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ABSTRACT

In Crenarchaea, several tRNA genes are predicted
to express precursor-tRNAs (pre-tRNAs) with ca-
nonical or non-canonical introns at various pos-
itions. We initially focused on the tRNA™ species
of hyperthermophilic crenarchaeon, Aeropyrum
pernix (APE) and found that in the living APE cells
three tRNA™" species were transcribed and subse-
quently matured to functional tRNAs. During matur-
ation, introns in two of them were cleaved from
standard and non-standard positions. Biochemical
studies revealed that the APE splicing endonuclease
(APE-EndA) removed both types of introns,
including the non-canonical introns, without any
nucleotide modification. To clarify the underlying
reasons for broad substrate specificity of
APE-EndA, we determined the crystal structure of
wild-type APE-EndA and subsequently compared
its structure with that of Archaeaoglobus fulgidus
(AFU)-EndA, which has narrow substrate specificity.
Remarkably, structural comparison revealed that
APE-EndA possesses a Crenarchaea specific loop
(CSL). Introduction of CSL into AFU-EndA
enhanced its intron-cleaving activity irrespective of
the position or motif of the intron. Thus, our bio-
chemical and crystallographic analyses of the
chimera-EndA demonstrated that the CSL is re-
sponsible for the broad substrate specificity of

APE-EndA. Furthermore, mutagenesis studies
revealed that Lys44 in CSL functions as the RNA
recognition site.

INTRODUCTION

RNA splicing, which removes introns and joins exons in a
primary transcript, is essential for the maturation of func-
tional RNA. The introns in eukaryotic cytoplasmic and
archaeal precursor (pre)-tRNA are removed by an
RNA-splicing endonuclease (EndA) (1-3). In eukaryotic
pre-tRNA, the introns are included in a typical motif,
called the bulge—helix—loop (BHL) motif, and are predom-
inantly located between the nucleotide positions 37 and 38
in the anticodon loop of the tRNA. In contrast, the
introns in archaeal pre-tRNAs show several variations ac-
cording to the classification of archaea (4). The intron in
the bulge—helix—bulge (BHB) motif is commonly found in
the pre-tRNA of all phyla of archaea and is located not
only in the anticodon loop but also in various other pos-
itions including the D- and T-loops, variable region and
aminoacyl stem (4). Pre-tRNAs from Crenarchaea and
Nanoarchaea often have non-canonical introns with
BHL or HBh’ motifs as well as canonical introns with
BHB motifs (4,5). Therefore, the EndAs from
Crenarchaea and Nanoarhcaea should have the ability
to remove both canonical and non-canonical introns
from various positions of the pre-tRNA. The
Crenarchaecal and  Nanoarhcacal EndAs  form
heterotetramer with o»- and [,-subunits, which is in
contrast to the Euryarchaeal EndAs that form homodimer
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(on) or homotetramer (o4) and only cleave the canonical
BHB intron at standard position (6—12). The a-subunit in
the archaeal EndAs is a catalytic subunit and shares
homology with the catalytic Sen2- and Sen34-subunits of
eukaryotic EndA, implying an evolutionary relationship
between the ecukaryotic and archaecal EndAs (13,14).
Although the catalytic and RNA recognition mechanisms
of the o, type EndA from the hyper-thermophilic
Euryarchaeon Archaeaoglobus  fulgidus (AFU) have
already been described (3,15), the molecular mechanism
underlying the broad substrate specificity of the o3,
EndA remains yet to be elucidated.

Intron-containing tRNA genes found in the
Crenarchaea genomes are generally much more than
those found in the Euryarchaea genomes (16). The
numbers, sizes, motifs and locations of introns varied ac-
cording to the Crenarchaea species. In the genome of
Aeropyrum pernix (APE), an aerobic hyper-thermophilic
Crenarchaeota, presence of 14 intron-containing tRNA
genes have been predicted from the complete genome
sequence determination (17), RT-PCR analysis (18) and
bioinformatics studies of the archaecal tRNA-gene
database (SPLITSdb) (16). Thus, the introns must be
cleaved by APE-EndA for these 14 tRNA species to
mature. In the current study, we focused on the removal
of introns from pre-tRNA species by APE-EndA and
clarified that the Crenarchaea specific loop is responsible
for the broad substrate specificity of APE-EndA.

MATERIALS AND METHODS
Strain and growth media

The APE was cultured in the nutrient rich media as pre-
viously reported (19). The cells were harvested at the ex-
ponential growth phase.

Preparation of total RNA

The APE cells (wet weight, 10 g) were suspended in 25 ml
of TE buffer [10 mM Tris—HCl (pH 8.0) and | mM EDTA]
and then mixed with 25 ml of TE buffer-saturated phenol.
The mixture was centrifuged at 15000g for 15 min at room
temperature. The aqueous phase was collected and then
mixed with an equal volume of TE buffer-saturated
phenol. This manipulation was repeated until the precipi-
tant in the interface between the aqueous and organic
phases disappeared. The RNA was recovered from the
aqueous phase by ethanol precipitation. The RNA was
loaded onto a Q-Sepharose column (GE Healthcare)
equilibrated with buffer A [20mM Tris—-HCI (pH 7.6),
10mM MgCl,] containing 400 mM NaCl,. Small RNA
molecules (mainly tRNA) was eluted with buffer A con-
taining 550mM NaCl, and recovered by ecthanol
precipitation.

