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Chemically induced nociception has not yet been studied intensively in
genetically tractable models. Hence, our goal was to establish a Drosophila
assay that can be used to study the cellular and molecular/genetic bases of
chemically induced nociception. Drosophila larvae exposed to increasing con-
centrations of hydrochloric acid (HCl) produced an increasingly intense
aversive rolling response. HCI (0.5%) was subthreshold and provoked no
response. All classes of peripheral multidendritic (md) sensory neurons
(classes I-IV) are required for full responsiveness to acid, with class IV
making the largest contribution. At the cellular level, classes IV, III and I
showed increases in calcium following acid exposure. In the central nervous
system, Basin-4 second-order neurons are the key regulators of chemically
induced nociception, with a slight contribution from other types. Finally,
chemical nociception can be sensitized by tissue damage. Subthreshold HCI
provoked chemical allodynia in larvae 4 h after physical puncture wounding.
Pinch wounding and UV irradiation, which do not compromise the cuticle,
did not cause chemical allodynia. In sum, we developed a novel assay to
study chemically induced nociception in Drosophila larvae. This assay, com-
bined with the high genetic resolving power of Drosophila, should improve
our basic understanding of fundamental mechanisms of chemical nociception.

This article is part of the Theo Murphy meeting issue ‘Evolution of
mechanisms and behaviour important for pain’.

1. Introduction

All animals can discriminate noxious environmental stimuli that can potentially
induce tissue damage. This nociceptive sensory capacity is crucial for health
and survival. Noxious thermal, mechanical or chemical stimuli elicit specific
escape behaviours designed to avoid the potentially damaging stimulus [1].
Drosophila larvae display different nociceptive responses based on the stimulus
presented. Noxious heat and harsh mechanical stimuli induce bending [2], roll-
ing and fast crawling behaviours [3,4], with rolling representing the dominant
response. Conversely, noxious cold provokes a different behaviour, contraction
of the head and tail towards the middle of the body [5]. Assays that measure
aversive behaviours are helping to dissect the fundamental mechanisms of
thermal [4-6] and mechanical nociception [7-9].

Chemical nociception has been relatively understudied in most organisms.
In adult flies TRPA1, an evolutionarily conserved cation channel expressed in
gustatory neurons, mediates chemical avoidance to noxious compounds such
as aristolochic acid [10], allyl isothiocyanate (AITC, the noxious compound
found in wasabi) and benzyl isothiocyanate (BITC) [11], N-methyl maleimide
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(NMM) and cinnamaldehyde (CA) [12]. These studies have
measured proboscis extension to potential food sources
rather than whole-animal aversion to chemicals. As such
they examine an intersection between gustation (taste) and
chemical nociception. Assays that probe responses that
might be evoked by contact of noxious chemicals with the
skin barrier have not yet been developed in Drosophila.
What kind of aversive response might result from exposure
to noxious chemical(s) is currently unknown.

Drosophila larvae have two major types of peripheral sensory
neurons, type I and type II [13]. Type I neurons have a single
ciliated dendrite that mediates mechanosensory functions
such as light touch [14]. Type II neurons, also called multiden-
dritic (md) neurons, exhibit elaborate dendritic projections that
cover the barrier epidermis [15]. The md neurons comprise
four classes (classes I-IV) based on their peripheral arbour com-
plexity [16]. Class I neurons have been implicated in locomotion
and proprioception [17-20]. Both class IT and class III have been
implicated in light-touch responses, with class IIl playing the
major role [21,22]. Cold nociception is also mediated by class
IIT neurons [5]. Class IV neurons are multimodal nociceptors,
implicated in behavioural responses to noxious heat [4], harsh
mechanical stimuli [9] and noxious low wavelength light [23].
At present, it is unknown which, if any, peripheral sensory
neurons have a role in chemical nociception.

Second-order interneurons located in the ventral nerve cord
receive synaptic input from the various classes of md sensory
neurons [24]. These second-order interneurons likely allow
integration of different sensory stimuli [2,7,25-27]. Basin
interneurons (Basins 1-4) were the first identified interneurons
implicated in multisensory integration and noxious responses
[25,26]. Basin-1 mediates mechanosensory responses (vibration),
while Basin-4 regulates thermal nociceptive responses via Goro
neurons [26]. Other classes of second-order neurons, includ-
ing medial clusters of class IV dendrite arborization (C4 da)
second-order interneurons (mCSIs) [27], Down-and-Back
(DnB) interneurons [2], dorsal pair (DP) insulin-like peptide 7
(ilp7) producing neurons (DP-ilp7 neurons) [7] and A08n neur-
ons [7,28], also regulate nocifensive behavioural responses in
Drosophila larvae. The roles, if any, of these different interneurons
in chemical nociception have not yet been elucidated.

