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The lymphatic system is a vascular system comprising modified lymphatic endothelial
cells, lymph nodes and other lymphoid organs. The system has diverse, but critical
functions in both physiology and pathology, and forms an interface between the blood
vascular and immune system. It is increasingly evident that remodelling of the lymphatic
system occurs alongside remodelling of the blood microvascular system, which is now
considered a hallmark of most pathological conditions as well as being critical for normal
development. Much attention has focussed on how the blood endothelium undergoes
phenotypic switching in development and disease, resulting in over two decades of
research to probe the mechanisms underlying the resulting heterogeneity. The lymphatic
system has received less attention, and consequently there are fewer descriptions
of functional and molecular heterogeneity, but differential transcription factor activity
is likely an important control mechanism. Here we introduce and discuss significant
transcription factors of relevance to coordinating cellular responses during lymphatic
remodelling as the lymphatic endothelium dynamically changes from quiescence to
actively remodelling.
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THE LYMPHATIC SYSTEM

The lymphatic vascular system comprises a hierarchical system of lymphatic capillaries, that drain
into higher calibre collecting vessels that return protein rich lymph (generated from interstitial
fluid) and trafficking cells (e.g., lymphocytes and myeloid) back into the venous circulation.
As the lymphatic system evolved it allowed higher order eukaryotes to have a regulated fluid
balance system. (Lymphatic vessels are found in reptiles, amphibians, birds and mammals)
(Adams and Alitalo, 2007).

Extravasated water, solutes and cells are forced out the vascular system at higher pressure,
resulting in fluid leakage from the permeable capillaries into the interstitium. The lymphatic system
resorbs this fluid.
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Insufficient fluid resorption, resulting in fluid accumulation
in tissue results in pathological swelling (oedema) (Dagenais
et al., 2004). The interstitial fluid enters the lymphatic vessel
through modified intracellular junctions (Yao et al., 2012) and
is pumped through capillaries to valve containing collecting
vessels (Figure 1; Escobedo and Oliver, 2017). This occurs via
smooth muscle cell mediated coordinated contractions with
lymph returned to the vascular network through lymphovenous
valves. Lymphatic valves, (and lymphovenous valves) have
been identified as containing their own subtype of lymphatic
endothelial cells, a transcriptionally unique signature identified
by Takeda et al. (2019) by single-cell RNA sequencing
(Takeda et al., 2019).

LYMPHANGIOGENIC MECHANISMS

Lymphangiogenesis is the growth of lymphatic vessels, which
occurs primarily from sprouting lymphatic vessels that arise from
embryonic vessels during development, but also occurs in adults
during wound healing, inflammation, primary and metastatic
tumour growth (Ducoli and Detmar, 2021). Each of these
conditions results in a significantly altered microenvironment
which results in increased inflammation and fluid accumulation
which stimulate lymphatic remodelling (Mazzone and Bergers,
2019; Oliver et al., 2020). Blood vessel growth (angiogenesis),
largely grow by formation and extension of filipodia-rich tip
cells and lateral inhibition of neighbouring endothelial cells. This
generates heterogeneity amongst the endothelium and results
in differing phenotypes such a stalk, phalanx and transition
endothelial cells (Goveia et al., 2020). Together these form a
growing endothelial sprout that will anastomose with nearby
sprouts to form a new vessel (Cruys et al., 2016). Although
not currently characterised to the same level of resolution,
lymphangiogenic vessels also display some degree of tip/stalk
selection (Yuan et al., 2002; Benest et al., 2008; Xu et al., 2010)
but it should be noted that lymphangiogenic features (including
filopodia extension and proliferation) do appear in canonically
non-tip cell or sprout like locations (Benest et al., 2008; Baluk
et al., 2009). The lumenised neovessel will undergo further
phenotypic switches; remodelling of the basement membrane,
formation of endothelial cell junctions and a metabolic shift away
from glycolysis and initiate state of quiescence (De Bock et al.,
2013a; Wilhelm et al., 2016). During endothelial cell quiescence,
the balance of activating to destabilising factors is in balance
resulting in a stable and functional vasculature (Li et al., 2019).

Endothelial phenotypic switching (from quiescence to
alternative states) underpins both lymphangiogenesis and
angiogenesis; both processes require migration, proliferation and
the metabolic remodelling of a quiescent endothelium (Kalucka
et al., 2018). The process of angiogenesis, which has drawn more
research interest thus far compared to lymphangiogenesis, can
be used as a conceptual model, allowing parallels to be drawn
between the processes. From the initial blood islands formed of
progenitor cells, a plexus of vascular vessels is formed (Figure 2),
these progenitors receive frequent remodelling until the primitive
embryonic vasculature is recognizable (De Val and Black, 2009).

This is not directly analogous to the entire lymphatic system, but
local expansion of local lymphatics in mesentery (Benest et al.,
2008), dermal tissue (Braverman and Yen, 1974) and cardiac
tissue heart might suggest some analogy (Stone and Stainier,
2019). The specific differentiation mechanisms are excellently
described here (Stone et al., 2021).