Northern blot analysis and RT-PCR analysis

To identify the tRNAT' species, we performed northern
blot analysis. The small RNA fraction (1.0 Ao unit) was
transferred to a Hybond-N+ membrane (GE Healthcare)
by electro blotting, and fixed by UVjs4 . irradiation.
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Northern hybridization was performed with the hybridiza-
tion buffer (GE Healthcare) using a 5->*P-labeled DNA
probe at 48°C over-night. Nucleotide sequences of the
DNA probes used in this study are as follows:
APE-tRNA™" (CGU), 5-CGA GGC CGG CGC TCT
ACC GCT GAG GTA CGG CGG C-3; APE-
tRNA™(UGU), 5-CCT GCT GAG CTA CGG CGG
C-3'; APE-tRNA™3(UGU), 5-CAG CTT AGC TAC
TGC GTG-3; and APE-tRNA™%GGU), 5-CCA
GGG CGG CGC TCT GCC TG-3. The hybridized
bands were monitored with a Fuji Photo Film BAS2000
imaging analyzer. The small RNA fraction was
concentrated by agarose gel electrophoresis. For the
RT-PCR analysis, total RNA (0.8 Ays unit) was
separated by 10% PAGE/7 M urea. The gel between
5.8 SrRNA and tRNA were sliced into four pieces accord-
ing to the sizes of RNAs and then the RNAs were ex-
tracted from the gels. The RNA fractions were treated
with DNase I for complete removal of genomic DNA.
Each RNA fraction was tested whether the RT-PCR
product was amplified or not. After these pilot experi-
ments, the RT-PCR analyses were performed using the
RNA fractions containing pre-tRNA or mature tRNA.

Isolation of tRNA™" species from the total RNA

We tried to isolate the A. pernix tRNA™(CGU),
A. pernix tRNA™2(UGU), A. pernix tRNAT3(UGU)
and A. pernix tRNAT™™(GGU) from the total RNA
using the solid-phase DNA probe column chromatog-
raphy method (20,21). The following 5'-biotinylated
DNA probes were used for this purpose: APE-Thrl,
5Y-TCG TCC GTC TCG CGG CCG GAA CA-3;
APE-Thr2, 5-TCG CCA TCT CGC GGC CGG
AGCA-3’; APE-Thr3, 5-TCG ACT CTG TCG CGG
CGG GAA CA-3; and APE-Thr4, 5-TCG ACC GTC
TCG CGG CGG GAC CA-3'. The isolated tRNAs were
analyzed by 10% PAGE/7 M urea and used in the threo-
nine charging activity assay.

Aminoacylation of purified tRNA™" species

The threonyl-tRNA synthetase (Thr-RS) fraction was
prepared as follows. Briefly, the S-100 fraction (20 ml) of
the wild-type strain was loaded onto a DES52 column
(column volume, 10 ml) and Thr-RS was eluted off the
column by using a KCI linear gradient (50-350 mM).
Fractions containing Thr-RS were identified by monitor-
ing their threonine charging activity. The aminoacylation
assay was performed using L-['*C(U)]-threonine
(5.55GBg/mmol, American Radiolabeled Chemicals)
using 0.03 A, units of isolated tRNAT as described in
the reference (22).

Protein expression and purification

The APE and AFU genomic DNA (NBRC number,
100138G and 100126G) were supplied by the National
Institute of Technology and Evaluation Biological
Resource Center (Kisarazu, Japan). The genes encoding
the a- and B-subunits of the APE-EndA were individually
cloned into the Ndel and BamHI sites of the vector
pET-21a (Novagen). The resultant plasmid harboring
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the B-subunit gene was digested with the restriction
enzymes Bglll and Xhol. The DNA fragment, containing
the T7 promoter, ribosome-binding site and the -subunit
gene (in order), was cloned between the BamHI and Xhol
sites of the pET-21a harboring the o-subunit gene to
obtain a plasmid co-expressing both subunits of
APE-EndA. The gene encoding the AFU-EndA was
cloned into the Ndel and BamHI sites of the vector
pET-30a (Novagen). These plasmid constructs were used
for overexpressing recombinant APE-EndA  and
AFU-EndA in Escherichia coli Rosetta 2(DE3) strain
(Novagen). Escherichia coli cells harboring a plasmid
were grown in LB media supplemented with either
100 pg/ml of ampicillin or 50 pg/ml of kanamycin. The
cells were suspended in 10ml buffer containing 50 mM
Tris—HCI (pH 7.5), SmM MgCl,, 6 mM
2-mercaptoethanol and 50 mM KCI, and then disrupted
with an ultrasonic disruptor (model UD-200, Tomy,
Japan). Most of the E. coli proteins were denatured by
heat treatment at 70°C for 30 min and removed by centri-
fugation. Recombinant proteins were further purified by
two consecutive chromatography including HiTrap
Heparin-Sepharose and HiLoad 16/60 Superdex 75pg
columns (GE Healthcare). The mutant genes were
generated using the QuickChange site-directed mutagen-
esis kit (Stratagene), and the mutants were verified by
DNA sequencing. The mutant proteins were expressed
and purified by following the same procedures used for
the wild-type protein.

Intron-cleavage assay by the splicing endonuclease

The transcripts of A. pernix pre-tRNA™" (CGU),
A. pernix pre-tRNAT'™ (UGU), BHB mini helix of
A. pernix pre-tRNAT™? (UGU) and BHL mini helix of
C. symbiosum tRNA™" were prepared using T7 RNA
polymerase as described in our previous report (23). In
the case of internal labeling with radioisotope, [o->>P]-
GTP was added to the transcription mixture. The tran-
scripts were purified on 10% PAGE/7 M urea. Splicing
reactions were performed as follows. An amount of 0.2 pug
EndA was mixed with 0.5nmol unlabeled and **P-labeled
(~30000dpm) transcript in 100 ul buffer [SOmM Tris—
HCI (pH 7.5), 10mM MgCl,, 6 mM 2-mercaptoethanol,
50 mM KCI] and incubated at 65°C. Aliquots (10 ul) were
taken out at 0, 2, 5, 10, 20 and 30 min, and were analyzed
by 15% PAGE/7 M urea. Radioactivity on gel was moni-
tored by autoradiography using a Fuji Photo Film
BAS2000 imaging analyzer.

To identify the cleavage sites, we further performed
northern blot analysis and 5-end nucleotide analysis.
The transcripts were prepared with non-radioisotope
labeled nucleotides. After the cleavage reaction, the
RNA fragments were separated by 10% PAGE/7 M
urea, followed by northern blotting as described above.
The sequences of the DNA probes used are as follows:
5 exon for the A. pernix pre-tRNA™' and
pre-tRNA™2  5.GCT GAG CTA CGG CGG-3; ¥
exon for the A. pernix pre-tRNA™" and pre-tRNAT"?,
5-CGC CGG CGG GAT TC-3'; intron for the A. pernix
pre-tRNA™! 5.CTC GGA GCT AGC CCG-3'; intron

for the A. pernix pre-tRNAT™"™ 5" AGG CCC CGC GCA
GG-3'. The hybridized bands were monitored with a Fuji
Photo Film BAS2000 imaging analyzer.

