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ABSTRACT

Introduction: The identification of genomic “targets”
through next-generation sequencing (NGS) of patient’s
NSCLC tumors has resulted in a rapid expansion of targeted
treatment options for selected patients. This retrospective
study aims to identify the proportion of patients with
advanced NSCLC in the Republic of Ireland whose tumors
harbor actionable genomic alterations through broad NGS
panel testing.

Methods: Institutional review board approval was obtained
before study initiation. Patients with NSCLC whose tumors
underwent genomic testing through the largest available
NGS panel at a nationally funded Cancer Molecular Di-
agnostics laboratory (St. James’s Hospital) between June
2017 and June 2022 were identified. Patient demographics
and tumor-related data were collected by retrospective
review from all cancer centers in Ireland, referring to the
Cancer Molecular Diagnostics laboratory. A total of 203
(9%) tumor samples were excluded due to insufficient
neoplastic cell content. Genomic data were collected
through retrospective search of Ion Reporter software. The
spectrum and proportion of patients with oncogenic driver
mutations were evaluated using descriptive statistics (SPSS
version 29.0).

Results: In total, 2052 patients were identified. Patients
were referred from 23 different hospital sites and all four
geographic regions (Leinster ¼ 1091, 53%; Munster ¼
763, 37.2%; Connacht ¼ 191, 9.3%; Ulster ¼ 7, 0.3%).
Median age was 69 (range: 26–94) years; 53% were
male. The most common tumor histologic subtype was
adenocarcinoma (77%, n ¼ 1577). An actionable genomic
alteration was identified in 1099 cases (53%), the most
common of which was KRAS (n ¼ 657, 32%). Less
frequently, NSCLC tumors harbored the following: MET
exon 14 skipping (n ¼ 53, 2.6%), MET amplification (n ¼
26, 1.3%), EGFR (n ¼ 181, 8.8%), HER2 (n ¼ 35, 1.7%),
and BRAF (n ¼ 72, 3.5%) mutations. Fusions were detec-
ted in 76 patients (3.7%) including ALK (n ¼ 44, 58%),
RET (n ¼ 11, 14.5%), ROS1 (n ¼ 16, 21%), and FGFR3 (n ¼
5, 6.6%), whereas no NTRK fusion was identified. Co-
alterations were detected in 114 patients (5.6%), the
most common of which was KRAS/PIK3CA (n ¼ 19, 17%),
EGFR/PIK3CA (n ¼ 10, 8.5%), and KRAS/IDH1 (n ¼ 9, 8%).
Other co-alterations of interest identified included KRAS
G12A/ROS1 fusion (n ¼ 1) and KRAS G12C/BRAF G469A
(n ¼ 2).
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Conclusions: This is the first retrospective study to
comprehensively characterize the genomic landscape of
NSCLC in Ireland, using the broadest available NGS panel.
Actionable alterations were identified in 53.4% of the pa-
tients, and KRAS was the most common oncogenic driver
alteration. Our study revealed a lower prevalence of pa-
tients whose tumor harbors ALK, ROS1, and RET fusions,
compared with similar data sets.

� 2024 Published by Elsevier Inc. on behalf of the Inter-
national Association for the Study of Lung Cancer. This is an
open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Non–small cell lung cancer; Biomarkers; Genomic
landscape; Ireland

Introduction
NSCLC is the leading cause of cancer-related mor-

tality in men and women worldwide, including the
Republic of Ireland.1,2 Although there has been a
notable lack of treatment options historically, this
has dramatically changed since the discovery of
driver oncogenes as biomarkers of response to “tar-
geted” therapies in NSCLC. Sensitivity to these tar-
geted treatments such as EGFR tyrosine kinase
inhibitors (TKIs) or ALK inhibitors can differ between
patients despite the presence of an oncogenic driver
suggesting the presence of marked genomic and clin-
ical heterogeneity.3,4