Tissue injury typically causes nociceptive sensitization
[29]. For instance, UV exposure in Drosophila larvae sensitizes
nociceptive sensory neurons to an innocuous thermal stimu-
lus (thermal allodynia) [30]. This assay has helped to identify
several signalling pathways mediating thermal allodynia,
including TNF [30,31], Hedgehog [32] and tachykinin signal-
ling [33]. In vertebrates, tissue damage can also cause
hypersensitivity to chemical stimuli. A classic example
would be the sting resulting from lemon juice when it
encounters an open cut on a cook’s hand. Whether chemical
nociceptive responses in Drosophila can be sensitized by tissue
injury remains an open question.

2. Results

(a) Development of a novel assay for chemical
nociception in Drosophila larvae

To study chemical nociception in Drosophila larvae we devel-
oped a new behavioural assay. In this procedure, Drosophila
larvae are briefly exposed to HCI, a presumably noxious

acid (figure 1a). Concentrations below 0.5% HCIl did not [ 2 |

elicit responses that differed from normal locomotion (elec-
tronic supplementary material, movies S1 and S2); thus this
concentration can be considered as subthreshold. Increasing
the concentration of HCl (from 1 to 9%) caused aversive
rolling, a behaviour that is also seen with exposure to noxious
heat and mechanical stimuli [3,4,9] (electronic supplementary
material, movies S3 and S4). This nociceptive behaviour
was more prevalent as the acid concentration was
increased (figure 1b) and the latency (time to rolling after
HCl application) decreased dramatically with increasing
acid concentration (figure 1c). The relationship between
HCI concentration and behavioural responsiveness is linear
(figure 1d). We also asked if other acids induce nociceptive
behaviour at similar concentrations to HCI. Sulfuric acid
induced a per cent of rolling response (100%) similar to
HCI, while acetic acid was less potent (figure le). Among
acids with slightly higher pH values, citric acid (pH 1.71)
did not elicit any nociceptive behavioural responses, whereas
acetic acid (pH 2.23) did (figure 1le). Larvae of different devel-
opmental stages did not show significant differences in
nociceptive responsiveness to acid (p=0.4667). However,
larvae at the latest developmental stage (late third instar)
did show a slight delay in the behavioural response when
compared with the early developmental stages (electronic
supplementary material, figure S1A). Together these data
introduce and describe a new assay to measure chemical
nociceptive behaviour in Drosophila larvae.

(b) Noxious chemical stimulation induces cellular stress
and tissue damage

Noxious stimuli evoke an aversive behavioural reaction presum-
ably because they cause tissue damage and/or adversely affect
survival. We tested whether exposure to acid is noxious by these
criteria. Exposure to a high concentration of HCI (figure 24, 9%)
for increasing times dramatically decreased the survival rate of
larvae to the pupal and adult stages (figure 2b,c). We next exam-
ined whether HCl exposure caused a cell stress response in third
instar larvae. We exposed larvae to 9% HCI for either 10 s or
1 min and examined activation of msn-lacZ, a reporter of Jun
N-terminal kinase (JNK) signalling/cellular stress [34]. We
observed a modest induction of JNK activity in the barrier epi-
dermal sheet upon brief exposure to 9% HCl when compared
with the control larvae (figure 2d—f). At the cellular level,
reduction of an epidermal membrane marker (figure 2¢g—i) and
blebbing along the neuronal dendritic branches of class IV
nociceptive sensory neurons were also observed (figure 2j-I).
These changes were a function of both time of acid exposure
and proximity to the posterior location of initial acid exposure.
The more posterior abdominal segments (A7-A8) were affected
more severely than more anterior segments further from the
initial exposure to acid (A4-A5; electronic supplementary
material, figure S2A-F). Together, our results suggest that HCI
exposure is noxious, as defined by a decrease in survival and
qualitative indicators of tissue damage, and that the level of nox-
iousness is determined by time of exposure and proximity to the
source of exposure.