In order to determine the 5-end nucleotide of each
fragment, the RNA fragments were excised, labeled with
y-**P-ATP and T4 polynucleotide kinase (New England
Biolabs), and then completely digested with nuclease P1
(Wako Pure Chemicals). The resultant nucleotides were
separated by the 2D thin layer chromatography using
the following solvent system (24): first dimension,
isobutylic acid: conc. ammonia: water, 66:1:33, v/v/v;
second dimension, isopropyl alcohol: HCI: water,
70:15:15, v/v/v. The **P-labeled nucleotides were moni-
tored with a Fuji Photo Film BAS2000 imaging
analyzer. The standard nucleotides were monitored with
UVs540m irradiation.

Crystallization

Peak enzyme activity containing fractions from the
Superdex-75 gel filtration column were pooled and then
concentrated to ~10 mg/ml using Amicon Ultra-15 centri-
fugal filter units. Initial trials for crystallization of
APE-EndA and AFU-CSL were performed by
hanging-drop vapor diffusion method using the Crystal
Screening Kit (Hampton Research). The drop solution
was equilibrated against 500 ul of reservoir solution at
22°C. A few crystals were obtained under some test crys-
tallization conditions containing ammonium sulfate as the
precipitant. Based on the initial crystallization conditions,
the APE-EndA protein solution was mixed with an equal
volume of the crystallization solution that contained
0.25M ammonium sulfate, 0.1 M sodium citrate (pH
5.6), 0.9M lithium sulfate and 1mM MgCl,, and the
AFU-CSL protein solution was mixed with an equal
volume of the crystallization solution that contained
22M ammonium sulfate, 0.2M potassium sodium
tartrate tetrahydrate and 0.1 M sodium citrate (pH 5.6).
In the case of APE-EndA, it took only 1 day to obtain a
full size cubic-shape (250 x 150 x 100 um) crystal. In the
case of the AFU-CSL, it took a few days to obtain a full
size, rectangular-shape (300 x 50 x 50 um)  crystal.
Cryo-protection of each crystal was achieved by stepwise
transfer to the respective artificial mother liquor contain-
ing 20% glycerol. Crystals were then flash-frozen in liquid
nitrogen.

Data collection and structure determination

X-ray diffraction data were collected at 100K on the
BL38B1 and BL41XU beamlines at SPring-8 (Hyogo,
Japan). Data reduction was performed using the
HKL2000 program (25). Structures of APE-EndA and
AFU-CSL were determined by molecular replacement
using the mutant APE H133A and AFU-EndA (PDB
ID code 1RLV) coordinates, respectively, as search
models. Molecular replacement was performed using the
Phaser program (26). The resulting maps were used for
manually building the models using COOT (27). The
model was further refined by using CNS (28) and
PHENIX (29). The structure of APE-EndA was refined
to  Ryork/Riee Of 26.0%/31.8% at 2.8 A resolution



Table 1. Data collection and refinement statistics

APE-EndA AFU-CSL
Data collection
Space group P34 P2,2,2;
Cell dimensions
a, b, ¢ (A) 135.03, 135.03, 156.24 81.77, 104.64, 165,30
o B,y (°), 90, 90, 120 90, 90, 90
Resolution (A) 50 to 2.8 (2.91-2.80) 50 to 2.05 (2.12-2.05)
Rinerge” 6.2 (60.2) 9.5 (67.3)
I/l 26.6 (1.8) 12.8 (3.2)
Completeness (%) 99.8 (99.1) 99.7 (97.1)
Redundancy 6.9 (5.6) 14.1 (10.8)
Refinement i
Resolution (A) 41.2-2.8 50-2.05
No. reflections 75771 84124
Ruyork®/ Riree 26.0/31.8 24.7/28.7
No. of atoms 16 581 10722
Protein 16173 10420
Water i 408 302
Avg. B-factors (A%) 50.5 36.4
RMSDs .
Bond lengths (A) 0.009 0.006
Bond angles (°) 1.3 1.4
Ramachandran plot (%)
Most favored 88.0 89.0
Additional allowed 11.5 9.2
Generously allowed 0.5 1.7
Disallowed 0.0 0.1

The value in the parentheses is for the highest resolution shell.
*Rinerge = ;| <I(h)>—1(h)|/S%;|<I(h)>|, where <I(h)> is the mean
intensity of symmetry-equivalent reflections.

PRyork = % (ILF,(0bs) — Fy(cale)IT)/S1F,(obs)I.

°Rpee = R factor for a selected subset (10%) of reflections that was not
included in earlier refinement calculations.

(Table 1). The space group of the crystal belonged to P3;,
where three o,3, APE-EndA molecules were present in an
asymmetric unit and they were structurally almost identi-
cal. The final model contained residues 3—-170 (chains A, E
and 1), 7-186 (chains B, F and L), 10-170 (chains C, G
and K), 3-186 (chains D, H and L) and 408 water mol-
ecules. The structure of AFU-CSL was refined to Ryork/
Rivee of 24.7%/28.7% at 2.05 A resolution (Table 1). The
crystal belonged to the space group P2;2,2; with four
molecules in the asymmetric unit. The final model con-
tained residues 2-315 (chains A-D) and 302 water mol-
ecules. The final models of APE-EndA and AFU-CSL
structures were further checked using PROCHECK (30),
showing the quality of the refined model. Ramachandran
plots (%) of the APE-EndA and AFU-CSL structures
were tabulated in Table 1. All structural figures were
generated by PyMOL (DeLano Scientific, Palo Alto,
CA, USA) and electrostatic potential surface models
were calculated by using APBS (31).

