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Abstract

Background: Protein-DNA interactions are essential for many biological processes. However, the structural
mechanisms underlying these interactions are not fully understood. DNA binding proteins can be classified into
double-stranded DNA binding proteins (DSBs) and single-stranded DNA binding proteins (SSBs), and they take part
in different biological functions. DSBs usually act as transcriptional factors to regulate the genes’ expressions, while
SSBs usually play roles in DNA replication, recombination, and repair, etc. Understanding the binding specificity of a
DNA binding protein is helpful for the research of protein functions.

Results: In this paper, we investigated the differences between DSBs and SSBs on surface tunnels as well as the
OB-fold domain information. We detected the largest clefts on the protein surfaces, to obtain several features to be
used for distinguishing the potential interfaces between SSBs and DSBs, and compared its structure with each of
the six OB-fold protein templates, and use the maximal alignment score TM-score as the OB-fold feature of the
protein, based on which, we constructed the support vector machine (SVM) classification model to automatically
distinguish these two kinds of proteins, with prediction accuracy of 87%,83% and 83% for HOLO-set, APO-set and
Mixed-set respectively.

Conclusions: We found that they have different ranges of tunnel lengths and tunnel curvatures; moreover, the
alignment results with OB-fold templates have also found to be the discriminative feature of SSBs and DSBs.
Experimental results on 10-fold cross validation indicate that the new feature set are effective to describe DNA
binding proteins. The evaluation results on both bound (DNA-bound) and non-bound (DNA-free) proteins have
shown the satisfactory performance of our method.

Background
The family of DNA binding proteins is able to recognize
and bind to DNAs, and they play vital roles in many biolo-
gical processes such as DNA replication, recombination,
repair, transcription, translation, and maintenance of
telomeres, and so on [1-4]. There are two kinds of DNAs,
single-stranded DNA (ssDNA) and double-stranded DNA
(dsDNA). Accordingly, the DNA binding proteins usually
consist of single-stranded DNA-binding proteins (SSBs)
and double-stranded DNA-binding proteins (DSBs). SSB

binds with ssDNA with high affinity and low specificity,
and is mainly involved in DNA replication, recombination
and repair. While DSBs involve in binding to particular
dsDNA sequences, to modulate the process of transcrip-
tion, to cleave DNA molecules, or to be involved in chro-
mosome packaging and transcription in the cell nucleus,
etc. Though there are some researches [5-7] on the SSB
and DSB respectively, few attentions have been paid on
investigating what makes SSB and DSB have such different
kind of binding specificity.
With the development of biotechnology, a large

amount of proteins have been sequenced. However, SSBs
have shown to have little sequence conservation [8]. Even
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DSBs involved in similar functions may have conserved
subsequences, different kinds of DSBs with different
functions seems to show few common subsequences.
Therefore, it is hard to recognize SSB sequences from
DSB sequences, or vice versa. Now that the molecular
structure determines its biological function, structural
information is expected to provide insight on the binding
mechanism of SSB or DSB. The great progress of the
structure genomics project [9] results that more and
more high resolution 3D structures for DSBs and SSBs
are available now, which makes it possible to investigate
the common structural differences between SSB and DSB
that are responsible for the binding specificity. In the
meantime, the investigation results can help to annotate
or refine the annotation of the proteins with known
structures yet unknown or not fully understood func-
tions. In fact, up to Jan. 25, 2013, the Protein Data Bank
(PDB) [10] contains 3390 structures for DNA binding
proteins (see Additional file 1), among them only about
30% and 5% are annotated as DSBs and SSBs, respec-
tively, and whether the remains belong to DSBs or SSBs
are still not very clear. Therefore, a computational
method is required to annotate the DNA binding protein
as DSB or SSB automatically. To address this question,
this work is devoted to characterize the structural differ-
ences between DSBs and SSBs, and then to construct the
distinguishing model that can automatically refine the
annotations of the DNA binding proteins.
The surface of a protein is generally irregular, containing

many clefts and grooves of varying shapes and sizes [11].
Previous researches have shown that a large cleft can pro-
vide an increased opportunity for the protein to form
interactions with other molecules, particularly small
ligands [12,13]. Therefore, some researches used a particu-
larly large and deep cleft to characterize the binding active
sites of the proteins [11,13,14]. We guess that for DNA
binding proteins, the cleft properties on the surface may
also play important roles on the dsDNA/ssDNA binding
specificity.
Research results have shown that although the

sequences of different SSBs are very different, there are
well-conserved elements in the structures. That is, most
SSBs contain one or more OB (oligonucleotide/oligosac-
charide binding) -fold domains [6,15-18]. A typical OB-
fold has a five-stranded beta-sheet coiled to form a closed
beta-barrel. This barrel is capped by an alpha-helix located
between the third and fourth strands. The OB-fold plays
critical role in binding with ssDNA. Although it is hard to
say that the OB-fold is unique for SSBs, we think that it
should also be used as an important descriptor to distin-
guish SSBs from DSBs.
In this paper, we aim to investigate the structural differ-

ences between collected SSBs and DSBs, and extract
the structure-based features related to surface clefts and