Advances in molecular profiling and sequencing
techniques has catalyzed the discovery of oncogenic
drivers and enhanced our improved understanding of
the complex interplay between genomic alterations. In
the Republic of Ireland, there are currently two labo-
ratories supported by the National Cancer Control
Programme aimed at delivering molecular testing na-
tionally, the Cancer Molecular Diagnostics (CMD) Lab-
oratory at St James’s Hospital, Dublin, which has access
to the broadest available next-generation sequencing
(NGS) panel, and the Molecular Pathology Laboratory at
Beaumont Hospital and Royal College of Surgeons in
Ireland. Furthermore, the availability of targeted
treatments is constantly evolving with a growing list of
different targeted therapies currently reimbursed and
others available through clinical trial or compassionate
access programs.

The frequency of driver oncogenes such as ALK, ROS1,
BRAF, RET, MET amplification, MET exon 14 skipping,
and HER2 in the Republic of Ireland is not currently
known. To the best of our knowledge, this is the first
retrospective study to fully characterize the genomic
landscape of NSCLC evaluated by the broadest available
NGS panel in the Republic of Ireland.
Materials and Methods
Patients

Patients with NSCLC referred to the CMD laboratory
for oncomine panel testing were included. Only tissue
specimens with adequate tumor content for molecular
profiling defined as greater than or equal to 10% were
included. Each institution has an institution-specific
workflow for genomic testing. For instance, in some lo-
cations, patients with a histologic NSCLC diagnosis will
undergo a standard lung mutation panel (Supplementary
Fig. 1). If no alteration is detected, samples are sent to St.
James’s Hospital CMD laboratory to undergo central
oncomine panel testing, whereas other institutions send
their NSCLC tumor samples directly to the CMD laboratory
for genomic testing. Basic anonymized patient de-
mographics and clinical information were collected
through retrospective review such as tumor histology,
age, sex, and referring hospital. Patients with NSCLC
whose tumors underwent genomic testing through the
largest available NGS panel (Oncomine: 35 hotspot genes,
23 fusion drivers, 19 copynumber variants) at a nationally
fundedmolecular laboratorywere identified. The primary
objective of the study is to report the prevalence of
oncogenic driver alterations in the Irish population. We
subclassified oncogenic alterations according to whether
there was a targeted treatment available. The definition of
lung cancer in the young is uncertain and ranges from 35
to 55 years in previously published studies.5–13We used a
cutoff of less than or equal to 50 years to define young
people with NSCLC in our cohort. The secondary objective
was to explore subgroups and define co-alterations in a
single tumor where present.

Ethical Considerations
Institutional approval by the St James’s Hospital/

Tallaght University Hospital Joint Research Ethics Com-
mittee (approved on September 27, 2022) for the sec-
ondary processing of anonymized genomic data was
obtained before study initiation. A waiver for informed
consent was obtained because anonymized data were
collected retrospectively according to institutional
guidelines. No information capable of identifying pa-
tients was collected.

Molecular Analysis
The Oncomine Focus Library Kit assay from Life

Technologies follows the same clinically validated
workflow as for standard-of-care individual gene assays.

Library preparation was performed according to the
Oncomine Focus protocol (Thermo Fisher Scientific,
Waltham, MA), with the following modifications. The
input material uses either 10 ng of DNA or RNA from a
total nucleic acid sample. Library preparation was

http://creativecommons.org/licenses/by-nc-nd/4.0/
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2264 patients referred to the SJH Cancer Molecular 
Diagnostics (CMD) Laboratory between 2017 and 2022

Excluded (N = 212):
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• N = 4 inconclusive result 
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• N = 2 SCLCL
• N = 2 Mixed small cell and large 
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performed using the manual library preparation proto-
col automated on a robotic preparation system (Hamil-
ton Robotics). Normalization was performed quantifying
each library using the Ion Library TaqMan Quantitation
kit (Thermo Fisher Scientific) and subsequently
balancing to equimolar concentrations. Sequencing was
performed using the Ion Torrent 530 sequencing chips
and reagents with templating and sequencing using the
Ion Chef and Ion Torrent S5 instruments, respectively.
Analysis of mutations and fusions was performed using
the Oncomine Focus version 2.7 DNA and Fusion work-
flow with Ion Reporter version 5.16.4.0 software
(Thermo Fisher Scientific,). We note that the mutation
analysis differs from standard laboratory analysis which
uses validated protocols to analyze standard-of-care
variants only.
2052 patients with NSCLC suitable for inclusion