ENDOTHELIAL QUIESCENCE AS A
PHYSIOLOGICALLY ACTIVE, BUT NOT
ACTIVATED STATE

Endothelial cells, which line blood vessels (blood endothelial
cells) and lymphatic vessels (lymphatic endothelial cells)
metabolise more glycolytically than most cells, therefore
consuming very little oxygen in a quiescent, stationary state
(Wilhelm et al., 2016). Quiescent endothelial cells still require
energy to generate new biomass, protect against oxidative stress
and are still involved in homeostatic processes (De Bock et al.,
2013a). Oxidative phosphorylation in comparison requires more
oxygen, generates reactive oxidative species and cannot take place
in hypoxic regions. Furthermore, as ECs grow they increase their
glycolysis which contributes to their proliferation and survival in
hypoxia tissue (De Bock et al., 2013b). In order for migration
to take place, the cytoskeleton must be remodelled, an energy-
demanding process forcing the switch from a low energy state
of quiescence to a more active metabolising, migrating state
(De Smet et al., 2009). Transcriptionally, these high-energy
demanding cells, display a different transcriptional profile than
quiescent endothelial cells (Kalucka et al., 2018). This is also true
of the lymphatic endothelium (Wong et al., 2017; Yu et al., 2018).

LYMPHATIC VESSELS LOSE
QUIESCENCE AS THEY GROW

In order to establish the lymphatic network, an innate genetic
programme is activated by transcription factors in early
progenitor cells. Transcription factors are small proteins which
act to increase or decrease the expression of genes by binding
to promoter sequences of DNA. In establishing the network,
LECs must be able to grow and sprout from existing vessels,
this requires the cell to be able to respond to growth signals
from the environment, such as vascular endothelial growth
factor (VEGF)-C which is recognised by vascular endothelial
growth factor receptor-2 (VEGFR2) and 3 (VEGFR3) which are
both expressed by differentiated LECs (Tammela and Alitalo,
2010; Deng et al., 2015). VEGF-C stimulation can induce
translocation of VEGFR2 which results in heterodimers of VEGF-
R2 and VEGF-R3 on the cell membrane (Kaipainen et al.,
1995; Xu et al., 2010), VEGFR3 can also homodimerize to
recognise VEGF-C stimuli (Kukk et al., 1996; Joukov et al.,
1997). This activation results in the extracellular signal-regulated
kinases (ERK) and protein kinase B (AKT) signalling cascades,
which are essential for migration of the lymphatic endothelial
cell (Deng et al., 2013, 2015). In adults, lymphatic growth is
often pathological lymphangiogenesis, and normally activated
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FIGURE 1 | Comparison of a lymphatic collecting vessel and a lymphatic capillary. Further to lumen calibre differences, additional features of collecting vessels
include pericyte coverage, a layer of smooth muscle cells and the presence of valves to prevent backflow. Capillaries have discontinuous junctions between
endothelial cells, these act as sights of leukocyte entry and increase the permeability of the vessel. Additionally, capillaries are connected to the extracellular matrix by
anchoring filaments, these become taut in places of swelling, opening the lumen to allow drainage of tissue fluid. Adapted from Tammela and Alitalo (2010). Made
with Biorender.com.

FIGURE 2 | Development, differentiation and separation of the blood and lymphatic networks. Both networks originate from progenitors in the mesodermal layer of
the embryo. From the primitive vascular plexus, transcription factors activate the innate genetic programme, resulting in extensive remodelling cascades throughout
embryogenesis, forming two distinct networks of vessels. In the heart, the lymphatic plexus is remodelled and guided by tissue-resident macrophages through direct
interaction between the lymphatic endothelial cells and the macrophages. Adapted from De Val and Black (2009) and Adams and Alitalo (2007). Created using
BioRender.com.
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in response to injury or disease (Adams and Alitalo, 2007).
For example, during inflammation, VEGF-C is produced by
macrophages, encouraging the growth of LECs nearby to sprout
towards the injury as well as inducing hypertrophy of the
collecting lymphatic vessels (Cursiefen et al., 2004; Maruyama
et al., 2005). This facilitates the immune response by mobilising
dendritic cells and increasing capacity of the vessel to carry
lymphatic fluid (Mazzone and Bergers, 2019), and therefore
contributes to restoration of tissue homeostasis and resolution
of inflammation. When the lymphatic network is established,
LECs are quiescent (Sabine et al., 2015); however, upon receiving
further cytokine signalling, are stimulated to re-enter the
cell cycle (Geng et al., 2020). During a shift to back the
quiescent phenotype the non-draining lymphatic sprouts will
have generated a lumenised vessel (Geng et al., 2020), resulting
in lymph fluid imparting shear stresses upon the lymphatic
endothelium. Integration of mechanotransductive signals with
transcriptional regulation is a fundamental mechanism for
restoring the lymphatic endothelium to a non-activated, and
quiescent phenotype.

HETEROGENEITY: HOW DIFFERENT
ARE EACH OF THE ENDOTHELIAL
CELLS WITHIN A LYMPHATIC VESSEL?

As we begin to explore underlying mechanisms responsible for
heterogeneity within the cells in the lymphatics, it is critical
to note there heterogeneity between different classifications of
lymphatic vessel, and terms such as capillaries, collecting and
conduit vessels are used to classify the vessels into the “lymphatic
tree hierarchy.” Capillaries and collecting vessels significantly
differ in morphology and function (Figure 1). The transcriptional
expression profile of these different types of vessels could
offer early glimpses into understanding quiescent vs. activated
phenotypes, as capillaries are the likely site of early phenotyping
switching in response to growth stimuli. Any heterogeneity
could unveil mechanisms enabling dynamic movement along
a spectrum of activated and quiescent phenotypes. Whereas,
collecting vessels are mature, established vessels and are likely
to be at the quiescent side of the phenotypic spectrum. This
is a developing area of interest to many, results from a recent
publication by Hernández Vásquez et al. (2021) compared the
expression profiles of dermal capillary LECs to collecting vessel
LECs in adult mice. This work identified several noteworthy
genes of interest, including FOXP2 (discussed later) as a
major regulator of collecting vessels morphology, whereas
LYVE-1, MAF and CXCL12 were all significantly enriched in
lymphatic capillaries, consistent with a more activated/sprouting
phenotype (Rondon-Galeano et al., 2020; Hernández Vásquez
et al., 2021). Furthermore heterogeneity is apparent between
lymphatic vessels from different tissue bed, but less is known
about the heterogeneity within a specific vessel bed. Most
capillary LECs used in experiments are dermal (commonly
isolated from foreskin or breast reduction tissue), however,
delving deeper into different organs we see a difference in
expression of certain transcription factors, by Wong et al.