OB-folds, based on which, we construct a computational
model that can automatically classify the DNA protein as a
DSB or SSB by using the widely used support vector
machine (SVM). The promising performance suggests that
our method will be useful in the protein function annota-
tion and refinement.

Methods
Data sets
We first extracted the structures of all 3390 DNA binding
proteins from PDB (Jan. 25, 2013 release) according to
their annotations, which contain 1039 DSBs (HOLO 890,
APO 149), 158 SSBs (HOLO 70, APO 88) and 2193
unknowns. Then we use PISCES (http://dunbrack.fccc.
edu/PISCES.php) [19] to get the non-redundant set, in
which every structure is either solved by NMR or by X-ray
yet with resolution better than 3Å, the sequence identity is
less than 30%, and the length of chain is greater than 40
amino acid residues. As a result, we finally got 204 DSBs
(HOLO 154 and APO 50), 75 SSBs (HOLO 37 and APO
38) and 727 unknowns (Additional file 2). For simplicity,
we call the set containing protein-DNA bound structures
as HOLO set, and the set containing protein-DNA
unbound structures as APO set, and the proteins in these
sets are respectively denoted as DSB_holo, SSB_holo,
DSB_apo, and SSB_apo hereinafter.

Features on clefts
The protein surface has a very complex and irregular
shape that contains concave, convex and flat, which con-
tributes to protein to interact with the external environ-
ment. The clefts, pockets, or cavities are generally
considered as the active sites on protein surfaces, thus
the research on them are meaningful of understanding
the protein functions.
Now that it has been reported that a large cleft can pro-

vide an increased opportunity for the protein to form
interactions with other molecules [12,13], and the particu-
larly large and deep clefts have been used to characterize
the binding sites of the proteins [11], we consider that for
DNA binding proteins, the large clefts on the surface may
also play important roles on the dsDNA/ssDNA binding.
In other words, the large clefts on SSB would be narrow
enough to prevent it from binding with dsDNA.
Some tools have been developed to recognize the clefts

based on the protein structures, such as HOLE [20],
MOLE [21,22], MolAxis [23] and Caver [24,25]. In this
work, we applied CAVER 3.0 package to detect the clefts
and the corresponding indexes of the largest clefts (also
called as tunnels in this work) on the protein surfaces, to
investigate whether they are possible to be used for distin-
guishing the potential interfaces between SSBs and DSBs.
Concretely, we mainly got three indexes of the detected
tunnels: length, curvature and bottleneck radius.
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Length: indicating the length of the path from the
start point to the end point along the tunnel axis.
Curvature: indicating the curvature of the tunnel. The

curvature of the tunnel is calculated by Curvature =
Length/Distance, where the distance is the length of the
straight line from the start point to the end point of the
tunnel. The greater the curvature, the curved is the tunnel.
Bottleneck radius: indicating the radius of the narrowest

part of the tunnel, also representing the radius of the lar-
gest possible ball that can be centered at a given point of
the tunnel axis without colliding with the input structure.
Since the protein surface contains many tunnels of

varying shapes and sizes. The CAVER package return as
many tunnels as possible. For the reason mentioned
above, we just check the largest one in terms of maximiz-
ing (Length*Bottleneck Radius). For example, for protein
1A73, CAVER detects out 27 tunnels shown in Figure 1,
and 1their indexes are listed in Table 1. According to the
choosing criteria, tunnel number 25 (Figure 2) will be
considered as the largest tunnel.