RESULTS
Four putative tRNA™ genes in the APE genome

The complete APE genome sequence analysis has revealed
that out of the 47 putative tRNA genes, 14 genes are
expected to include an intron (17). Of these tRNA (and
tRNA-like) genes, we were interested in four tRNAT
genes. Figure 1 shows the predicted pre-tRNAs
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transcribed from these putative tRNAT™  genes.
The numbering of the tRNA genes is according to that
of the genome sequence analysis (17). The
pre-tRNA™(CGU) has an intron at the standard
position in the anticodon loop, suggesting that this
pre-tRNA normally matures via the splicing process.
Because the pre-tRNA™*GGU) does not have an
intron, this tRNA probably matures without the splicing
process. Four threonine codons (ACU, ACC, ACG and
ACA) can be decoded only by these two tRNA species
assuming that there was no modification of anticodons.
Consistent with this idea, Haloferax volcanii (classical
name, Halobacterium volcanii) has only two tRNATHT
species, tRNAT"(GGU) and tRNA'"™(CGU) (32).
Additionally, in the case of APE, two curious tRNATH
genes, tRNA™(UGU) and tRNAT &UGU) genes, have
been reported (17). The pre-tRNAT™™2(UGU) has an
intron at the non-standard _lposition (D-loop) of the
tRNA, whereas the pre-tRNAT"3(UGU) has a disrupted
aminoacyl-stem.

Presence of three tRNA™ species in the living APE cells

Initially, we examined whether all four of these
pre-tRNAT™ species were transcribed in the living APE
cells. For this purpose, we prepared total RNA from APE
cells and subsequently performed northern blot analysis
(data not shown). However, because the amount of
pre-tRNAs in the total RNA fraction was very small,
the pre-tRNA bands were difficult to visualize. Only
three mature tRNA™  species [tRNAT™(CGU),
tRNAT™2(UGU) and tRNAT™(GGU)] were detected
(Supplementary Figure S1), suggesting that two
pre-tRNA™  species  [pre-tRNA™!(CGU)  and
pre-tRNAT"2(UGU)] containing an intron are indeed
transcribed in the cells. To overcome this problem, we
first concentrated the pre-tRNA fractions by agarose gel
electrophoresis as described in the ‘Materials and
Methods’ section, and then performed the RT-PCR
analysis. During the course of this study, Yamazaki
et al. (18) reported the existence of three tRNATHT
species  [tRNA™(CGU), tRNA™XUGU) and
tRNA™™(GGU)] in APE cells by RT-PCR analysis.
Although we independently detected the
pre-tRNAT(CGU) and pre-tRNAT™(UGU) species
by the RT-PCR analysis, our results coincided with
their results. Therefore, we do not present our data in
this regort. Thus, existences of three tRNAT' species
[(RNA™(CGU), tRNA™UGU) and tRNATM™
(GGU)] were strongly suggested. In contrast, any band
corresponding to the size of tRNA™3(UGU) was not
found on the gel (Supplementary Figure S1). Thus, these
results suggested that at least three of the four tRNA™"
species  [tRNA™(CGU), tRNA™XUGU) and
tRNA™4(GGU)] are indeed transcribed in the living
APE cells. To further confirm the existence of these
tRNATI species in the cells, we attempted to purify all
four tRNA species by using the solid-phase DNA probe
affinity column chromatography (20,21). As shown in
Figure 2A, only three mature tRNA species [tRNAT"!
(CGU), tRNAT"(UGU) and tRNAT™*GGU)] could
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Figure 1. Predicted secondary structures of the tRNA™ species. The predicted secondary structures of (A) pre-tRNAT"(CGU),
(B) pre-tRNAT™2(UGU), (C) tRNAT™3(UGU), and (D) tRNA™*GGU). The predicted introns and anticodons are indicated in gray-white and

boxed, respectively.

be purified from the APE total RNA. However,
tRNAT'"(UGU) was not purified. These results are con-
sistent with the results of the northern blot analysis and
RT-PCR analysis. Next, we prepared the threonyl-tRNA
synthetase fraction from the APE cell extract, and tested
the threonine charging activity of the purified tRNAs. As
shown in Figure 2B, all three purified tRNAs had threo-
nine charging activity. Based on these experimental
results, we concluded that these three tRNA genes [i.e.
tRNA™(CGU), tRNA™?(UGU) and tRNAT"™
(GGU)] are indeed transcribed in APE cells and their tran-
scripts mature to functional tRNAT species. Our results
also suggested that the tRNAT"(UGU) gene is a pseudo-
gene. It should be mentioned that our RT-PCR analysis
showed existence of the antisense RNA of tRNAT™
(UGU) gene region. This result reinforces the idea: the
tRNAT'3(UGU) gene is a pseudogene.

APE-EndA has broad substrate specificity

Maturation of pre-tRNA™1(CGU) and pre-tRNAT"?
(UGU) involved removal of introns from different pos-
itions (i.e. standard position in the anticodon loop and
non-standard position in the D-loop) of the tRNAs.
This raised a question whether APE-EndA could cleave
these introns efficiently. To test this idea, we constructed
an expression system to produce recombinant APE-EndA
in E. coli. The recombinant APE-EndA was purified to
homogeneity as judged by SDS—polyacrylamide gel elec-
trophoresis (Supplementary Figure S2). The intron-
cleavage activity of the APE-EndA was examined using
pre-tRNA™ ! (CGU) and pre-tRNA™(UGU) tran-
scripts (Figure 3). Because the RNA transcripts were in-
ternally labeled with a-32P-GTP, their band intensities
were different according to the respective RNA sequences.
The cleavage sites were identified by northern
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Figure 2. Isolation of tRNA™" species and threonine charging
activity. (A) tRNA species were isolated by solid-phase DNA probe
column chromatography as described in Materials and methods
section. The purified tRNA species were analyzed by 15% PAGE/7
M urea. The gel was stained with methylene blue. The
tRNAT"3(UGU) was not obtained by the solid-phase DNA probe
column chromatography. (B) Threonine charging activities of the
isolated tRNAs were measured as described in ‘Materials and
Methods® section. Abbreviations used are as follows: Thrl,
tRNAT™(CGU); Thr2, tRNA™2(UGU); Thr3, tRNAT"(UGU);
and Thrd4, tRNAT™(GGU).

