciprofloxacin MIC (μg/ml) No. of isolates

C. jejuni

Thr-86-Ile 8–32 10

Thr-86-Ile Arg-285-Lys 4–64 5

Asn-203-Ser Arg-285-Lys 8–64 6

Thr-86-Ile Asn-203-Ser 16–32 3

Ser-22-Gly Asn-203-Ser Arg-285-Lys 16 1

NF 4–16 2

C. coli Thr-86-Ile 8–16 27

Table 4. Point mutations observed in the QRDR of GyrA in FQR C. jejuni (n = 27) and C. coli (n = 27) isolates. 
NF: no point mutation found in gyrA.
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Asn-203-Ser and Arg-285-Lys, but no Thr-86-Ile (Table 4; Table S1). Whether the two mutations alone were 
responsible for the FQ resistance phenotype is unknown and needs further investigation. The third mutation is 
Ser-22-Gly, which has not been associated with FQ resistance in Campylobacter. Interestingly, two FQR C. jejuni 
isolates from the same farm did not show any mutations in QRDR of gyrA (Table 4), and what is responsible for 
their resistance to FQ is unknown and can’t be explained by mutations in gyrA. These findings indicate that the 
gyrA mutations in FQR C. jejuni isolates are more diverse than in FQR C. coli isolates.

FQ antibiotics are frequently used in veterinary medicine for the treatment and control of infectious diseases 
of pets and food-producing animals42. For example, enrofloxacin and danofloxacin are approved as an injectable 
solution (various dosage regimens) for use in the treatment and control of respiratory disease in cattle associated 
with Mannheimia haemolytica, Pasteurella multocida, Histophilus somni and Mycoplasma bovis in the United 
States and many other countries42. The initial approval of enrofloxacin by FDA was in 1998 and it was only for 
the treatment of bovine respiratory disease (BRD) in beef cattle. Subsequent approvals extended their use for 
BRD treatment in dairy replacement heifers of less than 20 months of age in 2008, and their metaphylactic use 
for control of BRD in beef and non-lactating dairy cattle at high risks of developing BRD in 2012. About 43% of 
the feedlots included in the Feedlot 2011 NAHMS study reported therapeutic use of FQs in approximately 42% of 
cattle with respiratory disease43. In the United States, the use of these drugs in cattle production is permitted only 
under a prescription from a veterinarian and their extralabel use in food producing animals is strictly prohib-
ited. In this study, we showed a substantial increase in the prevalence of FQ resistance in Campylobacter isolates 
from cattle in the U.S., which coincides with the expanded use of FQ antibiotics in cattle production. However, 
it is still unknown if the on-farm use directly influences the development and dissemination of FQ-resistant 
Campylobacter and if the treatment regimen can be managed to reduce the development and prevalence of 
FQ-resistance.

Except for FQs and tetracycline, the Campylobacter isolates examined in this study are generally susceptible to 
other tested antimicrobials (Table 2). For example, the resistance to macrolide (erythromycin) was barely detected 
in both C. coli and C. jejuni. Tetracycline has been used for animal production for many years, and we found that 
tetracycline resistance is high in both C. jejuni (88.1%) and C. coli (74.8%), which is even higher than previously 
reported19, 20, 44. The predominant tetracycline resistance determinant in Campylobacter is tet (O), although a 
recent study reported that tet (A) also conferred resistant to tetracycline in Campylobacter45. In this study, all 
examined tetracycline-resistant isolates harbored the tet(O) gene, consistent with previously reported findings.

PFGE and MLST are two commonly used genotyping methods for differentiation of Campylobacter iso-
lates46–48. In this study, PFGE typing of 26 FQR C. coli and 24 FQR C. jejuni revealed that C. coli is more clonal than 
C. jejuni (Fig. 1), despite the fact that the C. coli isolates were from 15 feedlots in 5 different states. The majority 
of the PFGE-typed C. coli isolates were grouped into three clusters (I, II and IV) of high genetic similarity, which 
was confirmed by MLST to be a single ST (ST-1068), suggesting dissemination of a single clone on different cattle 
farms. This ST was observed in 83% (52/63) of the C. coli isolates of cattle origin in another report49, further indi-
cating that it is highly prevalent in cattle. The presence of C. coli with identical genotype on multiple geograph-
ically distant farms implies the dissemination of a single strain from farm to farm, which could be a potential 
factor driving the increase in FQR prevalence in Campylobacter. Similar findings were reported in a previous 
study, in which multiple antibiotic resistant C. coli collected from different cattle farms and at different times had 
an indistinguishable PFGE pattern, in contrast to the genetic diverse of C. jejuni isolates50. The exact vehicles 
or mechanisms promoting clonal dissemination of C. coli in different cattle farms are unknown and need to be 
further investigated. For the C. jejuni isolates examined in this study, they are genetically diverse and it is unlikely 
that colonal expansion is involved in their dissemination.