(2018). Interestingly, intestinal lymphatics known as lacteals,
are continuously regenerated throughout adulthood, which aid
the lipid absorption in the intestinal villi (Nurmi et al., 2015;
Wong et al., 2018). Facilitating this regeneration was high Dll4
expression in these tip cells (Bernier-Latmani et al., 2015). Dll4
is a major driver of blood EC heterogeneity during angiogenesis
(Hellstrom et al., 2007; Suchting et al., 2007) and therefore it
is probable that similar mechanisms could underpin lymphatic
EC heterogeneity too. The presence of valves in lymphatic
endothelial cells, made up of specialised lymphatic endothelial
cells, within collecting vessels (Figure 1) are also a source
of heterogeneity amongst the LECs within the vessel. Single-
cell RNAseq (scRNASeq) has enabled researchers to explore
cellular heterogeneity at the transcriptomic levels which allows
different cellular phenotypes to be identified. Murine lymph
nodes were disaggregated and scRNASeq performed (Takeda
et al., 2019) upon the LEC populations. A similar approach
to explore how quiescence vs activation is manifested in the
LEC populations will be an exciting avenue to explore in
future work. This is only recently becoming clear from blood
endothelial work, but excellent progress has started to explore
how collecting lymphatics differ from lymphatic capillaries
(Hernández Vásquez et al., 2021) and valve LECs vs. non-valve
LECs (Takeda et al., 2019); offering an insight into intralymphatic
endothelium heterogeneity. Thus, heterogeneity between inter-
vessel LECs and inter-organ must be taken into account before
truly understanding intra-vessel LEC heterogeneity.

PROSPERO HOMEBOX 1 (PROX1)
INTERACTS WITH SOX18 AND IS KEY
FOR LYMPHATIC SPECIFICATION

The process of lymphatic endothelial cell differentiation,
vessel formation and overall maintenance, requires energy,
therefore the metabolism of the lymphatic endothelial cell
which form the lymphatic endothelium is a key interest in
delineating the mechanisms of developmental and pathological
lymphangiogenesis. Metabolic activity in the cell is adapted to its
phenotype. Endothelial cells can switch between quiescent and
proliferating states, and sufficient, differing energy requirements
must be met to maintain this state. As the lymph is enriched
with nutrients, the LECs must be able to tolerate a high glucose
concentration (which is common to all EC, whether blood or
lymphatic), and a relatively low oxygen concentration (unlike
BECs which are oxygen rich) (Moyon et al., 2001; Schoors
et al., 2015; Wong et al., 2017). This results in anaerobic
glycolysis as a primary source of ATP (Yu et al., 2018; Jiang
et al., 2021), allowing for the generation of energy at sites of
filopodia formation. Thus avoiding the need for transportation
of ATP from the mitochondria, which are excluded from the
thin protrusions (Lee et al., 2018; Li et al., 2019). PROX1
regulated gene expression enhances energy production further by
binding the carnitine palmitoyl transferase 1a (CPT1a) promoter,
an enzyme which shuttles fatty acids in the mitochondria for
oxidation, to increase fatty acid oxidation and acetyl CoA
production. Consequently, along with acetylase p300, histones
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FIGURE 3 | Transcriptional insight into establishment and regulation of the quiescent lymphatic endothelial phenotype. A dynamic and interchangeable network of
transcription factors are involved in the complex signalling which differentiates and maintains expression of essential proteins within the cell. This allows the cell to
respond accordingly to external stimuli and retain structural stability in areas of high stress. Made with Biorender.com.

associated with LAG genes are acetylated (Figure 3) this makes
the promoters more accessible to PROX1 for transcription
(Li et al., 2019).

Through cloning of the PROX1 promoter and confirmation
by chromatin immunoprecipitation (ChIP), it was shown that
PROX1 is directly activated by SOX18 which binds to a 4 kB
fragment of DNA in the PROX1 promoter, through cooperation
of SoxA and B sites (François et al., 2008). PROX1 expression is
maintained throughout the vasculature, there are elements within
this fragment that regulate the expression of PROX1 in the LECs
after SOX18 expression has diminished (François et al., 2008).
Examining the differentially expressed genes between BECs and
LECs, PROX1 emerged as the major regulator of LEC identity.
Out of the 300 differentially expressed genes, PROX1 directly
regulated 15. In addition, when overexpressed in BECs, PROX1
is able to suppress expression of BEC specific genes such as
STAT6 and integrin α5 (Petrova et al., 2002). The exact signal
cascades involved in PROX1 induced LEC differentiation are yet
to be fully characterised, but by using PROX1 overexpression
and knockdown allowed identification of PROX1 effector
proteins to be identified. Mishima et al. (2007) found forced
PROX1 overexpression in human umbilical vein endothelial cells
(HUVECs) and LECs induced a morphological change, in which
a sheet formation was inhibited and altered cell morphology was

reported (Mishima et al., 2007). A crucial component of this
cascade is integrin α9, which is transcriptionally regulated by
PROX1, and can reverse the morphological changes induced by
PROX1 by blocking its activity. LEC motility was increased with
PROX1 overexpression, specifically chemotaxis towards VEGF-
C, demonstrating LEC identity, migration and shift towards
a more plastic and activated phenotype is masterminded by
PROX1 (Mishima et al., 2007). This is further reinforced with
the finding that PROX1 contributes to transcription control
of CPT1A expression, which in turns shifts lymphangiogenic
metabolism away from oxidative phosphorylation (Yoshimatsu
et al., 2011) and towards glycolysis and fatty acid metabolism
(Wong et al., 2017).