() Multiple classes of multidentritic sensory neurons
mediate chemical nociception responses

The different classes of md sensory neurons (I-IV) that tile
the larval barrier epidermis sense several sensory modalities,

78706107 “¥LE § 20S Y *subil ‘iyd  qisi/jeunol/bio buiysigndAranosiefos



HCl elicits an increasingly intense behavioural reaction
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Figure 1. Development of a novel chemical nociception assay in Drosophila larvae. (@) Schematic cartoon of chemical nociception assay. (b) Behavioural aversive
rolling response versus increasing chemical stimulus concentrations. (c) Latency of the behavioural response. (d) Relationship between chemical concentration and
nociceptive behaviour. (e) Behavioural aversive rolling response to different acids. (b—d) n =30 larvae and repeated three times. () 20—30 larvae. Error bars rep-

resent mean £ s.e.

including heat, light touch, cold and harsh touch (figure 3a).
Using a genetic inactivation strategy, we next asked whether
md sensory neurons mediate chemical nociception. We
combined a pan-md sensory neuron-specific Gal4 driver
(md-Gal4) with a transgene encoding an active tetanus toxin
(UAS-TeTxLC = UAS-TeTx-Active) or an inactive toxin control
(UAS-IMP TNT VI-A = UAS-TeTx-Inactive) [35]. Expression
of tetanus toxin in all md sensory neurons completely
abrogated the response to a noxious chemical stimulus com-
pared with relevant genetic controls (figure 3b). This suggests
that one or more type of md sensory neuron class mediates
chemical nociception.

We next silenced each class of md sensory neuron (I-1V)
individually by combining sensory neuron class-specific
Gal4 drivers with the active and inactive tetanus toxins

used above. Since aversive rolling is seen with heat, harsh
touch and chemical exposure we suspected that class IV sen-
sory neurons might also play a role in chemical nociception.
Surprisingly, silencing class I, class II, and to a lesser degree
class III sensory neurons substantially attenuated chemical
nociception (figure 3c—¢). However, the strongest block of
chemical nociception, as expected from the rolling behaviour,
was seen with silencing class IV neurons (figure 3f). The
strength of the nociceptive defect observed upon silencing
each sensory neuron was class IV >class II > class 1> class
III (figure 3g). A separate class of peripheral sensory neurons,
chordotonal neurons [16], had a minor effect on chemical
nociceptive responses (electronic supplementary material,
figure S3). Taken together, these data indicate that there is a
distributed requirement for acid-evoked rolling in Drosophila
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HCI activates cellular stress response and tissue damage
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Figure 2. Noxious chemical stimulus induces cellular stress response and tissue damage. (a) Cartoon depicting the larvae incubation in 9% HCl. (b,¢) Larval and
adult survival per cent in response to increasing time of incubation with 9% HCl. (d—f) Epidermal cell stress response induced by 9% HCl. (g—i) Epidermal tissue
damage analysis in response to noxious acid. (j—/) Class IV sensory neuronal tissue damage in response to noxious acid. A7-8: Abdominal segments 7 or 8. msn-lacZ:
reporter of Jun N-terminal kinase (JNK) signalling/cellular stress. (b,c) n = 60 for each condition. Error bars represent mean = s.e. Statistical significance was deter-
mined via one-way ANOVA with a Dunnet’s post hoc test. (d—f) n = 4 larvae for each condition; (g—/) n = 9 larvae for each condition and representative images are

shown. Bar in d—f, 50 um. Bar in g—/, 100 pm.

larvae, with multiple md sensory neuron classes playing a
role, either directly or indirectly, in the behavioural response.