hybridization and nucleotide analysis of the 5 termini
(data not shown). Briefly, the pre-RNA molecules were
prepared with non-radioisotope labeled nucleotides and
treated with the APE-EndA. The RNA fragments were
identified by northern hybridization. The 5-end of each
fragment, which was purified by Qolyacrylamide gel elec-
trophoresis, was labeled with y-*’P-ATP and T4 poly-
nucleotide kinase and then digested with nuclease P1.
The resultant nucleotides were separated on 2D thin
layer chromatography and radioisotope-labeled nucleo-
tides were analyzed by autoradiography. Extra up-shifted
bands were observed in some splicing products (for
example, the 3’-half fragments in Figure 3B). These extra
bands were produced by the so-called N+1 reaction of T7
RNA polymerase, which one or more non-templated nu-
cleotides are added to 3’ terminus of the nascent RNA by
run-off transcription (33,34). The observed fragments and
cleavage sites are illustrated in Figure 3. Figure 3A shows
the pre-tRNA ™ transcript, which has a canonical intron
with the BHB motif at the standard position of the anti-
codon loop. Removal of this intron was very fast: >90%
of the intron (500 pmol) was excised off within 2min
by Spmol of APE-EndA under the assay condition
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(Figure 3B), thus suggesting that our purified recombinant
APE-EndA has significant enzyme activity. Next, we used
the pre-tRNAT™2 transcript, which has a canonical intron
in the D-loop of the pre-tRNA (Figure 3C). As shown in
Figure 3D, APE-EndA removed the intron from the
non-standard position (D-loop) although the cleavage
rate was considerably slower than that was observed for
the anticodon loop (Figure 3B): at 2min, ~70% of the
pre-tRNA still remained intact. Probably the steric hin-
drance of the 3D core of the pre-tRNA was responsible
for this reduced cleavage rate, because the same intron,
located in a mini-helix, was excised off relatively more
rapidly (Figure 3E and F). We have also examined the
cleavability of the BHL intron in the mini-helix, which
mimicked the anticodon arm of the Cenarchaeum
symbiosum pre-tRNA™" (Figure 3G). Because the BHL
introns in A. pernix pre-tRNAs are very short (5-7nt),
detection of the cleaved intron was difficult. Therefore,
in this experiment, we selected the mini-helix of the
C. symbiosum pre-tRNA™" as the substrate. As shown
in Figure 3G and H, the BHL intron was removed from
the mini-helix, although the cleavage rate in this case was
slow compared to the rate when the intron was present in
the BHB motif. During the course of our study, the crystal
structure of APE-EndA and its enzymatic properties were
reported by Yoshinari’s group (35). In that study, the
6x His-tagged APE-EndA, however, hardly removed
the intron with BHL motif located in the cbf5
pre-mRNA: the junction between the 3’ exon and intron
was barely cleaved within 20 min under the test condition
(2.5pmol enzyme and 10pmol RNA). In contrast, our
result showed that the junction between the 3’ exon and
intron was clearly cleaved in 2min under our test condi-
tion (5pmol enzyme and 500 pmol RNA). Because the
sequences of BHL substrates used in both studies were
largely different, these differences in the cleavage
activities of BHL introns might be caused by the sub-
strate sequence itself. Otherwise, this apparent dis-
crepancy in results might be due to the presence of
6x His tag in the recombinant APE-EndA used in the
former study, in which the extra His residues have
added extra positive charges at the N-terminal region
of the B-subunit and thereby could have disturbed
the correct binding of the substrate RNA. This idea is
consistent with our experimental results described in a
later section suggesting that the positive charges on
the enzyme surface are very important for the substrate
selectivity. Taken together, these results suggest that the
APE-EndA has broad substrate specificity, and can
remove canonical (BHB) as well as non-canonical (BHL)
introns in the various positions of pre-tRNA. Our results
also demonstrated that the APE-EndA does not re-
quire the entire pre-tRNA structure for exerting
its activity (Figure 3F and H). Moreover, it is also clear
from the results described above is that the removal
of intron from a non-standard position, at least from
the D-loop, does not require any additional pro-
tein subunit, guide RNA and modified nucleotide in the
pre-tRNA.
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Figure 3. Splicing activity and specificity of APE-EndA. (A) Predicted secondary structure of A. pernix pre-tRNAT™(CGU). (B) Time-dependent

cleavage of A. pernix pre-tRNAT™(CGU). (C) Predicted secondary structure of A. pernix pre-tRNAT"2 (UGU).
A. pernix pre-tRNA™2(UGU). (E) Predicted secondary structure of the BHB mini helix of A. pernix pre-tRNA

g ) Time-dependent cleavage of
hr2(UGU). (F) Time-dependent

cleavage of BHB mini helix. (G) Predicted secondary structure of the BHL mini helix of C. symbiosum pre-tRNAT". (H) Time-dependent cleavage of
the BHL mini helix of C. symbiosum pre-tRNA™". Short arrows in (A), (C), (E) and (G) indicate the splicing sites for each pre-tRNA. Reaction
mixtures were separated on 15% polyacrylamide/7 M urea gels. In each gel,

shown using schematic models at the right hand side of the gel.

Selection of the target site for the protein engineering

We determined the crystal structure of the wild-type
APE-EndA at 2.8 A resolution to obtain structural infor-
mation (Supplementary Figure S3A and Table 1; PDB
code: 3P1Z). As described above, during the course of
our study, the structure of 6x His-tagged mutant
APE-EndA (His133Ala) (PDB code: 3AJV) was reported
(35). Our crystal structure is almost identical to this pre-
viously published mutant APE-EndA structure except for
the regions around the mutation site (His133 residue in the
a-subunit) and the His-tagged N-terminal end of the
B-subunit. Because of the structural similarities between
our wild-type and previously published mutant
APE-EndAs, we have presented here only minimum infor-
mation on the structure of the wild-type APE-EndA. As
shown in Supplementary Figure S3A, the APE-EndA is
composed of two o (pink and light gray) and two B- (cyan
and green) subunits, and forms a heterotetrameric
aP,-subunit complex. The overall shape of the a,f,
APE-EndA is like a rectangular parallelepiped, and its
structure is similar to the previously reported EndA struc-
tures (12,36-39). However, the main chain of the B7 strand
and the connection loop between the B7 and B8 strands

‘C’ (first lane) indicates control (no enzyme). The cleavage products are

(Vall124-Phel36) of our structure is slightly deviated from
the structure reported for the mutant (35). The Coatom of
His133 in the wild-type APE-EndA is ~3. 4A away from
the Cao atom of Alal33 of mutant APE-EndA in the
superimposed structures (data not shown). This may be
due to the more hydrophilic nature of the His residue
because the imidazole ring of Hisl133 protrudes into the
solvent.