PROX1 is essential for establishing and maintain lymphatic
identity, however, over time, its expression is decreased (Ma
and Oliver, 2017). Cho et al. (2019) demonstrated YAP and
TAZ appear to inhibit PROX1 activity, with YAP/TAZ activity
decreased by Hippo pathway signalling. In order for initial
LEC budding from the cardinal vein in mouse embryos,
this Hippo signalling is increased, lowering YAP/TAZ and
allowing establishment of the early lymphatic vasculature
(Cho et al., 2019). VEGF-C stimulation of human dermal
lymphatic endothelial cells induced localisation of YAP in the
cytoplasmic compartment along with an observed increase of
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VEGFR3 phosphorylation. Consistently, there was increased
phosphorylation of LATS1/2 and YAP phosphorylation
(key mediators of the Hippo pathway) in addition to YAP
phosphorylation increases eventually leading to decreased
YAP target genes and PROX1 expression. Pinpointing the
role of VEGF-C signalling on influencing the expression
of lymphangiogenesis dependent transcription factors
(Cha et al., 2020).

SOX18 [SRY (Sex Determining Region Y) box 18] is a
member of the SRY-related high mobility group domain family of
developmental transcription factors. SOX18 is the first lymphatic
marker to be expressed during mouse embryogenesis, prior to
PROX1 (François et al., 2008). Detected as early as 9 days post
conception, SOX18 positive cells were reported in the cardinal
vein, and when at later stages the same population of cells
expressed PROX1 and CD31, François et al. (2008) suggested
these cells were precursors to the lymphatic vasculature. SOX18
expression is not maintained throughout development, as by
14 days post conception expression had subsided, suggesting
that SOX18 acts as a molecular switch to activate differentiation
of the endothelial cells to a lymphatic phenotype (François
et al., 2008). This switch is induced by ERK signalling, which in
turn is regulated by RAF1, a mitogen activated 3 kinase (Deng
et al., 2013). Interestingly a study by Deng et al. (2013) which
showed excessive RAF1 activation induced uncontrolled blood
to lymphatic vessel phenotype (lymphangiectasia), revealing a
crucial role of ERK signalling in this early developmental stage
(Deng et al., 2013). Vascular cell adhesion molecule 1 (VCAM1)
shares a spatiotemporal pattern of expression as SOX18, sparking
a suggestion of crosstalk within the pathways controlling the
LEC phenotype. VCAM1 is expressed on the surface of activated
endothelia, Hosking et al. (2004) discovered three SOX18 binding
sites in the VCAM1 gene, and specifically the SoxB site that
is essential for transactivation of VCAM1 expression (Hosking
et al., 2004) suggesting that careful control of SOX18 expression
determines aspects of lymphatic quiescence as VCAM1 is a key
mediator of an activated phenotype.

CHICKEN OVALBUMIN PROMOTER
TRANSCRIPTION FACTOR II (COUP-TFII)
INTERACTS WITH PROX1 DURING
LYMPHATIC PROLIFERATION

CouP-TFII is an orphan member of the steroid/thyroid hormone
superfamily. Expression of CouP-TFII has been reported by
Yamazaki et al. (2009) to be essential in segregating lymphatic
vasculature from the primitive veins. A physical interaction
between PROX1 and Coup-TFII was discovered by ChIP this was
found to centre around the cyclin E1 promoter, an important
molecule involved in S phase of the cell cycle (Petrova et al.,
2002; Yamazaki et al., 2009), excess CouP-TFII was found to
inhibit the proliferation inducing ability of PROX1. CouP-
TFII also acts independently of PROX1, required after the
initial sac formation to maintain the lymphatic identity. As
LECs are identified by common marker expression, altered

expression can be used as evidence for a change in behaviour
of the cell. For example, Lin et al. showed that a CouP-TFII
endothelial specific deletion caused a decreased in expression of
the classic lymphatic markers such as LYVE1, PROX1, NRP2
or VEGFR3. VEGFR3 and NRP2 are both key regulators of
lymphatic quiescence and modify VEGF-C signalling in the
lymphatic EC (Yuan et al., 2002; Xu et al., 2010; Bouvrée et al.,
2012); which is the major lymphangiogenic signalling pathway.
Interestingly, these ECs ectopically expressed more commonly
known BEC markers instead, suggesting CouP-TFII is involved
in maintaining the identity of LECs in early vessel formation,
prior to full maturation. Specifically, CouP-TFII is a positive
regulator of Neuropillin-2 (NRP2) expression, acting through the
SP-1 binding site located in the promotor (NGFIA) of NRP2
(Lin et al., 2010). NRP2 has previously been identified as a co-
receptor for VEGFR3 (Yuan et al., 2002). Disruption of NRP2
selectively disturbs sprouting of LECs in response to VEGF-
C, suggesting NRP2 drives the tip cell phenotype, as stalk cell
morphology was unchanged. Tip cells lead new sprouting vessels;
thus, a deficiency of tip cells results in less growth of the lymphatic
network (Xu et al., 2010).