(d) Acid activates class IV nociceptive neurons

As multiple classes of md sensory neurons exhibit differing
contributions to HCl-induced chemical nociception, we next
sought to assess how HCI exposure influenced neural activity
in these neurons. Freely behaving third instar larvae expres-
sing the genetically encoded calcium indicator CaMPARI
[36] were subjected to treatment with 9% HCl and immedi-
ately analysed post hoc for neural activation in md neuron
subclasses. As inactivation of md neurons was sufficient to
inhibit acid-evoked rolling behaviour, we focused our analyses
on CaMPARI responses in md neuron subclasses. Visually,
this analysis revealed strong HCl-induced activation of class
IV (dorsal dendritic arborization neuron C, ddaC) nociceptive
neurons relative to mock-treated controls (figure 42). When we
quantified red/green fluorescence ratios in representative
images, we observed HCl-induced activation of a class IV
neuron (ddaC) and to a lesser extent a subset of class I
(ddaE) and class III (ddaF) md neurons (figure 4b,c). No sig-
nificant activation, relative to controls, was observed for the
class II (ddaB) neurons (figure 4b,c), although there was an
upward trend in CaMPARI photoconverted signal for all md
neurons. These data support a primary sensory role for class
IV neurons in chemical nociception.

(e) Basin interneurons mediate chemical nociception
Recent investigations have identified multiple interneurons
that receive input from class IV sensory neurons and help

mediate Drosophila larval nocifensive escape behaviours in
response to noxious thermal and mechanical stimuli
[2,7,26-28] (figure 5a). We next asked whether any of these
interneurons (Basins, Goro, mCSI, DnB and A08n) also play
a role in chemical nociception. We silenced each of these
interneurons using neuron-specific Gal4 drivers (Basin-Gal4,
Goro-Gal4, mCSI-Gal4, DnB-Gal4 and A08n-Gal4) and the
same tetanus toxin transgenes used above to silence periph-
eral sensory neurons. Ectopic expression of the active form
of tetanus toxin transgene (UAS-TeTx-Active) in all Basin inter-
neurons drastically reduced Drosophila larvae responses to 9%
HCl, compared with the control larvae (figure 5b). This
suggests that basin multisensory interneurons are required
for the rolling behaviour response to chemical stimulus.
Basin interneurons comprise four neuron types of basin-
shaped arbours (Basins 1-4), so we asked which of these
interneuron types mediate chemical nociception using the
same class-specific strategy we used for the sensory neur-
ons, where class-specific drivers were available. When
Basin-1 or Basin-2 interneurons were individually silenced,
the nociceptive behavioural response to noxious chemical
stimulation was partially decreased (figure 5¢,d). A more
significant decrease was observed when only Basin-4 neur-
ons were silenced (figure 5e). The other interneuron classes
(mCSIs, A08n and DnB) and neurons further in the nocicep-
tive circuit (Goro) all displayed partial contributions to
chemical nociception (electronic supplementary material,
figures S4A-F), none of which was as strong as that
observed by silencing Basins. Taken together, Basin inter-
interneurons, appear to

neurons, especially Basin-4

mediate chemical nociception.
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md neurons are important for rolling response to chemical stimulus
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Figure 3. Multidentritic sensory neurons mediate chemical behavioural nociception responses. (a) Cartoon depicting the morphology, behavioural function, and
nociceptive modality of the different peripheral sensory neurons. (b—g) Behavioural response to noxious chemical stimulus (HCl 9%). (b) Silencing of all multi-
dendritic sensory neurons, by blocking the synaptic output using tetanus neurotoxin. Silencing specific sensory neurons using tetanus neurotoxin in class | (c),
class 1l (d), class Il (e) and class IV (f). (g) Comparison of the degree of the silencing effect in the md sensory neurons (classes I-I1V). The genotype colour-
code used in (b) applies for (b—f). (b—f) n=90 for each condition, data from three independent replicates of at least 30 larvae each. Error bars represent
mean = s.e. Log-rank (Mantel—Cox) test was used to determine statistical significance between different groups.

(f) Possible sensitization of chemical nociceptive
responses by physical injury

A hallmark of nociceptive behaviours is that they can be sen-
sitized by tissue injury, and this occurs with responses to both
noxious heat [30] and noxious cold [37] in Drosophila larvae.
Thus, we examined whether aversive rolling to a subthres-
hold concentration of HCI (0.5%), which would constitute
chemical allodynia, could be observed in larvae. The classical
sensitizing injury used in larvae to date is UV irradiation,
which causes epidermal death and morphological disruption
[30]. Very little responsiveness to subthreshold HCl was
observed after this injury (electronic supplementary material,
figure S5A,B). We reasoned that sensitization to chemical
stimuli might require an injury that breaches the cuticle so
we tried puncture wounding [34] (figure 6a). Compared
with uninjured larvae (figure 6b), wounded larvae exhibited

the emergence of an aversive rolling response at 2—4 h after
injury (figure 6c,d). This acute hypersensitivity was short-
lived, as it faded by 8 h post-injury (figure 6e) and was
gone by 16 h post-injury (figure 6f). A breach in the cuticle
appears to be important for the emergence of sensitization,
as pinch wounding (which creates a larger wound but
leaves the cuticle intact) [38] did not elicit chemical allodynia
(electronic supplementary material, figure S5C-F). Taken
together these results indicate that certain types of physical
injuries that breach the cuticle may alter cuticle permeability
in a manner that enhances the larval nociceptive response to a
normally subthreshold concentration of HCL