Figure 1. Overview of sample selection process. SCLCL,
small cell lung cancer; SJH, St. James’s Hospital.
Statistics
Statistical analysis was performed with genomic in-

formation from 2052 tumor samples. Descriptive statis-
tics were used to describe the genomic landscape.
Categorical variables were presented as total frequency
and percentage with median and range used for
continuous variables. Frequencies of mutations in
different groups were compared using chi-square or
Fisher exact tests, and a p value of less than 0.05 was
considered statistically significant. Statistical analysis
was performed using SPSS version 29.0.

Results
From June 2017 to June 2022, NSCLC tumors from

2264 patients were identified. The primary reason for
exclusion was insufficient tumor content for molecular
profiling (Fig. 1). Patients were referred from 23
different hospital sites, and all four geographic regions
(Leinster ¼ 53.2%, n ¼ 1091; Munster ¼ 37.2%,
n¼763; Connacht ¼ 9.3%, n ¼ 191; Ulster ¼ 0.3%,
n ¼ 7). Median age was 69 (range: 26–94) years; 53%
were male. The most common tumor histology was
adenocarcinoma (77%, n ¼ 1577). Most common mu-
tations identified were KRAS, EGFR, BRAF, MET exon 14
skipping, and PIK3CA with an overall prevalence of
32%, 8.8%, 3.5%, 2.6%, and 2.5%, respectively
(Table 1). A clinically significant alteration was identi-
fied in 1096 cases (53.4%) (Fig. 2). The prevalence of
oncogenic drivers was consistent across provinces
except for a reduced prevalence of KRAS in the Con-
nacht population compared with Leinster, Munster, and
Ulster; however, this may have been influenced by
smaller study numbers (23% versus 33.6% versus
31.4% versus 42.9%, p < 0.001) (Fig. 3).

Less frequently, NSCLC tumors harbored MET
amplification (n ¼ 26, 1.3%), HER2 (n ¼ 35, 1.7%), and
NRAS (n ¼ 11, 0.5%). Fusions were detected in 76 pa-
tients (3.7%), including ALK (n ¼ 44, 58%), RET (n ¼ 11,
14.5%), ROS1 (n ¼ 16, 21%), and FGFR3 (n ¼ 5, 6.6%),
whereas no NTRK fusion was identified. In the adeno-
carcinoma cohort, most frequently identified mutations
were KRAS and EGFR mutations with a prevalence of
34.6% and 10%, respectively. Of the 61 patients with
squamous cell histology, the most common mutation
detected was a PIK3CA mutation accounting for 9.8%
(n ¼ 6) of the cases.

Young patients (�50 y old) accounted for 129
NSCLC tumor samples and were more likely to harbor a
clinically significant alteration; however, this was not
statistically significant (n ¼ 78, 69%; p ¼ 0.097)
(Table 2). Frequently detected alterations included
KRAS mutations, fusions/rearrangements (ALK, RET,
ROS1), and EGFR mutations with an overall prevalence
of 28.8%, 15.8% (9.4%, 3.6%, 2.9%), and 10.1%,
respectively. EGFR mutations detected in young people
with NSCLC included exon 19 deletion (n ¼ 8, 6.2%),
L858R (n ¼ 4, 3.1%), and G719S (n ¼ 1, 0.8%).
Furthermore, 12 patients below or equal to 35 years old
were diagnosed with having NSCLC. Of these, 11 (92%)
had a genomic alteration, including fusion rearrange-
ment at five (ALK ¼ 4, RET ¼ 1), KRAS at three (G12C ¼
1, G12D ¼ 2), EGFR exon 19 del at two, and MET
amplification at one (Supplementary Table 1). Patients
above or equal to 80 years of age accounted for 229
(11%) tumors, 40% had no alteration detected, and
KRAS accounted for 17.5%, with fusion rearrangements
accounting for less than 1% (n ¼ 2). Females were
more likely to harbor a clinically significant alteration