GATA2 REGULATES VEGFR3
EXPRESSION AND CONTRIBUTES TO
LYMPHATIC REMODELLING

GATA2 is a member of the zinc finger transcription factor
family. Work by Frye et al. (2018) demonstrated that GATA2
was upregulated in migrating LECs from the Cardinal Vein
(CV), analysis revealed that the change in matrix stiffness, as
the endothelial cells migrate into the surrounding parenchyma
activates GATA2 expression. From the CV, LECs begin to
form primitive vessels which make up vessel beds (10.5 days
post conception), beyond this, the increase in interstitial fluid
pressure results in a stretch response, resulting in enrichment of
genes involved in cell matrix adhesion, junctional organisation,
migration and vascular development. A specific gene of interest
is VEGFR3, which acts as a receptor for VEGF-C, GATA2
binds directly to intron 1 of VEGFR3 to regulate its expression.
This is important as VEGF-C is crucial for sprouting and
migration of LECs. Loss of GATA2 substantially downregulated
VEGFR3, and LECs failed to respond to VEGF-C. In normal
development, the stretch-activated phosphorylation of VEGFR3
initiates a signalling cascade which activates proliferation and
vessel growth. The interstitial flow within the premature vessels
is crucial in inducing mechanical forces which further shape the
vasculature, for example, through inhibition of Neurogenic Locus
Notch homologue protein 1 (NOTCH1) sprouting is promoted
and Krüeppel-Like Factor 2/4 (KLF2/4) induces proliferation
(Frye et al., 2018). By day 15 post conception, the flow at branch
points induces a GATA2 and FOXC2-dependent quiescence, as
LECs are correctly targetted to important points where the LV
and BV connect (Frye et al., 2018). Matrix metalloproteinase
signalling was also increased by the change in matrix stiffness
as a result of migration, this is crucial for lymphangiogenesis
as the surrounding extracellular matrix must be remodelled to
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facilitate sprouting of the vessels (Detry et al., 2012; Frye et al.,
2018).

Collecting lymphatics are distinguishable from capillaries by
size, coverage by smooth muscle cells and pericytes, and the
presence of valves (Figure 1). These valves are not only present
inside the lymphatic vessels but also crucially at the junctions
between the lymphatic vessel and the blood vessel. The valves
are formed by intercalations of LECs with a type of vascular
endothelial cell which is PROX1 and also PCAM positive (Sathish
Srinivasan and Oliver, 2011). Lympho-venous valves require
PROX1 and Coup TF-II complex formation to regulate the
dosage of PROX1, deletion of even one copy of PROX1 is enough
to induce abnormal connections between the two systems,
as differentiation into valve cells is compromised (Sathish
Srinivasan and Oliver, 2011). GATA2 has also been implicated in
valve morphogenesis, as a mechanosensory transcription factor, it
recognises the oscillatory shear stress at vessel branch points. By
using GATA2 deletions, we can infer importance as the resulting
embryos lacked these valves and presented with blood inside the
lymphatic vessel, which is a characteristic of improper formation
of valves at the lymphovascular junctions (Frye et al., 2018).
GATA2 mutations are responsible for Emberger syndrome,
carriers of this mutation are predisposed to leukaemia and
lymphoedema, this is due to the crucial role of GATA2 in the
differentiation of LECs specifically in the lymphovenous vales
(Geng et al., 2016).

FOXC2 PLAYS A KEY ROLE IN
LYMPHATIC MATURATION

PROX1 associates with regulatory elements of Forkhead box C2
(FOXC2) (Cha et al., 2016). FOXC2 has roles in angiogenesis,
is essential in lymphatic vasculature and is a known marker of
the lymphatic valve (Kume, 2008; Norrmén et al., 2009; Takeda
et al., 2019; Xiang et al., 2020). In mice, FOXC2 is expressed at
8.5 days post conception in the normal developing heart, blood
vessels and limbs, expression in the endothelial cells is recorded
at between 9.5 and 10.5 days post conception, along with PROX1
and LYVE1 (Dagenais et al., 2004). This subset of endothelial cells
are involved in migration and sprouting to form immature mesh-
like networks of vessels, which are organised in a cranial to caudal
manner, these separate networks fuse creating major lymphatic
pathways (Dagenais et al., 2004; Norrmén et al., 2009). Part of
this process includes a dramatic remodelling of the mesenteric
plexus, this is where the differentiation of collecting vessels and
capillaries becomes apparent. FOXC2 expression is thought to
be induced by oscillatory sheer stress (Figure 3), as the highest
FOXC2 levels were found in endothelial cells which form part of
the valves, which are exposed to the most disturbed flow (Sabine
et al., 2015). Oscillatory sheer stress has significant influence
of the gene expression patterns of LECs, controlling over 800
genes, however, when receiving a FOXC2 inducible knock out,
these cells responded abnormally to shear stress. Oscillatory
sheer stress normally induces growth arrest to protect the vessel
structure by decreasing cell proliferation. However, knockdown
FOXC2 in vitro generated a TAZ dependent proliferation and

increased cell death, suggesting FOXC2 has an important role in
maintaining quiescence in areas of high shear stress (Sabine et al.,
2015). As maturation progresses, FOXC2 expression decreases
in the areas not underconstruction, such as the intraluminal
segments between valves (17.5 days post conception) (Norrmén
et al., 2009). Even at maturity, high FOXC2 expression is
maintained in the valves, suggesting valve LECs are molecularly
distinct from neighbouring cells in the trunk of the collecting
vessel (Norrmén et al., 2009). It would be interesting to compare
the LECs in the collecting lymphatic vessels which are quiescent,
to those in the capillaries which are likely heterogenous as they
are reactive to lymphangiogenic stimuli. There is also growing
evidence that modulating this heterogeneity is the level of
VEGFR3 expression (Zhang et al., 2018).