In order to understand the mechanism of broad sub-
strate specificity of APE-EndA, we compared the structure
and amino acid sequence of APE-EndA with those of the
o, Euryarchaeal-EndA, which has relatively narrow sub-
strate specificity (8,9,11). It was previously shown that
three catalytic residues (tyrosine, histidine and lysine)
and two substrate recognition residues (two arginines)
are involved in the reaction mechanism of the o,
Euryarchaeal-EndA  (AFU-EndA) (15). 1In the
AFU-EndA and RNA complex, a tyrosine residue, a his-
tidine residue and a lysine residue form the catalytic triad
and two arginine residues sandwich the adenine base
located in the first bulge of the BHB motif by cation—n
interactions (3). Our current structure-based amino acid
sequence alignment strongly suggests that in APE-EndA
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Figure 4. Structural comparison of the CSL region of APE-EndA with the corresponding regions of other EndAs. (A) Left: Superimposed structures
of archaeal EndAs. The a-subunits of APE-EndA are indicated in pink and light grey. The B-subunits of APE-EndA are indicated in green and cyan.
The a-subunits of AFU-EndA are in orange. Right: Close-up view of the structure of CSL region (red) of APE-EndA (pink) superimposed on the
structure of the corresponding regions of AFU-EndA (orange). The AFU-EndA residues (E174 and L178), where the CSL peptide was inserted to
create the AFU-CSL chimera, are indicated in cyan. The RMSD (root mean square deviation) is 2.5 A for 538 Ca atoms of AFU-EndA. (B) Left:
Superimposed structures of archaeal EndAs. The a-subunits of APE-EndA are indicated in pink and light grey. The B-subunits of APE-EndA are
indicated in green and cyan. The a-subunits of NEQ-EndA are indicated in blue. The B-subunits of NEQ-EndA are indicated in light blue. Right:
Close-up view of the structure of CSL region (red) of APE-EndA (pink) superimposed on the structure of the corresponding region of NEQ-EndA
[o-subunits (blue)]. The RMSD is 2.2 A for 488 Ca atoms of NEQ-EndA. (C) Amino-acid sequence alignment of a-subunits around the CSL region
(highlighted in orange). Full names of the archaea species are as follows; Aeropyrum pernix, Sulfolobus solfataricus, Pyrobaculum aerophilum,
Nanoarchaeum equitans, Methanocaldococcus jannaschii, Archaeoglobus fulgidus and Thermoplasma acidophilum. Two conserved positively charged
residues are shown in red. (D) Schematic diagram illustrating creation of the AFU-CSL chimera: the peptide between the amino acids E174 to L178
(cyan) of AFU-EndA was replaced with the CSL peptide (red) of APE-EndA.

the residues Y125, H133 and K164 form the catalytic triad
and the residues R157 and W183 are possibly involved in
substrate recognition (Supplementary Figures S3B and
S4). Thus, one of the arginine residues involved in sub-
strate recognition by AFU-EndA is substituted with a
tryptophan residue (W183) in APE-EndA. Notably, this
tryptophan residue is conserved in the Crenarchaeal,
Nanoarchaeal and Eukaryotic EndAs (40). A tryptophan
residue might be an alternative for the arginine residue
because its indole ring could interact with the nucleotide
by hydrophobic interaction instead of the cation—n

interaction. As shown in Supplementary Figure S3B,
these five residues (Y125, H133, R157, K164 and W183;
shown in black) are located in the predicted catalytic
pocket of APE-EndA. Furthermore the importance of
the H133 residue for the enzyme activity was recently con-
firmed by the Yoshinari’s group (35). Because these cata-
lytic and substrate recognition residues are conserved
in all EndA families, they are probably not involved
in determining the broad substrate specificity of APE-
EndA. Upon close examination of the Crenarchaeal
EndA structure, it was found that the connecting region
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Figure 5. Crenarchaea specific loop (CSL) is involved in broad
substrate specificity. Time-dependent cleavage activity of AFU-CSL:
(A) A. pernix pre-tRNA™(CGU), (B) A. pernix pre-tRNATH?
(UGU) and (C) BHL mini helix of C. symbiosum pre-tRNAT". In
each gel, ‘C’ (first lane) indicates the control (no enzyme) sample. In
each case, the bands (on the gel) and their corresponding products (on
the right hand side of the gel) are indicated.

between the B3- and P4-strands in the a-subunit is quite
different from the other members of the three EndA
families (Figure 4 and Supplementary Figure S4). Our
structural results showed that this connecting region
forms a loop structure close to the catalytic pocket
(Supplementary Figure S3B, highlighted in red). This
loop is structurally conserved only in Crenarchaea, and
known as the Crenarchaea specific loop [CSL; classical
name, Crenarchaea extra specific loop (12)] (35). In
Figure 4A and B, the CSL (red) region in the
APE-EndA (pink) is superimposed onto the correspond-
ing region of AFU (orange) and Nanoarchaeum equitans
(NEQ, blue)-EndAs. As shown, the CSL is replaced by a
B-turn in the AFU-EndA structure and a short disordered
loop region in the NEQ-EndA. In addition, two positive
amino acid residues (K44 and R46 in the APE-EndA)
located in the CSL are conserved only in the
Crenarchaeal EndA (Figure 4C).