3. Discussion

Chemical nociception is arguably the least-studied noxious
sensory modality to date in Drosophila. Ingestion (or potential
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md neuron calcium levels upon HCI exposure
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Figure 4. Acid activates class IV nociceptive neurons. (a) Representative image of CaMPARI photoconversion in the larval dorsal cluster of md sensory neurons
following treatment with 9% HCl and violet light exposure. The class IV ddaC neuron visibly exhibits the highest level of red fluorescence relative to other
md neurons subclasses/subtypes (ddaA/B/D/E/F). External sensory neuron (ES) also displayed relatively high fluorescence levels. (b) Red/green CaMPARI fluorescence
intensity quantification for each md neuron class/subtype in control mock-treated (no HCl) or 9% HCl-treated third instar larvae. Each circle/square represents an
individual neuron of the specified class. (c) Fold difference in green-to-red CaMPARI photoconversion by md neuron class/subtype when compared with mean vehicle
control. (b,¢) Data are means + s.e.; n =18 neurons; asterisks (*) indicates significant difference in CaMPARI photoconversion when compared with mock-treated
vehicle control. Statistical significance between vehicle control and acid groups was determined via Kruskal-Wallis with Dunn’s multiple comparisons test.

ingestion) of noxious tastants such as AITC [12,39], aristo-
lochic acid [10], cinnemaldehyde [12], L-canavanine [40,41]
and acetic acid [42] reduces proboscis extension in Drosophila
adults. Likewise, a volatile repellent, citronellal, induces an
avoidance behaviour by activating olfactory receptor neurons
[43]. These studies have identified a transient receptor poten-
tial (TRP) ion channel (TrpAl) and gustatory receptors that
are required for inhibition of the proboscis extension response
to potential food [10-12,39].

Our interest here was to develop an assay that challenges
the barrier of the organism with a simple noxious chemical
(in this case acid) and that does not necessarily have crosstalk
with gustatory responses. Below, we discuss some of the
implications of our findings with this new assay and their
potential utility.

The md neuron(s) required for the full behavioural
response to acid are distinct from larval gustatory neurons
[44] and have not previously been implicated in taste. That
md neurons are required for responses to acid is suggested
by the fact that the observed behaviour (aversive rolling) is
similar to that observed with noxious heat [4] and noxious
mechanical stimuli [4,9]. Indeed, genetic silencing of class
IV md neurons, which are also responsible for aversive roll-
ing in response to temperatures above 40°C [4,30] and to
harsh touch [4,8,9], led to a near-complete block of aversive
rolling behaviour, suggesting that gustatory neurons have
no role in the response to acid applied to the larval posterior.

Surprisingly, similar class-specific silencing experiments
revealed that all peripheral md neurons (class IV > class II >
class I>class III) were required to some extent for acid-
evoked rolling—not just the expected class IV neurons.
Fast-rolling is only observed with optogenetic activation of
class IV neurons [3,5], while optogenetic activation of classes
I, IT and III lead to other behaviours (halting or contraction/
C-bend/slow-rolling) [5,7]. Our results add to the diverse
array of modalities that can elicit rolling from class IV neur-
ons (heat, harsh touch, noxious light) and raise questions
about how the other classes are involved.