In summary, we observed high prevalence of FQ-resistance in both C. jejuni and C. coli isolates derived 
from cattle in the U.S. The reason for this rising trend in FQ resistance is uncertain, but it is likely due to the 
hyper-mutable nature of Campylobacter and the selection from use of FQ antimicrobials in the control of respira-
tory diseases in cattle production. Additionally, clonal expansion, as reported in other studies51–53, may have also 
contributed to the increasing prevalence of FQR Campylobacter. Development of FQ resistance is known to affect 
the fitness of Campylobacter in chickens, resulting in persistence of FQR Campylobacter even in the absence of 
antibiotic selection pressure54.

Considering this possibility and the fact that FQs are currently used for cattle production, it is possible that 
the prevalence of FQR Campylobacter will continue to rise. Given that ruminant Campylobacter is a significant 
source of foodborne campylobacteriosis in humans, heightened efforts are needed to control the development 
and dissemination of FQR Campylobacter in cattle production.

Methods and Materials
Sample collection and bacterial isolation. A total of 3,184 cattle fecal samples were collected from 35 
different feedlot cattle herds located in Iowa (n = 8), Texas (n = 8), Colorado (n = 8), Missouri (n = 3) and Kansas 
(n = 8) on two different occasions during December 2012 to March 2013. Collection of cattle fecal samples fol-
lowed methods that have been described previously55. Cattle fecal samples were collected from the floor of animal 
pens and only freshly voided fecal pats were sampled. In other words, the sample was collected from a fecal pat 
only after a cow was observed defecating. This procedure allowed us to standardize environmental exposure time 
among fecal samples and estimate herd prevalence of Campylobacter without confining animals for collection of 
rectal samples. Freshly voided fecal pats were scraped with a sterile cotton tipped swab and the swab was imme-
diately placed in 10 ml glass tubes containing Campylobacter Thioglycollate Broth (CAMPY-THIO). Vials were 
labeled and then immediately placed in an electric cooler set to 4 °C. All cattle fecal samples were shipped priority 
overnight to the testing laboratory. All samples were shipped, in insulated boxes packed with Ice-Brix® (Polar 
Tech Industries, Genoa, IL 60135). Only samples received by the laboratories within 24 hours of the date of col-
lection were screened for Campylobacter. From the Campy-Thio containing the fecal samples, 1 ml was added into 
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tubes containing 9 ml of Campylobacter enrichment broth (Mueller–Hinton [MH] medium supplemented with 
selective growth supplements [SR084E and SR117E; Oxoid]), and incubated at 42 °C for 48 h under microaerobic 
conditions (5% O2, 10% CO2, and 85% N2). From the enrichment culture, an inoculum of 100 µl was streaked 
onto MH agar containing the same selective supplements, which were further incubated for 48 h under the same 
conditions. A single Campylobacter-like colony from each sample was subcultured onto a MH agar plate and the 
pure cultures were stored in glycerol stocks at −80 °C until further use.

Campylobacter identification. PCR was used to detect and differentiate C. jejuni and C. coli. Two sets 
of previously published PCR primers were used56, 57. The first primer pair (CCCJ-F: 5′-AAT CTA ATG GCT 
TAA CCA TTA-3′; CCCJ-R: 5′-GTA ACT AGT TTA GTA TTC CGG-3′), targeting 16S rRNA, was designed to 
co-identify C. jejuni and C. coli56. The second primer pair (mapA-F: 5′-GAG TGC TTG TGC AAC TAA AC-3′; 
mapA-R: 5′-ATA GCA TCT TGA GTT GCT CC-3′) was specific for C. jejuni only57. The primers were synthe-
sized at the DNA facility in Iowa State University using the MerMade-192 synthesizer. PCR reactions were per-
formed as described previously56, 57.

Antimicrobial susceptibility testing. In total, 320 C. jejuni (5 from each feedlot) and 115 C. coli (3 from 
each feedlot) isolates were randomly chosen and included in the susceptibility testing. The minimum inhibi-
tory concentrations (MICs) of nine antibiotics were determined using a standard broth microdilution method 
as recommended by Clinical and Laboratory Standards Institute (CLSI) and National Antimicrobial Resistance 
Monitoring System for Enteric Bacteria (NARMS)58–60. Commercially available Sensititre Campylobacter plates 
(Trek Diagnostic Systems, Cleveland, Ohio) were used for antimicrobial susceptibility testing. The plates were 
read after incubated in a microaerobic environment for 24 h at 42 °C. The lowest antimicrobial concentration at 
which no bacterial growth developed was used as MIC value for each isolate. The antimicrobial resistance break-
points were chosen according to the interpretive standards established by the CLSI for bacteria isolated from 
animals58–60. C. jejuni ATCC 33560 and C. coli ATCC 33559 were used as quality control strains for C. jejuni and 
C. coli, respectively.