Insertion of CSL in AFU-EndA confers APE-EndA like
broad substrate specificity

We next examined the possibility that the CSL might play
a key role in determining the substrate specificity. As
shown in Figure 4A and D, we created an AFU-EndA
mutant protein (AFU-CSL) in which the EKGDL
sequence, from amino acid positions 174-178, of
AFU-EndA were replaced by the CSL sequence of
APE-EndA. We then analyzed the substrate specificity
of AFU-CSL mutant. As shown in Figure 5A, the
AFU-CSL cleaved the BHB intron from the anticodon
loop in the similar manner as the wild-type AFU-EndA.
The wild-type AFU-EndA, however, hardly cleaved the
BHB intron from the D-loop of the pre-tRNAT?
(Figure 5B, left). In contrast, the AFU-CSL effectively
cleaved the BHB intron from the D-loop (Figure 5B,
right). Additionally, whereas the wild-type AFU-EndA
did not remove the intron from the BHL motif in the
mini-helix as reported (11) (Figure 5C, left), the
AFU-CSL cleaved the BHL intron from the mini-helix
just as the APE-EndA did (Figure 5C, right). Thus,
these experimental results clearly demonstrated that the
insertion of CSL conferred APE-EndA-like broad
substrate-specificity to AFU-EndA, which has narrow
substrate specificity.

We postulated that the residues K44 and R46 located in
the CSL might be involved in substrate recognition. To
confirm this idea, we prepared two APE-EndA mutant
proteins (APE K44A and R46A) by individually
substituting the K44 and R46 residues with alanine. As
expected, substitution of K44 with alanine caused severe
loss of enzyme activity: the APE K44A mutant could
hardly excise the BHB intron at the anticodon loop
(Figure 6A), and was unable to excise the BHB intron at
the D-loop (Figure 6B). Furthermore, the BHL intron was
not completely removed: a faint band corresponding to
the 5’ exon and intron joint product was observed, sug-
gesting slight cleavage of the 3’ exon and no cleavage of
the 5’ exon (Figure 6C). It should be mentioned that the
exposure time of the autoradiograph shown in Figure 6C
was prolonged to visualize the faint band corresponding
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to the 5 exon and intron joint product. These results
clearly showed that the K44 residue is very important
for the enzymatic activity of APE-EndA. It is noteworthy
that the importance of the K44 residue for enzymatic
activity has been reported during the course of our study
(35). In contrast, substitution of R46 residue with
alanine did not affect its substrate selectivity significantly
(Figures 6D and E), suggesting that the R46 residue is not
important for the substrate specificity of APE-EndA.

Structures of AFU-CSL and model of its complex
with RNA

Although the K44 residue in the CSL is very important for
the intron cleavage activity, its precise role remained
unclear. Therefore, we analyzed the crystal structure of
AFU-CSL, a chimeric protein. The purified AFU-CSL
protein was crystallized and its structure was determined
at 2.05A resolution (Table 1). Figure 7A shows the

structure of the wild-type AFU-EndA (PDB ID code,
1RLYV) (37). The overall structure of AFU-CSL was iden-
tical to that of the wild-type AFU-EndA except the
inserted CSL regions, indicated by dotted circles
(Figure 7B). The conformation of the CSL region in
AFU-CSL was almost identical to that in the
APE-EndA (Figure 7C). To predict the RNA binding
site, electrostatic potential surface models of the
wild-type  AFU-EndA  (Figure 7D), AFU-CSL
(Figure 7E) and APE-EndA (Figure 7F) were generated.
As shown, the catalytic pockets are located in the center of
positive charges (Figure 7D-F). Interestingly, residues
K179 and RI181 of AFU-EndA, corresponding to the
K44 and R46 residues of APE-EndA (Figure 7C), add
new positive charges to AFU-EndA (area shown with
dotted circle) symmetrically like the positive charges of
APE-EndA (Figure 7D and E). We next constructed the
docking model of the AFU-CSL and substrate RNA
based on the reported AFU-EndA and RNA complex
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structure (Figure 8A). The RNA in this complex contains
the BHB motif (3). In our docking model, the K179
residue is situated near the 3’ phosphate group adjacent
to the bulge structure of the RNA. In contrast, the R181
residue is placed away from the RNA in our model, in
accordance with the result of the R46 to Ala substitution
of APE-EndA. This model suggests that the K179 residue
captures the 3’ phosphate group adjacent to the bulge
structure (or 3’ phosphate of the third nucleotide in the
loop structure), fixes the substrate, and thereby results in
determining the substrate specificity.

To confirm the importance of the K179 residue in
AFU-CSL function, we substituted the K179 residue
with alanine. This mutant protein (AFU-CSL K179A)
removed the BHB intron from the anticodon loop
(Figure 8B) and the D-loop (Figure 8C). However,
AFU-CSL K179A could not remove the BHL intron cor-
rectly (Figure 8D): the cleavage did not occur at the loop
region of the BHL motif, and only generated a product
that corresponded to 5 exon remaining joined to the
intron. Thus, these results suggest that the K179 residue
plays a key role in the broad substrate specificity.

DISCUSSION

In Crenarchaeal genomes, curious tRNA genes have been
reported (16). Several reported tRNA (or tRNA-like)
genes are predicted to produce unusual transcripts
and/or pre-tRNAs with a canonical or non-canonical
intron at various positions. In the current stuch:, we con-
firmed that three tRNAT™ species [tRNAT™™(CGU),
tRNA™2(UGU) and tRNA™™4GGU)] are indeed
transcribed in the living APE cells and mature to function-
al tRNAs. Our biochemical studies demonstrated that the
purified APE-EndA cleaved the intron at non-standard
position as well as the intron at standard position. Thus,
the removal of intron from non-standard position (at
least, in D-loop) does not require any other protein,
RNA and/or modified nucleotides in pre-tRNA. The
rate of intron cleavage from the D-loop is considerably
slower than that from the standard position (anticodon
loop) due to the steric hindrance of the 3D core of the
tRNA. Thus, the maturation of tRNAThrZ(rUGU) seems
to be slower than the maturation of tRNAT"(CGU) or
tRNAT"™(GGU). In fact, we found that the intensity of
the hybridized band of tRNA™UGU) is weak
(Supplementary Figure S1). As described above, the threo-
nine codons (ACU, ACC, ACG and ACA) could be
decoded only by tRNAT!(CGU) and tRNA™4GGU)
without assuming modification of anticodons. However,
the G—A base pair is weak at high temperatures, the en-
vironment in which APE lives. Therefore, the existence of
tRNAT'"™(UGU) probably reinforces decoding of the
ACA threonine codon in the APE cells.