Our CaMPARI calcium imaging experiments indicated
that class I and class III neurons were also activated by acid
exposure, whereas class II was not. Because our genetic silen-
cing experiments indicate that class II and III md neurons are
also required for acid-evoked behaviour, these data suggest
that class II and III neurons may facilitate rolling behaviour
through downstream circuitry, rather than by direct acti-
vation by acid exposure. This seems possible as multiple
classes of downstream second-order neurons were at least
partially required for acid-evoked rolling. Furthermore,
recent studies have demonstrated that class II, III and IV
neurons share common postsynaptic interneuron partners
implicated in rolling behaviour. For example, class II and
IV neurons connect to DP-ilp7 interneurons to facilitate roll-
ing in response to mechano-nociceptive stimuli [7], while
class II, III and IV neurons connect to Basins [26]. These



basin interneurons mediate chemical nociception
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Figure 5. Second-order interneurons mediate chemical nociception response. (a) Schematic of the different peripheral sensory neurons and interneurons located in
the ventral nerve cord. Adapted from Chin & Tracey [24]. (b—e) Behavioural response to noxious chemical stimulus (HCl 9%). (b) Silencing all Basin interneurons
(Basin-1, Basin-2, Basin-3 and Basin-4) by blocking the synaptic output using tetanus neurotoxin. Silencing specific Basin second-order interneurons by using tetanus
neurotoxin: (c) Basin-1, (d) Basin-2 and (e) Basin-4. The genotype colour-code used in (b) applies for (b—e). (b—e) n =90 for each group, data from three inde-
pendent replicates of 30 larvae each. Error bars represent mean =+ s.e. Log-rank test was used to determine statistical significance between different groups.

second-order neurons have been implicated in responses
to other noxious sensory modalities [2,7,26], and, as we deter-
mined in this work, Basin 1-4 interneurons (mainly Basin-4)
also mediate chemical nociception, suggesting these inter-
neurons are multisensory integrators [25,26]. It will be
interesting to determine how the full circuit(s) differ when
a larva is challenged with particular stimuli.

In Drosophila thermal nociceptive sensitization has thus
far been studied most extensively. Following UV irradiation
both thermal allodynia (emergent responses to subthreshold
stimuli) and thermal hyperalgesia (intensified responses to

noxious stimuli) are observed [30]. By contrast, UV
irradiation causes a behavioural switch from contraction to
head and tail raising in response to noxious cold [37]. Cur-
iously, neither UV irradiation nor physical pinch wounding
(an injury that causes extensive damage to underlying sen-
sory neurons) evoked chemical allodynia. Puncture
wounding, however, a procedure that creates a breach in
the overlying cuticle barrier, caused a transient (24 h) and
relatively mild hypersensitivity to subthreshold acid.
Whether the observed behavioural hypersensitivity rep-
resents a change in cuticle permeability that increases
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chemical nociceptive sensitization after tissue damage
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Figure 6. Chemical sensitization induced by tissue damage. (a) Schematic of chemical sensitization model. After the tissue damage, induced by puncture wound,
animals were treated with non-noxious stimulus. (b—f) Behavioural response to non-noxious chemical stimulus (HCl 0.5%). (b) Baseline behavioural response of the
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exposure to exogenously applied acid or is the result of
specific damage-induced signalling pathways that alter neur-
onal firing is not yet clear. Moving forward, it will be
interesting to test the involvement of previously identified
thermal acute sensitization pathways [30,32,33], insulin sig-
nalling, which regulates the duration of thermal nociceptive
sensitization [45], and Pvr signalling, which sets the
threshold of mechanical nociception [46].

For humans, chemical nociception may be of less impor-
tance than the thermal or mechanical modalities as
exposure to relevant environmental stimuli—sharp objects
or extreme temperatures—are substantially more common
than exposure to noxious acid. That said, local release of

protons nearly always accompanies tissue damage, and
thus acid-sensing may be a general feature of diverse
injury-induced sensory responses [47]. Chemical nociception
may be more important for Drosophila larvae as they may
encounter relevant concentrations of acids, alcohols and
other noxious chemicals as they feed. Although environ-
mental exposure to harsh acids may not be common for fly
larvae, the apparent pH threshold for responsiveness may
be in the range that larvae experience in rotting or over-
crowded fruit. The assay developed here has a simple
practical advantage over thermal nociception assays [4,30]
developed to date. Both thermal assays (hot and cold) require
specialized tools capable of delivering a precise set
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temperatures to the larva. This can lead to some user-to-user
variability in dose-response curves [30,31,33,48] and requires
user expertise. Mechanical nociceptive assays developed to
date [8,9] require a similar user competence. Chemical noci-
ception is substantially easier to assess as it simply involves
pipetting a small volume of solution on the larva and observ-
ing the resulting behaviour. Drosophila are well-suited for
gene discovery [49] and the development of this chemical
nociception assay enables future efforts to unravel the mol-
ecular/genetic basis of this understudied sensory modality.