Feature on OB-fold domain
OB-fold is a small structural motif that was first character-
ized in 1992 in four proteins that bind either oligonucleo-
tides or oligosaccharides [26]. Typically, the OB fold

comprises a five-stranded b-sheet coiled to form a closed b
barrel and capped by an a-helix located between the third
and fourth b strands [27-30]. Although OB-fold has since
been observed at protein/protein interfaces as well, but the
nucleic acid-binding superfamily is the largest within the
OB-folds, and proteins containing OB-folds involve almost
any time that single-stranded DNAs or RNAs are present
or require manipulation [8]. Now that OB-folds are con-
served and play important roles in SSB-ssDNA binding, we
extract the feature indicating whether OB-fold is contained
in a protein, with the hope that the feature is able to distin-
guish SSBs with DSBs.
Considering that OB-folds evolve into several variants

though they are very conserved, we choose the chain A of
six typical proteins (PDB:1QUQ [31], 1V1Q [32], 4GS3 [33],
3ULL [34], 1O7I [35], 1JMC [36]) shown in Figure 3 as OB-
fold templates. From Figure 3, we can see that these proteins
contain nothing except for OB-fold domains. Moreover,
each chain of the former five proteins contains one and only
one OB-fold domain. Since 1JMC_A contains two OB-fold
domains, we only use one of them as the template.
For an unknown protein, we use the protein structure

alignment package TM-align [37] to compare its structure
with each of the templates and use the maximal alignment
score TM-score as the OB-fold feature of the protein.

Figure 1 All detected tunnels of protein 1A73. The graph shows the CAVER package detects out 27 tunnels in 1A73 protein, and show 3D
structure for all tunnels with different colours in protein surface.

Wang et al. BMC Bioinformatics 2014, 15(Suppl 12):S4
http://www.biomedcentral.com/1471-2105/15/S12/S4

Page 3 of 9



Classification model and evaluation
In this work, we used support vector machine (SVM) to
build the classification model. The SVM classifiers were
implemented using Matlab 2012a SVM package with
the Gaussian Radial Basis Function (RBF) as a kernel.
In order to evaluate the performance of the prediction

results, we used several measures, including Accuracy,
Sensitivity, Specificity, and F-measured and area under the
receiver operating characteristic curve (AUC). Let TP
(true positive) is the number of proteins correctly pre-
dicted as SSBs, FP (false positive) is the number of pro-
teins incorrectly predicted as SSBs, TN (true negative) be
the number of proteins correctly predicted as DSBs and
FN (false negative) be the number of proteins incorrectly
predicted as DSBs. The accuracy (ACC), sensitivity (SN),
specificity (SP), F-measured (F1) and Matthews Correla-
tion Coefficient (MCC) are defined as the following:

Accuracy =
(TP + TN)

(TP + FN + TN + FP)
(1)

Sensitivity =
TP

(TP + FN)
(2)

Specificity =
TN

(TN + FP)
(3)

F - measure =
2 × TP

2 × TP + FP + FN
(4)

Table 1 Index values for all tunnels of 1A73

Tunnel Bottleneck-radius Length Curvature

1 3.52 2.47 1.05

2 2.79 3.48 1.26

3 2.54 7.64 1.26

4 1.85 5.85 1.77

5 1.86 12.08 2.02

6 1.33 14.78 1.29

7 1.25 12.68 1.43

8 0.96 13.08 1.39

9 1.09 15.63 1.50

10 1.13 16.26 1.71

11 1.03 29.47 1.57

12 0.98 25.02 1.62

13 1.03 35.71 1.61

14 1.07 33.06 2.00

15 0.77 19.99 1.43

16 0.77 35.07 1.47

17 0.79 25.53 2.09

18 0.71 24.74 1.39

19 0.77 28.35 1.32

20 0.72 38.97 1.78

21 0.88 51.54 1.62

22 0.70 46.82 1.47

23 0.77 36.59 1.40

24 0.73 41.06 1.47

25 0.74 62.01 1.64

26 0.72 45.18 3.11

27 0.72 47.09 2.18

This table shows the values of bottleneck radius, length and curvature for the all
tunnels. Note that the boldface (25#) presents the values of the largest tunnel.

Figure 2 The largest tunnel (25#) of protein 1A73. The graph shows the red tunnel is the largest tunnel in terms of maximizing
(Length*Bottleneck Radius).
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MCC =
TP × TN − FP × FN

√
(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)

(5)

We use 10-fold cross validation test to evaluate the clas-
sification performance. Because of the unbalance of differ-
ent kinds of proteins, in each fold we iterate 15 times to
randomly select the equal numbers of SSBs and DSBs into
the train set by using down-sampling method, and use the
voting strategy to assign the class label of the test protein.
To the best of our knowledge, there is no computational
method to distinguish SSBs from DSBs, therefore we also
train the random classifier as the baseline in each test.