The APE-EndA removed the intron with BHB or BHL
motif irrespective of its position in the pre-tRNA. The
APE-EndA also removed the intron with non-canonical
BHL motif. To understand the structural basis of its
function, we solved the crystal structure of wild-type
APE-EndA. The o-subunit of APE-EndA showed

structural similarities with the catalytic subunits of the
other EndAs (o», o4 and oB, types). The structure
based amino-acid sequence alignment suggested that the
CSL region is responsible for the observed broad substrate
specificity of the Crenarchaeal EndA. Indeed, insertion of
CSL conferred broad substrate specificity to AFU-EndA,
suggesting that the CSL plays a key role in determining
the substrate specificity. We also showed that a conserved
lysine residue is very important for the intron cleavage
activity. Our docking model based on the AFU-CSL
crystal structure suggested that the conserved lysine
residue captures the 3’ phosphate group adjacent to the
bulge structure. In fact, the electrostatic potential surface
models showed that positive charges were added around
the catalytic pocket of the AFU-EndA. The importance of
the lysine residue in substrate recognition was further con-
firmed by mutational analysis.

For the last 5 years, the broad substrate specificity of
the Crenarchaeal EndA has remained an enigma in the
field (6,8,9,35). Results described in this study showed
that the interaction between the CSL region of EndA
and the RNA determines the substrate specificity.
Because the bulge structures of the BHB motif are
stabilized by the stem structures, the o, and o4 EndAs
may not be required for holding the 3’ phosphate group
adjacent to the bulge structure. In contrast, the loop struc-
ture of the BHL motif is probably more flexible compared
to the bulge structure of the BHB motif, because both
BHL and BHB introns are cleaved by o»f, EndA.
Therefore, the a3, EndA requires additional RNA recog-
nition site, namely, the lysine residue in the CSL region.
Structure of the CSL has a flexible feature because it
showed >60% (particularly >70% at positively charged
residues) high temperature flexibility factors. Because of
this flexibility, the Crenarhcacal EndA probably could
cleave any type of non-canonical introns. In fact, a
search of the SPLITSdb database (16) revealed the diver-
sity of non-canonical introns found in the Crenarchaea
pre-tRNAs  (especially in  the archaeal order,
Thermoproteales). Acquisition of the CSL region into
EndA consequently might have given rise to the intron
diversity.

Our results might possibly explain how introns could
have distributed to various pre-tRNA positions in
Crenarchaeca. We showed that, in contrast to
AFU-EndA, the AFU-CSL effectively cleaved the BHB
intron at the D-loop (Figure 5B). Therefore, inclusion of
CSL not only adds diversity to intron types but also dis-
tributes tRNA introns to various positions. This idea also
exemplifies that the architecture of EndA and variation of
introns in tRNA coevolved in arachaea (9). It has been
proposed that the archaeal EndA is subfunctionalized
(11), which occurred as a result of gene duplication (41).
In this hypothesis, the a-subunit gene of oy EndA was first
duplicated, one of which was then subfunctionalized to
encode the B-subunit. The CSL region of Crenarhcaeal
EndA may have been acquired during the subfunctio-
nalization process.

About 68.7% pre-tRNAs of Thermoproteales, the
thermoacidophilic Crenarchaeal order, contain introns at
various positions (16). They also include multiple intron
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Q

Figure 7. Structure of AFU-CSL. (A) Ribbon diagram of the overall structure of AFU-EndA (orange, PDB ID code 1RLV). (B) The crystal
structure of AFU-CSL (orange). Two dotted circles indicate the inserted CSL (red). (C) Left: Superimposed structures of archaeal EndAs. The
a-subunits of APE-EndA are indicated in pink and light grey. The B-subunits of APE-EndA are indicated in green and cyan. The a-subunits of
AFU-CSL are in orange. Right: Close-up view of the structure of CSL region (red) of AFU-CSL (orange) superimposed on the structure of the
corresponding region of APE-EndA (pink). The RMSD is 2.6 A for 628 Ca atoms of AFU-CSL. (D) Electrostatic potential surface models of
AFU-EndA: red and blue colors indicate negative and positive charges, respectively. (E) Electrostatic potential surface models of AFU-CSL. Two
dotted circles (yellow) show the K179 and R181 residues of AFU-CSL. (F) Electrostatic potential surface models of APE-EndA. Two dotted circles

(yellow) show the K44 and R46 residues of APE-EndA.

containing pre-tRNAs. Although the double introns
of Thermofilum pendens pre-tRNAFP™" were properly
removed by o8, EndA (40), it however remains
unknown whether the tRNA™™" functions in vivo. The
CSL region of T pendens EndA probably plays an import-
ant role in the cleavage of multiple introns.

Inclusion of CSL in EndA may be an advantage for the
survival of Crenarchaea, because it has been suggested

that the role of tRNA intron is to provide protection
against integration of mobile genetic elements, such as
conjugative plasmids and viruses (42). In fact, many
Crenarchaea infecting viruses have been found from the
hot acidic environment (43). Additionally, genomic se-
quences of two archaeal proviruses were shown to be
integrated into the 5'- and 3’-distal regions of the tRNA
genes of the Euryarchaeal species (44), suggesting the
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Figure 8. The conserved Lys residue of CSL is responsible for broad substrate specificity. (A) Model of the complex formed between the AFU-CSL
and an RNA substrate (stick model, light gray) that contains a BHB motif (left). The dotted square shows the active site. Close-up view of the active
site of the enzyme-RNA complex (right). Stick models in cyan and black colors show the bulge structure (B1-B2-B3) of the BHB motif and the
catalytic residue H267, respectively. The K179 and R181 residues located in the inserted CSL peptide are shown in red. (B-D) Time-dependent
cleavage activity of AFU-CSL K179A mutant: (B) A. pernix pre-tRNAT!(CGU), (C) 4. pernix pre-tRNA™?(UGU) and (D) BHL mini helix of

C. symbiosum pre-tRNATY". “C’ indicates the control (no enzyme) sample.

possibility that the tRNA intron might have originated
from the viruses’ genome. Therefore, it is possible that
by incorporating the CSL region into the Crenarchaeal
EndA helps Crenarchaea to defend against such archaeal
viral infections.

Finally, our findings presented here may provide a
glimpse into the molecular recognition and co-evolution
of proteins and RNAs at the early stages of life on Earth.
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