4. Experimental procedures

(a) Drosophila stocks and genetics

All fly stocks used in this work were maintained on cornmeal
medium at 18°C. Larval progeny used in behavioural exper-
iments were raised at 25°C. w'''® was used as a control strain.
msn-lacZ (1(3)06946) was used to monitor JNK activation [34].
The GAL4/UAS system was used to drive tissue-specific
gene expression of transgenes under UAS control [50]. The
following Gal4 lines were used: Gal4*?! (class ) [51],
GMR37B02-Gal4 (class II) [52], 19-12-Gal4 (class III) [23],
ppk1.9-Gal4 (class IV) [53], md-Gal4"#*0 (class I-IV) [54],
chordotonal neurons ch-Gal4 (BL59949) [55], Basin-Gal4 inter-
neuron drivers (Basin 1-4, GMR72F11-Gal4; Basin-1,
JRC-R20B01-Gal4; Basin-2, RC-5500739-Gal4; and Basin-4,
JRC-5500740-Gal4); Goro interneurons (R72F11-Gal4) [26],
mCSlIs interneurons (R94B10-Gal4, referred to here as mCSI-
Gal4-1, and Rb52F05-Gal4, referred to here as mCSI-
Gal4-2): [27], A08n-Gal4 interneurons (GMR82E12-Gal4) [7],
DnB interneurons (412-Gal4, referred to here as DnB-Gal4-1,
and 4051-Gal4, referred to here as DnB-Gal4-2) [2].
GMR57C10-Gal4  (pan-neuronal) and Goro neuron-Gal4
(GMR69F06-Gal4) were obtained from Bloomington (BL39171
and BL39497, respectively). e22c-Gal4, UAS-DsRed2Nuc(21),
FasIlI-GFP [56] and ppk-Gal4, UAS-mCD8-GFP were used to
label larval epidermal membranes and the class IV sensory
neurons, respectively. The following UAS transgenes were
used: UAS-TeTxLC (UAS-TeTx-Active) and UAS-IMP TNT
VI-A (UAS-TeTx-Inactive) [35]; UAS-CaMPARI [36]. See elec-
tronic supplementary material, table S1 for a list of genotypes
of flies used in each figure/panel.

(b) Chemical nociception assay

A concentrated HCI stock solution (Sigma: 37.5-38.5%) was
first diluted to 10% (assuming the stock concentration was
37%). The 10% stock was further diluted with MilliQ water
to generate HCI solutions ranging from 0.5 to 9%. All of
the other acids: sulfuric acid (vol/vol %), acetic acid
(vol/vol %), and citric acid (wt/vol %) were used at 9% con-
centration. A pH meter (Accumet Basic, Fisher Scientific) was
used to measure the pH, at room temperature, of the different
acid solutions. Individual mid-third instar Drosophila larvae,
crawling freely on 48-well cell culture plate covers made of
polystyrene, were exposed to a particular solution by pipet-
ting 1.5 pl of an HCI dilution (or MilliQQ water for control)
to the posterior end of the larva. Larvae were allowed to
explore the dish for about 10s before challenging them
with the chemical stimulus. Larvae that reached the dish
wall were redirected to the centre, before applying the chemi-
cal stimulus. If the pipette tip contacted the larva, that

particular larva’s behavioural response was not included to [ 9 |

safeguard against the response being a combination of
touch and acid. A complete roll of 360° along the body axis
within 10s of HCl exposure was scored as aversive behav-
iour. Other responses (fast crawling, turning, and bending)
were not categorized as aversive responses for the purpose
of this assay. When animals were exposed to a non-noxious
or benign solution stimulus, MilliQ water, they did not
elicit any reactions distinct from normal locomotion or light
touch. Each larva was assessed behaviourally only once.
The experimenter was blind to the genotype of the larva
being tested. Three independent trials of 30 larvae each
were performed unless otherwise indicated.