Results and discussion
Investigation of the distinguishing ability of the features
By using CAVER3.0, we have detected 990 tunnels from
HOLO set (865 for DSBs, 125 for SSBs), and 1168 tunnels
from APO set (757 for DSBs, 411 for SSBs). According to
the maximizing criterion described above, we selected one

maximal tunnel for each protein. As a result, we finally got
37 tunnels for bound (DNA-bound) SSBs, 38 tunnels for
unbound (DNA-free) SSBs, 154 tunnels for bound DSBs
and 51 tunnels for unbound DSBs. Accordingly, we also
got three feature values for each tunnel. By using TM-
align, we aligned every protein with each of the six OB-
fold templates shown in Figure 3, and got the maximal
alignment score as the TM-score of the protein. In order
to investigate the distinguishing ability of the features, we
had statistically analysed the distribution for each feature,
shown in Figure 4. It is obvious that, bottleneck radius
shows little difference between DSBs and SSBs in either
bound or unbound forms; and the DNA binding protein
in bound form tends to have larger bottleneck radius than
that in unbound form, which may be due to the fact that
the protein usually need to widen the tunnel for binding
with the DNA. SSBs tend to have the smaller tunnel
length and curvature than DSBs, and tunnel length seems
to be more distinguishable than tunnel curvature between

Figure 3 Six templates of the OB-fold domain. They show structural similarity but different topologies, and the similarity of sequences are
with <30%.
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DSBs and SSBs; moreover, it seems easier to differentiate
DSBs and SSBs in bound forms than in unbound forms by
using either of the features. As expected, SSBs obtain
much higher TM-scores than DSBs by comparing to the
OB-fold templates, illustrating that most SSBs have OB-

fold like domains. In conclusion, TM-score, tunnel length
and tunnel curvature are usable features to construct dis-
tinguish model for SSBs and DSBs, while bottleneck radius
is lack of the distinguishing ability. Since the statistical
results of tunnel length and tunnel curvature are very

Figure 4 Feature distributions of different kinds of DNA-binding proteins. These graphs show the box plot of the four features for the
HOLO and APO datasets. Those are (a) tunnel bottleneck radius, (b) tunnel length, (c) tunnel curvature and (d) TM-score.
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similar, we further investigate the correlation between
these two features, listed in Table 2 showing that they are
actually positive correlated with each other.
This table shows the values of Pearson coefficient and

P-value between tunnel length and curvature. The columns
of Pearson coefficient and P-value correspond to the pairs
of DSBs/SSBs in HOLO set and APO set, respectively.

Validation of the differentiating features
We have done the validation experiments on HOLO set
and APO set by using one, two or three features to con-
struct the classification models. The validation perfor-
mances are shown in Table 3, 4 respectively. From the
tables we can see that, feature TM-Score can recognize
out SSBs with high accuracy, while the feature tunnel
length/curvature can recognize out DSBs with high
accuracy, meaning that the distinguishing abilities of
TM-Score and length/curvature are complementary.
The performance of the classification model constructed
with length feature is better than that constructed with
curvature, also better than or nearly equal to that con-
structed with length and curvature features, further con-
firming that curvature feature is redundant with length
feature and adding redundant features into the classifi-
cation model does not necessarily get the positive
response. Compared to the model with single feature,
the significant enhancement of performance when using
TM-Score together with one or more other features

showing that constructing classification models with
complementary features is preferable to the discrimina-
tion of DSBs and SSBs.

Independent test on APO set
In many cases, it is easier to collect information on
DNA binding proteins in the bound form than in
unbound form, whereas we need to know whether an
unknown unbound protein be SSB or DSB. Thus, we
train the classifier on HOLO set and test it on APO set.
The results are listed in Table 5 from which we can see
that the structural information on tunnel and OB-fold
can actually reflect that differences between SSBs and
DSBs thus can be used as discriminant features to build
the classification model.

Prediction on mixed set
In practice, we often found the available dataset include
not only the bound form proteins, but also the unbound
form proteins, whereas we need to know whether an
unknown DNA binding protein be SSB or DSB. Thus, we
have done the validation experiments on the mixed set by
using one, two or three features construct the classification
models. The results are listed in Table 6 from the tables