Table 1. Prevalence of Genomic Aberrations by Histology and Overall Cohort

Genomic Alteration
Adenocarcinoma
n ¼ 1577 (77%)

Squamous
n ¼ 61 (3%)

Carcinoma Likely
NSCLC n ¼ 406 (20%)

Overall
N ¼ 2052 (%)

Wild type 592 (37.6) 48 (78.7) 199 (49) 853 (41.6)
KRAS 546 (34.6) 3 (4.9) 107 (26.4) 657 (32)
EGFR 157 (10) - 24 (5.9) 181 (8.8)
Fusion (ALK/ROS1/RET/

FGFR3)
65 (4.1) 1 (1.6) 11 (2.7) 76 (3.7)

BRAF 55 (3.5) 1 (1.6) 16 (3.9) 72 (3.5)
MET exon 14 skipping 43 (2.7) - 10 (2.5) 53 (2.6)
HER2/ERBB2 25 (1.6) 2 (3.3) 8 (2) 35 (1.7)
PIK3CA 28 (1.8) 6 (9.8) 16 (3.9) 51 (2.5)
JAK2 1 (0.1) - 1 (0.2) 2 (0.1)
MET amplification 20 (1.3) - 6 (1.5) 26 (1.3)
NRAS 9 (0.6) - 2 (0.5) 11 (0.6)
ERBB3 4 (0.3) - - 4 (0.2)
FGFR2 3 (0.2) - 1 (0.2) 4 (0.2)
HRAS 3 (0.2) - 2 (0.5) 5 (0.2)
2 or more genes 93 (5.9) 1 (1.6) 20 (5) 114 (5.6)
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compared with males (60.6% versus 46.9%, p < 0.001)
(Table 3). KRAS mutations were more common among
females (35.8% versus 28.6%, p ¼ 0.001) in addition to
EGFR mutations (12.3% versus 5.7%, p < 0.001),
including exon 19 deletion at 53 (5.6%), L858R at 3.4%,
Figure 2. Prevalence of common oncogenic driver alter
exon 20 insertion mutations at 18 (1.9%), and other at
six (<1%).

For KRAS, the most frequently mutated alleles were
G12C (n ¼ 255, 38.6%) followed by G12V (n ¼ 116,
17.7%) and G12D (n ¼ 116, 17.7%). Other less
ations in the Irish population with NSCLC (N ¼ 2052).



Figure 3. Patient population (N) according to province and prevalence of common driver oncogenes by province.
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frequently affected codons included 13 (n ¼ 33, 5%,
G13C ¼ 20, 3.3%, G13D ¼ 11, 1.7%, G13V ¼ 2, 0.3%)
and 61 (n ¼ 39, 6%, Q61H ¼ 30, 4.6%, Q61L ¼ 9, 1.4%).
The most common mutation for EGFR was an exon 19
deletion (n ¼ 87, 48.1%) followed by L858R (n ¼ 45,
Table 2. Prevalence of Oncogenic Drivers by Age

<¼50 years old
n ¼ 129 (%)

Clinically significant alteration 78 (60.5)
KRAS 37 (28.7)
EGFR 13 (10.1)
BRAF 4 (3.1)
MET exon 14 skipping -
MET amplification 2 (1.6)
HER2 3 (2.3)
Fusions (ALK/ROS1/RET/FGFR) 19 (14.7)
24.9%) and exon 20 insertion (n ¼ 26, 14.4%). Rare
sensitizing EGFR mutations including L861Q, G719X, and
S768I were detected in 10, nine and two cases, respec-
tively. Of the 76 BRAF mutations detected, class I mu-
tations accounted for 28 cases (38.9%), class II for 20
>50 years old
n ¼ 1923 (%) P-value