Behavioural data generated were plotted as the accumu-
lated per cent (%) of response on the Y-axis versus latency
(0 to 10's) on the X-axis. A 100% response means all larvae
exhibited an aversive roll (at some latency under the 10s
cut-off) and a 0% response means none exhibited an aversive
roll at any latency under the 10 s cut-off. This method of plot-
ting the frequency distribution of responses generates curves
that are similar to lifespan curves for survival data and allows
comparison of how many total larvae responded, how
many did not respond, and how many responded at each
particular latency. The log-rank Mantel-Cox test was used
to statistically compare any curves plotted in this manner.

() Immunofluorescence

To evaluate epidermal and neuronal tissue damage induced
by HC], third instar epidermal (e22¢-Gal4, UAS-DsRed2Nuc,
FasllI-GFP) and neuronal (ppk-Gal4, UAS-mCDS-GFP)
reporter larvae were submerged in 100 pl of 9% HCI, anaes-
thetized with ether (ethyl ether anhydrous, Fisher
Scientific), dissected in ice-cold phosphate-buffered saline
(PBS), and then fixed for 1h in 4% formaldehyde (FA).
After several washes in PBS-Tx (1x phosphate-buffered
saline with 0.3% Triton X-100) the samples were incubated
overnight at 4°C with primary antibodies: mouse anti-GFP
(1:500) for neurons; mouse anti-Faslll (1:50) and rabbit
anti-DsRed (1:1000) for epidermal cells. Secondary anti-
bodies (applied for 24 h at 4°C) were Alexa 647 anti-mouse
(1:500) for neuronal samples and Alexa 488 anti-rabbit (1 :
500) and Alexa 647 anti-mouse (1 : 500) for epidermal tissues.
After final washes in PBS-Tx, all stained samples were
mounted in Vectashield (Vector Laboratories) and observed
(see below).

(d) B-Galactosidase histochemistry

Larvae carrying msn-lacZ were submerged completely in
100 pl of 9% HCl or MilliQ water for either 10 s or 1 min, incu-
bated for 4 h at 25°C, dissected in ice-cold PBS, fixed for
30 min at room temperature with cold 2% glutaraldehyde,
rinsed with PBS, and then stained at 30°C for 30-45 min
with X-Gal (5-bromo-4-chloro-3-indolyl-p-galactopyranoside)
as described [34].

(e) Confocal microscopy and stereomicroscopy

Larvae were imaged on an Olympus FV1000 confocal micro-
scope and Fluoview software was used to obtain the images.
Laser wavelengths were 488 nm (Green Fluorescent Protein,
GFP), and 543 nm (Far Red Fluorescent Protein). Images
were captured at a resolution of 1024 x 1024 pixels for
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tissue damage experiments using a 20x numerical aperture
(NA) 0.7 dry objective lens at 1.4x zoom. A Z-series stack,
step-size of 1.5um, was collected and processed into a
single Z-projection. Identical settings for laser intensity and
other image capture parameters were applied for comparison
of staining in the control and experimental groups. All figures
were assembled with Photoshop CS6 and Illustrator CS6
(Adobe).

(f) CaMPARI calcium analyses

For CaMPARI experiments, freely behaving third instar
larvae expressing UAS-CaMPARI under the control of
GMR57C10-Gal4 were subjected to photoconverting light in
the presence or absence (mock) of 9% HCI. Once larval loco-
motion initiated, 1.5l of either vehicle or 9% HCl was
applied via micropipette to the posterior portion of the
animal, and the subject was simultaneously illuminated
with  violet-blue, photoconverting light (excitation =
440 nm/short pass, dichroic mirror =562 nm; Semrock) via
a Zeiss AxioZoom V16 microscope, as previously described
[5,57]. Larvae were left to behave under photoconverting
light (84 000 lux) for 20 s. Dorsal clusters were then immedi-
ately imaged, in vivo, under a Zeiss LSM780 confocal
microscope. Z-stacks were converted to maximum intensity
projections, and Fieq : Fgreen CaMPARI fluorescence intensity
ratio was calculated using Image] software.

(g) Induction of tissue damage

UV: Third-instar larvae were anaesthetized with ether then
mounted ventral-side up on glass slides and placed in a Spec-
trolinker XL-1000 ultraviolet crosslinker (Spectronics
Corporation). UV treatment lasted approximately 6 s and
was approximately 14 mJ cm™2, at a wavelength of 254 nm.
Larvae were returned to regular fly food at 25°C before
measuring behaviour at various times after UV irradiation.
Pinch and puncture wounding: These were performed as
described previously [58].
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