Table 3 Performance on HOLO set

Feature ACC SN SP AUC MCC F1

Length 0.7470 0.7725 0.7258 0.7539 0.5207 0.7681

Curvature 0.6808 0.7058 0.6525 0.6818 0.3760 0.6949

TM-Score 0.7054 1.0000 0.4050 0.6629 0.5018 0.7823

Length+Curvature 0.7725 0.7925 0.7508 0.7738 0.5633 0.7889

Length+TM-Score 0.8434 0.8308 0.8583 0.8476 0.7012 0.8472

Curvature+TM-Score 0.7824 0.7750 0.7925 0.7866 0.5848 0.7903

Length+Curvature
+TM-Score

0.8686 0.8725 0.8608 0.8710 0.7497 0.8782

Baseline Random 1
feature

0.5040 0.5082 0.4859 0.4967 -0.0056 0.5553

Random 2
features

0.4951 0.4907 0.5137 0.5028 0.0040 0.5697

Total 3
features

0.4938 0.4914 0.5036 0.4968 -0.0043 0.5789

Table 4 Performance on APO set

Feature ACC SN SP AUC MCC F1

Length 0.6533 0.4783 0.8267 0.6548 0.3205 0.5732

Curvature 0.5487 0.3033 0.8000 0.5676 0.1119 0.4005

TM-Score 0.8015 0.9525 0.6483 0.8117 0.6424 0.8425

Length+Curvature 0.6401 0.4658 0.8192 0.6491 0.3101 0.5689

Length+TM-Score 0.8543 0.9800 0.7242 0.8511 0.7378 0.8848

Curvature+TM-Score 0.8518 0.9850 0.7167 0.8592 0.7365 0.8836

Length+Curvature
+TM-Score

0.8310 0.9533 0.7058 0.8286 0.6934 0.8620

Baseline Random 1
feature

0.4990 0.4991 0.4988 0.4990 -0.0025 0.4712

Random 2
features

0.4991 0.4973 0.5016 0.4998 -0.0014 0.4875

Total 3
features

0.5019 0.5054 0.4973 0.5019 0.0028 0.5035

Table 2 Correlation of tunnel length and tunnel
curvature

Dataset Protein types Pearson-coefficient P-value

HOLO set DSBs 0.6929 2.3752e-23

SSBs 0.4484 0.0054

APO set DSBs 0.9293 7.7890e-23

SSBs 0.5599 2.5705e-04

Table 5 Performance of the independent test

Feature ACC SN SP AUC MCC F1

Length+TM-Score 0.7191 0.8235 0.5789 0.7012 0.7097 0.4179

Curvature+TM-Score 0.6854 0.7451 0.6053 0.6752 0.6389 0.3531

Length+Curvature
+TM-Score

0.7303 0.7647 0.6842 0.7245 0.6842 0.4489

Baseline Random 1
feature

0.5009 0.5059 0.4943 0.4997 0.0004 0.4927

Random 2
features

0.5011 0.5014 0.5007 0.5010 0.0022 0.5312

Total 3
features

0.5006 0.5041 0.4958 0.5007 -0.0002 0.5323
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we can see that, feature TM-Score can still recognize out
SSBs with high accuracy in each single feature. Compared
to the models with single feature, the best performance
using more features with an accuracy of 0.8251, MCC of
0.6632, SN of 0.8605 and SP of 0.7904 is much better.
Thus, we further train the classifier on mixed set and pre-
dicted the unknown proteins (727 unknowns). The classi-
fied results are listed in additional file 2.

Conclusion
Despite many similar properties, dsDNA and ssDNA pos-
sess distinctive entities that are recognized differently by
specialized dsDNA and ssDNA binding proteins, respec-
tively. SSBs and DSBs binding interfaces are thus expected
to differ in their geometrical features consistent with the
different nature of dsDNA and ssDNA [29,38,39]. While
the sequence and structural properties of DSBs and SSBs
binding interfaces has been studied during the last decade
[28,40], computationally distinguishing between the DSBs
and SSBs binding interfaces is still a lack of research. In
this study, we investigated surface tunnels features of SSBs
and DSBs and found that they have different ranges of
tunnel lengths and tunnel curvatures; moreover, the align-
ment results with OB-fold templates have also found to be
the discriminative feature of SSBs and DSBs. Therefore,
we made the first try to present a method to computation-
ally distinguish SSBs with DSBs based on the discriminant
features and got the satisfactory results.
The protein surface features should also be useful for

the analysis of other types of molecular interactions, such
as protein-ligand, protein-RNA, and protein-protein com-
plexes, and for the study of a variety of proteins, multiple
binding sites or a specific family of proteins. These pro-
blems would require modelling interface surfaces of differ-
ent characteristics such as compatibility, different sizes,
and cooperatives between these surfaces, thus new surface
features in addition to the solid angle may be needed.

Additional material

Additional file 1: This file contains the complete list of PDB codes for
DNA-binding proteins set.

Additional file 2: This file describes the classified results of the unknown
proteins by the mixed set classifier.
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Baseline Random 1
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0.5030 0.5070 0.4918 0.4992 -0.0011 0.5201
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0.5014 0.5021 0.4992 0.5007 0.0015 0.5525
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