1018 (52.9) 0.097
620 (32.2) 0.402
168 (8.7) 0.603
68 (3.5) 0.795
53 (2.8) 0.076
24 (1.2) 0.677
32 (1.7) 0.480
57 (3) <0.001



Table 3. Prevalence of Oncogenic Drivers by Sex

Male
N ¼ 1092 (%)

Female
N ¼ 950 (%) P-value

Clinically significant alteration 511 (46.8) 577 (60.7) <0.001
KRAS 312 (28.6) 340 (35.8) 0.001
EGFR 62 (5.7) 117 (12.3) <0.001
BRAF 439 (3.6) 33 (3.5) 0.827
MET exon 14 skipping 30 (2.7) 22 (2.3) 0.274
MET amplification 18 (1.6) 8 (0.8) 0.250
HER2 15 (1.4) 20 (2.1) 0.407
Fusions (ALK/ROS1/RET/FGFR) 39 (3.6) 37 (3.9) 0.765

Note: In ten cases, sex was not specified in ten cases (wild type ¼ 2, EGFR exon 20 insertion ¼ 2, KRAS ¼ 5, MET exon 14 skipping ¼ 2).
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(27.8%), class III for 22 (30.6%), and other for two
(2.8%). Among the 44 ALK-positive patients, EML4-ALK
fusion rearrangements included 17 (38.6%) variant
3a/b (E6, A20), 15 (34.1%) variant 1 (E13, A20), five
(11.4%) variant 2 (E20, A20), five (11.4%) variant 5’
(E18, A20), one variant 5a (E2, A20), and one case of
HIP1-ALK.

Co-alterations were detected in 114 patients (5.6%),
the most common of which was a KRAS/PIK3CA (n ¼ 19,
17%), KRAS/IDH1 (n ¼ 9, 8%), and EGFR/PIK3CA (n ¼
10, 8.5%) (Supplementary Fig. 2). Other co-alterations of
interest included one case of KRAS G12A/ROS1 fusion
and two cases of KRAS G12C/BRAF G469A co-alterations.
EGFR T790M mutations were detected in four patients
with an EGFR mutation (L858R ¼ 2, Exon 19 del ¼ 2).

Discussion
This is the largest retrospective study exploring the

genomic landscape of NSCLC in the Republic of Ireland.
Consistent with prior data, KRAS and EGFR were the
most frequently mutated alterations with an overall
prevalence of 32% and 9%, respectively. The genomic
profile across all four provinces was similar except for
Connacht where there was a reduced prevalence of
KRAS. Females were more likely to harbor a clinically
significant alteration (p < 0.001). In patients below or
equal to 50 years old, the most common oncogenic
driver was a fusion rearrangement including ALK, ROS1,
and RET. Co-alterations were present in 119 (5.2%)
cases and likely represent passenger mutations or
bypass mechanisms of therapeutic resistance in the case
of oncogene-driven NSCLC.

KRAS is the most common oncogenic driver in
NSCLC accounting for approximately 25% of cases and
represents a biologically distinct subtype of NSCLC.14

KRAS mutations are ubiquitous, likely driving the
evolutionary process of lung cancer carcinogenesis.15

They are typically associated with a smoking history
and a high mutation burden.16,17 KRAS prevalence
generally differs according to geographic distribution
with a reduced frequency in Asian populations
compared with Western populations.18 The prevalence
of KRAS mutations in our study, particularly in the
adenocarcinoma cohort, was higher than previously
reported data sets from Western populations.14,19,20

The cause of this is not fully understood. Judd et al.21

analyzed 17,095 NSCLC tumor samples and found a
KRAS prevalence of 27.5%. Consistent with our find-
ings, the most frequently mutated allele was G12C
(40%) followed by G12V (19%) and G12D (15%). KRAS
was also more frequently detected in females than
males, and there was no difference across age groups.
Interestingly, we report a reduced prevalence in Con-
nacht in the West of Ireland compared with other
provinces (44 of 191, 23% versus 354 of 1091, 32.4%
versus 256 of 763, 33.6% versus three of seven,
42.9%). One potential explanation for this is a reduced
smoking prevalence in Connacht and Ulster22; however,
caution should be exercised when interpreting the re-
sults owing to the small sample size. Of note, G12D was
the more frequently mutated allele in the Connacht
population compared with Leinster and Munster (15 of
191, 7.9% versus 51 of 1091, 4.7% versus 48 of 763,
6.3%, respectively).