PFGE and MLST typing of Campylobacter isolates. In total, 26 FQR C. jejuni and 24 FQR C. coli isolates 
were randomly chosen from different feedlots in different states. In this study, 15 feedlots were positive with FQR 
C. coli, and 17 feedlots were positive with FQR C. jejuni. We selected 1–2 isolates from each positive feedlot to 
represent all positive farms in all five states. PFGE analysis of the macrorestriction fragment patterns of genomic 
DNA using KpnI enzyme was performed on these isolates following the CDC’s standardized PulseNet protocol 
for Campylobacter with minor modifications47. Briefly, fresh cultures of Campylobacter were embedded in 1% 
Seakem Gold agarose (Fisher Scientific, Fair Lawn, NJ) and lysed with proteinase K for 1 h at 55 °C in a water bath 
shaker. The gel plugs were digested with KpnI for 4 h at 37 °C. Digested plugs were embedded into 1% agarose 
and separated by electrophoresis in 0.5 × TBE buffer (Promega) at 14 °C for 18 h using a Chef Mapper electro-
phoresis system (Bio-Rad, Hercules, CA). Gel was stained with ethidium bromide for 30 min and then photo-
graphed by UV transillumination (Alpha Innotech, Santa, Clara, CA). The PFGE patterns were analyzed by the 
GelCompare II v.6.5 software program (Applied Maths, Kortrijik, Belgium) using Dice similarity coefficient and 
unweighted-pair group method with arithmetic averages (UPGMA) with 0.5% optimization and 1.5% position 
tolerance. Lambda DNA ladder (Bio-Rad) was used as the molecular size marker.

To further confirm the genotype of those isolates, MLST, originally developed by Dingle et al.46, was car-
ried out on FQR C. coli and C. jejuni isolates representative of different PFGE types. Seven housekeeping genes 
were amplified and sequenced using the primer sets recommended at the Campylobacter MLST website (http://
pubmlst.org/campylobacter/), developed by Keith Jolley and Man-Suen Chan at the University of Oxford61. All 
PCR products were purified using the QIAquick® PCR purification kit (QIAGEN, Hilden, Germany) and then 
sequenced at the DNA Core Facility of Iowa State University using an Applied Biosystems 3730xl DNA Analyzer. 
Allelic numbers were assigned to the isolates by performing BLAST searches for the assembled sequences using 
the single-locus query function, whereas sequence types were assigned using the allelic profile query function in 
the MLST database. Sequences that were identical to existing alleles in the MLST database were assigned the cor-
responding allele numbers. Novel sequences were assigned new allele numbers and sequence types (STs) within 
the MLST database.

Antibiotic resistance mechanism determination. A total of 27 FQR C. coli and 27 FQR 
C. jejuni isolates were selected for determination of the point mutations in gyrA (Table  S1). To 
amplify the QRDR region of gyrA by PCR, primers GyrAF1 (5′-CAACTGGTTCTAGCCTTTTG-3′) 
and GyrAR1 (5 ′-AATTTCACTCATAGCCTCACG-3 ′) were used for C. jejuni ,  while GyrAF2 
(5′-TTATTTAGATTATTCTATGAGCGT-3′) and GyrAR2 (5′-CTTGAGTTCGATTACAACAC-3′) were 
used for C. coli. All PCR products were purified using the QIAquick® PCR purification kit (QIAGEN, Hilden, 
Germany) and then sequenced at the DNA Core Facility of Iowa State University using an Applied Biosystems 
3730xl DNA Analyzer.

The presence of the tet(O) gene (the predominant determinant of tetracycline resistance in Campylobacter), 
was determined by PCR. For this purpose, primers tet(O)-F (5′-GGCGTTTTGTTTATGTGCG-3′) and tet(O)-R 
(5′-ATGGACAACCCGACAGAAGC-3′) were used to amplify a 559-bp region of the tet(O) gene as described 
elsewhere47.

Statistical analysis. To compare the prevalence of antimicrobial resistance between C. jejuni and C. coli, the 
statistical analyses were performed with GLIMMIX procedure in SAS 9.4 version (SAS Institute Inc., Cary, NC, 
USA) for binary distribution (yes/no response variable) with logit link function. Both states and farms were con-
sidered as random effects, the Campylobacter species (C. jejuni and C. coli) was the fixed effect, and three different 

http://pubmlst.org/campylobacter/
http://pubmlst.org/campylobacter/
http://S1
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models were fitted separately with three kinds of antibiotics (ciprofloxacin, nalidixic acid and tetracycline) as 
response variables. The significance level used here is 0.05.
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