It is suggested that FOXC2 could cooperate with VEGFR3
to specify the phenotype of the lymphatic vessel, as FOXC2
is expressed in valves, required in the larger collecting vessels,
compared to smaller capillaries which lack valves, smooth muscle
coverage and full coverage by a basal lamina (Alitalo et al., 2005;
Oliver and Srinivasan, 2008). VEGFR3 is not downregulated in
FOXC2-/- mice, but in VEGFR3-/- embryos, mRNA for FOXC2
is decreased, confirming that VEGFR3 is upstream of FOXC2 and
may have a role in its expression (Petrova et al., 2004). FOXC2
regulates the expression of VEGF-C (Oliver and Srinivasan, 2008)
which has been established as an essential chemotrophic factor
and an activating ligand for VEGFR3, which will permit an
autocine loop regulating the LECs own quiescence.

The nuclear factor of activated T cells (NFATc1 specifically) is
a calcium-sensitive transcription factor, which is also involved,
sharing expression patterns with FOXC2 and regulation by
PROX1 (Norrmén et al., 2009). NFATc1 needs to localise
into the nucleus where it interacts with other nuclear and
transcription factors (such as AP1, nuclear factor κB, Foxp3,
GATA) to form complexes on DNA. VEGF-C acting on VEGFR2
induces translocation of NFATc1 to the nucleus, this receptor
is expressed collecting lymphatics and valves, and is thought
to promote an increase in vessel size. The importance of this
transcription factor is elucidated with experimental deletion of
NFAT signalling, whereby lymphatic remodelling and maturation
is defective, sharing a similar phenotype to FOXC2-/- mice.
The expression of lymphatic capillary markers, lack of valves
and impaired sprouting seen in these NFAT-/- mice summarises
to a hyperplastic phenotype, which is further exacerbated by
loss of a FOXC2 allele. Investigating the link between FOXC2
and NFATc1 further, Norrmén et al. (2009) established that the
genes are expressed independently but are found to co-regulate
transcription of downstream genes, as ChIP analysis of primary
LECs revealed NFAT-binding sites in close proximity of FOXC2
sites (Norrmén et al., 2009). Thus, both NFATc1 and FOXC2
share a role in establishing the collecting lymphatic phenotype.

SHEAR STRESS AS A PRIMARY
DETERMINANT OF QUIESCENCE?

Elucidating the FOXC2/NFATc1 pathway further, a newly
discovered downstream target, FOXP2, previously implicated
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in speech development in humans (Co et al., 2020), has been
identified by Hernández Vásquez et al. (2021) as another
marker of collecting lymphatics in both mouse and human
models (Hernández Vásquez et al., 2021). ChIP sequencing had
previously linked FOXC2 and FOXP to roles in the lymphatic
system (Norrmén et al., 2009), but it only recently this role has
been investigated further. The expression of the transcription
factor FOXP2 was induced by oscillatory shear stress, acting
downstream of FOXC2 to help regulate the collecting lymphatic
phenotype and valve development. The role of oscillatory shear
stress is appearing to be a key determinant in examining
transcriptional regulation in establishing a functional lymphatic
network. But it is not just disturbed, oscillatory shear stress
that influences the vessel transcriptional profile, regular laminar
stress present in non-sprouting, mature vessels, acts to maintain
quiescence in these cells. LECs at the growing front of sprouting
vessels grow via projecting extensions of the cell membrane,
these projections are not lumenised, so are not exposed to
the circulating lymph, or the fluid dynamics that go with
it. This allows tip cells expressing markers such as DLL4 to
enhance VEGF-C signalling and allowing lymphatic growth.
Meanwhile, stalk cells in these vessels do not express DLL4,
Geng et al. (2020) found sphingosine 1-phosphate receptor 1
(S1PR1), a G-protein coupled receptor, antagonises the VEGF-
C signalling, enhanced by laminar shear stress independent of
S1PR1, allowing the stalk cells to maintain their quiescence.
S1PR1 is thought to act by activating Claudin 5, a tight junctional
protein, contributing to proper cell-junction formation in mature
lymphatic vessels (Geng et al., 2020). Therefore, consolidating
the interplay between how shear stress regulates differential
transcription factor activity and therefore how this contributes
LEC phenotype is one of great promise. Of note, it is well
recognised that LEC, in vivo, are able to grow along “fluid”
channels in vivo during tissue regeneration (Boardman and
Swartz, 2003). The transcription factor cascades underpinning
such events are unknown but would likely reveal novel aspects
consolidating the activated migratory and quiescence switching
in response to altered fluid dynamics.

Lymphatic endothelial cells are very sensitive to changes in
lymphatic flow, functioning in a narrow window of exposure
to shear stress (Baeyens et al., 2015). Many pathological
conditions such as chronic heart disease (Boehme et al., 2021)
and lymphodema (Scallan et al., 2016), result in chronically
elevated lymphatic flow, which can overstimulates the signalling
pathways in place to protect the lymphatic endothelium. As
described above, through FOXC2, induces a growth arrest
allowing maturation of vessels repressing the expression of cell-
cycle progression genes (Sabine et al., 2015). This allows the
cell to adapt to the high stress conditions, limiting damage as
cell-cell contacts are reinforced and motility is limited (Sabine
et al., 2015). Over time, if this high flow is maintained, the cells
face constant interstitial pressure induced-stretch, β1 integrins
on the surface of LECs translate this stretch to VEGFR3 tyrosine
phosphorylation which results in signalling for LEC proliferation
(Planas-Paz and Lammert, 2013).