The prevalence of EGFR mutations varies across
ethnic groups with an incidence in a western population
of 15% in the Br.21 study compared with 59.7% in the
seminal Iressa Pan-Asia Study (IPAS).23,24 Melowsky
et al. conducted a meta-analysis evaluating the preva-
lence of EGFR mutations worldwide and estimated a
European prevalence of 12.8% for all EGFR mutations
with exon 19 deletions and L858R substitutions ac-
counting for 48.4% and 29.9% of the overall cohort,
respectively.25 Other large-scale genomic studies have
also found an increased prevalence of EGFR muta-
tions.20,26 We report an overall prevalence of 9% in our
cohort; however, this is largely consistent with a previ-
ous study which detected an EGFR prevalence of 9% in
the South of Ireland.27 In contrast to this, Shikhrakab
et al.28 revealed an EGFR prevalence of 13.8% among
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209 Irish patients tested for the mutation. Differences
may be related to availability of genomic testing, and it is
important to note that EGFR prevalence may be under-
estimated in our cohort as patients may have undergone
local testing.

The frequency of fusion rearrangements in our pop-
ulation was lower than previously published data with
an overall prevalence for ALK, ROS1, and RET of 2.2%,
0.8%, and 0.5%, respectively, whereas no NTRK fusion
was identified.20,29,30 Compared with other studies, we
did not identify a significant difference in ALK preva-
lence between males and females (1.9% versus 2.5%,
p ¼ 0.581).31 ALK variants were consistent with the
literature, and EML4-ALK V3 a/b was the most common
accounting for 38.6% followed by EML4-ALK v1. Of note,
one novel ALK fusion variant was detected, HIP1-ALK,
which may also be sensitive to ALK inhibitors as previ-
ously described32 and has also been implicated as a
potential resistance mechanism to second-generation
ALK inhibitors.33 ROS1 prevalence has previously been
reported in the region of 1% to 2%34,35; however, a
recently reported study by Steel et al. identified an
overall prevalence of 0.2% more in keeping with our
findings.36

Activation of the fibroblast growth factor receptor
(FGFR) through fusion with various partners has been
described in a number of solid malignancies, including
NSCLC.37

FGFR3 fusions (0.2%) were detected in five cases of
lung adenocarcinoma in our study population. Qin
et al.38 molecularly profiled 26,054 NSCLC cases and
detected an overall FGFR fusion prevalence of 0.2%.
FGFR fusions were more common in squamous cell
carcinoma and were often present with other mutations
and have been associated with bypass resistance mech-
anisms to EGFR inhibitors.39–41 In contrast, we identified
no co-alterations and all five cases were detected in lung
adenocarcinoma. FGFR fusions are rare but of particular
interest as there are emerging data that suggest they
may be sensitive to FGFR inhibitors.42