KLF-2 is another mechanosensitive transcription factor, the
expression of which is upregulated in both oscillatory and

laminar flow (Choi et al., 2017). KLF2 is responsible for the flow-
induced expression of VEGF-C (Choi et al., 2017) and disruption
of PPAR-γ signalling (Morris et al., 2018). PPARγ is a part of
the nuclear hormone receptor superfamily. In LECs, PPAR-γ
expression is decreased in shear stress conditions. In low stress
conditions, PPARγ signalling inhibits expression of NADPH
oxidase, increasing bioavailable nitric oxide, an important
regulator of vascular tone. In LECs exposed to chronic shear
stress have increased NADPH expression, increased ROS -which
further scavenge bioavailable NO- disrupting NO homeostasis,
this dysfunction is restored with KLF2 knockdown (Morris et al.,
2018), isolating responsibility of this transcription factor in this
signalling in shear stress conditions.

Hypoxia inducing factor-1α (HIF-1α) is a transcription factor
commonly associated with inflammatory states and the hypoxic
response regulates over 1,000 target genes (Semenza, 2013). HIF-
1α has been associated with lymphangiogenesis in malignancy
(Schoppmann et al., 2006; Liang et al., 2008) but was discovered
by Boehme et al. (2021) to have a critical role in turnover of LECs
which are chronically exposed to high stress conditions (Boehme
et al., 2021). In relation to a pathological model of coronary
heart disease, in which there is a chronic increase in pulmonary
lymphatic flow, the LECs in the high stress conditions increased
HIF-1α expression despite not experiencing hypoxic conditions
(Boehme et al., 2021). This suggests HIF-1α may be regulated
by mechanotransductive forces on the lymphatic endothelium,
specifically the ROS from mitochondria experiencing stress,
which are central upstream mediators of HIF-1α. This suggests an
interface mechanotransductive signals and quiescence through
HIF-1α involvement (Boehme et al., 2021).

MAFB CONTRIBUTES TO BRANCHING
LYMPHATIC MORPHOGENESIS

Recent work by Dieterich et al. (2020) revealed a role of lymphatic
V maf musculoaponeurotic fibrosarcoma oncogene homolog
(MAFB) in transcriptional regulation of vascular patterning. In
LECs, this expression upregulated VEGF-C/R3 signalling via
direct binding to MAF recognition elements (MARE) in the
promoter and enhancer in the DNA sequence (Dieterich et al.,
2020). Transcriptomic analysis indicated MAFB is involved in
the early induction of SOX18 expression, thus impacting PROX1
production through this signalling pathway (Dieterich et al.,
2015). This work was followed up by Rondon-Galeano et al.
(2020), using a CRIPSR/Cas9 mouse model, these mice had a
perinatal death associated with cyanosis. Upon investigation,
dermal lymphatics in these mice had mild and transient
delay in development. However, in the diaphragm, MAFB
was necessary for patterning the lymphatics that developed in
the mutant mice were broader and covered a larger area of
the diaphragm (Rondon-Galeano et al., 2020). Other elements
of the signalling cascade linked to MAFB include PROX1,
LYVE1 and podoplanin. Global knockout of MAFB induces an
hyperbranched phenotype in the developing LV, with decreased
overall growth, suggesting MAFB is involved in refining the
branching of the LV capillaries, as depletion increased the
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number of junctions and cord segments (Dieterich et al.,
2020). Podoplanin activates platelet aggregation, this separates
the primary lymph sac from the CV. Specifically, podoplanin
activates c-type lectin receptor 2, which acts on SLP76 to
activate syk (a tyrosine kinase) in platelets (Tammela and Alitalo,
2010). Podoplanin is expressed on the membrane of LECs as
are glomerular podocyte, promoting adhesion, migration and
tube formation. Pups with podoplanin KO die at birth from
respiratory failure, and displayed defects in lymph patterning and
function (Oliver and Srinivasan, 2008). There was an absence
in formation of a fluid functional network of lymphatics in
these mice, as deeper lymphatics fail to form connections with
capillaries at the surface, thus showing defects in migration of
LECs and of lumen formation (Oliver and Srinivasan, 2008).