Significant clinical and molecular diversity exists
within the subclass of oncogene-addicted NSCLC.14 This
intratumoral heterogeneity can lead to variable sensi-
tivity to targeted treatments and points toward potential
mechanisms to overcome therapeutic resistance. In our
study, co-alterations were detected in 114 cases (5.6%).
In oncogene-addicted NSCLC cases, the most common
co-alterations were KRAS/PIK3CA, EGFR/PIK3CA, KRAS/
IDH1, and EGFR/CTNNB1. In contrast to oncogenes that
play a crucial in tumorigenesis and are largely exclusive,
other mutations are frequently referred to as passenger
mutations. Consistent with previously published litera-
ture, PIK3CA was the most often detected co-mutation in
EGFR-mutant and KRAS-mutant NSCLC.43–45 The impact
of PIK3CA co-mutations is not fully understood. Activa-
tion of phosphatidylinositol 3-kinases (PI3K) triggers the
PI3K/AKT/mTOR pathway, leading to cell survival,
transformation, metastasis, and tumor growth. Eng
et al.46 found that PIK3CA co-mutation was associated
with poor prognosis in patients with EGFR-mutant and
KRAS-mutant NSCLC. Despite preclinical data to suggest
PIK3CA co-mutations may confer therapeutic resistance
in EGFR-mutant cancer cell lines,47 this does not seem to
translate clinically.48,49 Both PIK3CA and beta-catenin
(CTNNB1) mutations are preferentially detected in
advanced-stage disease.50,51 CTNNB1 mutations lead to
aberrant accumulation of the encoded beta-catenin
protein and may be implicated in therapeutic resis-
tance.52–55 Isocitrate dehydrogenase 1 and 2 (IDH1/2)
are important metabolic enzymes and are associated
with a number of malignancies, including gliomas, chol-
angiocarcinoma, leukemia,56–58 and rarely NSCLC.59–61

They are typically found in high grade, KRAS-mutant
tumors and likely represent branch mutations promot-
ing subclonal evolution.60 Other frequently reported co-
mutations in NSCLC such as TP53, STK11, KEAP1, RB1,
and CDKN2A/B are not reported by the Oncomine Focus
assay.

Although typically KRAS mutations and other driver
alterations are mutually exclusive,62,63 we identified one
case of KRAS G12A/ROS1 and two cases of KRAS/BRAF
class II alterations. There have been rare reported cases
of co-occurring ROS1 rearrangements and KRAS muta-
tions.64,65 KRAS and ROS1 co-alteration may be associ-
ated with therapeutic resistance to ROS1 inhibitors.66,67

Several studies have supported the theory that KRAS and
BRAF co-mutations are mutually exclusive68–71; howev-
er, other studies found the presence of KRAS and BRAF
co-mutations which seem to be rare events typically with
class II/III BRAF mutations.72–75

There are a number of limitations to the current
study. First, only basic clinical and demographic data
were available for analysis. It was not possible therefore
to test for associations between alteration and tumor
stage, smoking history, and survival. We did not have
access to treatment history, and thus, it was not possible
to determine whether genomic alterations were present
in treatment-naive patients or as a result of secondary
resistance mechanisms. As we relied on the clinical in-
formation from referral hospitals, we were unable to
confirm histologic subtype except for NSCLC in 19.8% of
cases, and therefore, these were reported as carcinoma
likely NSCLC. Many patients undergo local testing for
EGFR, ALK, and ROS1 in their respective institutions, and
so, these alterations may be underestimated in our
cohort. The exact impact of this is unknown. If we look at
patients referred from the local institution St. James’s
Hospital, our results seem to be largely consistent (n ¼
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433 [21%], KRAS ¼ 145 [33.5%], EGFR ¼ 36 [8.3%],
ALK ¼ 7 [1.6%], ROS1 ¼ 5 [1.2%], and RET ¼ 3 [0.7%]).
A previous study by Kelly et al.27 also reported a prev-
alence of 9% for EGFR mutations in the South of Ireland.
Broader molecular testing such as whole exome, genome,
or transcriptome sequencing may identify other alter-
ations that contribute to lung cancer pathogenesis that
are missed using targeted NGS, such as alterations in
tumor suppressor genes STK11 and TP53.
Conclusion
This is the first retrospective study to fully charac-

terize the genomic landscape of NSCLC in Ireland, using
the broadest available NGS. Actionable driver oncogenes
were detected in 53% of patients, and KRAS was the
most common oncogenic driver identified.

Our study revealed a lower prevalence of EGFR and
fusion rearrangements, ALK, ROS1, and RET, compared
with previously published data sets. This study high-
lights the need to prospectively collect genomic data for
patients in the Republic of Ireland to inform treatment
prioritization and clinical trial selection.
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