ETS-DOMAIN TRANSCRIPTION
FACTORS

ETS-domain transcription factors are a family of 19 endothelially
expressed transcription factors characterized by highly conserved
DNA binding domain and the DNA-binding consensus sequence
GGA(A/T) (Hollenhorst et al., 2007). Interestingly, ETS2 and
Etv2 were found to be expressed in BECs as well as LECs
(Dejana et al., 2007; Yoshimatsu et al., 2011; Davis et al., 2018).
Yoshimatsu et al. (2011) identified the expression of ETS2
and its co-localization with PROX1 in nuclei of LECs. Further
analysis revealed that ETS2 physically and functionally interact
with PROX1. In addition, their work highlights the synergistic
enhancement of Ets2 and PROX1 in expression of VEGFR3.
Consistent with the effects on expression profile of VEGFR3,
ETS2 induces LEC migration towards VEGF-C (Yoshimatsu
et al., 2011). In the light of the previous data ETS2 is reported
as a pivotal pro-lymphangiogenic factor in collaboration with
PROX1 during lymphangiogenesis (Yoshimatsu et al., 2011).
Furthermore, another transcription factor of interest, Etv2/Etsrp,
has been investigated as a lymphangiogenic initiator directly
promoting the expression of VEGFR3 within the posterior
cardinal vein (Davis et al., 2018). Using in vitro differentiated
mouse embryonic stem cells, Etv2 ChIP-Seq analysis revealed
specific Etv2 binding peaks present within VEGFR3 and LYVE1
promoter/enhancer regions (Liu et al., 2015). The VEGFR3
promoter is a likely direct target of Etv2, containing an
evolutionarily conserved FOX:ETS domain that is bound by Etv2
and FOXC2 transcription factors (De Val et al., 2008). Further
analysis using luciferase reporter studies in zebrafish embryos
and ECs suggested Etv2 activates both VEGFR3 and LYVE1
through direct binding to their promoter/enhancer regions, and
that the function of these enhancers is conserved among different
vertebrates (Davis et al., 2018).

Of the transcription factors regulating endothelial cell
physiology, haematopoietically expressed homeobox (HHEX),
is composed of a proline-rich domain and a highly conserved
homeodomain (Ho et al., 1999). Intriguingly, HHEX was
found to be expressed by endothelial cells in both blood
and lymphatic vessels from the earliest step of sprouting
angiogenesis and lymphangiogenesis from the PCV until

adulthood. Further ChIP analysis in blood endothelial cells have
revealed putative HHEX binding sites upstream of the PROX1
transcriptional start site. On contrary, HHEX lacks direct binding
to enhancer regions of VEGF-C/VEGFR3. Collectively these data
support a model where HHEX is an upstream transcriptional
regulator of VEGFR3/VEGF-C/PROX1, acting directly to PROX1
transcriptional site (Gauvrit et al., 2018; Figure 3).

LESSONS FROM SINGLE CELL
SEQUENCING

The transcriptomic exploration of lymphatic vasculature has
been greatly expanded through the use of single-cell RNA-Seq
(scRNA-seq), probing gene-expression data at the resolution of
single-cells (Chen et al., 2019; Xiang et al., 2020). Whilst studies
had previously suggested heterogeneity among LECs (Park et al.,
2014; Ulvmar et al., 2014; Iftakhar-E-Khuda et al., 2016), single-
cell techniques have allowed further characterisation of LEC
heterogeneity with six transcriptionally distinct PROX1+ LEC
clusters (clusters I-VI) being identified in human lymph nodes.
Although a highly specialised lymphatic vasculature, such high-
resolution analysis has allowed the difference quiescence states
to be identified. For example, expression of cell-cell junction,
ECM interacting proteins and inflammatory marker expression
demonstrate heterogeneity. Following on from the single cell
RNA-Seq analysis of human lymph node LECs, the group
investigated murine lymph node LN LEC heterogeneity (up to
seven specific identities) and compared the findings with the
human results (Xiang et al., 2020). Five mouse LEC clusters
were identified as shared between mouse and human. The
transcription factor FOCX2, showed high expression levels in
cells identified as valve cells and is a shared marker gene
between mice and humans (Xiang et al., 2020). Another shared
marker gene of lymphatic valve cell was the transcription factor
GATA2 (Xiang et al., 2020) which has been previously shown to
be critical for the development and maintenance of lymphatic
valves (Kazenwadel et al., 2015; Riaj Mahamud et al., 2019).
Interestingly, the corresponding human LEC cluster to murine
valve subset (LEC V) also shows a high expression level of FOXC2
and GATA2 but were detected in a small percentage of cells in the
subset. Other transcription factors identified as shared between
mouse and human LECs include with heterogenous expression
across the lymph node include KLF4 (Takeda et al., 2019; Xiang
et al., 2020), which has been demonstrated to be a key regulator
of the components of flow-induced LEC proliferation (Choi et al.,
2017) and RELB (Takeda et al., 2019; Xiang et al., 2020), a member
of the nuclear factor-κB (NF-κB) family (Yang et al., 2019) known
to play a key role in the development and function of lymphatic
vessels mediated by LECs (Liang et al., 2019).

FUTURE PERSPECTIVE AND
CONCLUSION

Understanding the lymphatic endothelium will be as important
as the blood endothelium as the site of major disease in the
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coming years. For this to become realised, it will be essential
for researchers to understand the transcriptional landscape
of the lymphatic endothelium, especially in light of how
the transcriptome is dynamic to its microenvironment. This
is especially important as sex differences between male and
female lymphatic systems are being increasingly recognised
as being significant to disease progression in cardiovascular
disease (Trincot and Caron, 2019), however, the transcription
factor heterogeneity to this of this is not yet clear. Currently,
more research is actively questioning how the lymphatic EC is
phenotypically different to a blood EC, rather than exploring the
heterogeneity within the lymphatic endothelium. As we begin
to understand the molecular regulators of lymphangiogenesis,
and how lymphatic function is controlled, we will begin to
identify how “quiescence to activation” paradigms exist within
the lymphatic endothelium, and it will be of future work
to establish the significance of this in terms of biology but
also the application to disease conditions. This review has
focussed on the major transcription factors that are active during
lymphangiogenic remodelling, and its relation to a quiescent
and mature phenotype. It is hoped that as the identity of

further transcription factors are identified, through the use of
cutting-edge techniques (such as scRNASeq and advanced ChIP,
proteomic and RIME) further mechanistic studies will be able to
contribute to our understanding of lymphatic quiescence.
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