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Abstract

Original Article

IntroductIon

More than half of cancer patients receive radiotherapy (RT) 
during their course of illness.[1] For lung and upper abdominal 
cancer patients whose treatments involve the motion issue, 
current RT planning usually requires a generous margin 
around the tumor. This target margin can account for possible 
geometric and dosimetric uncertainties, but limits the total 
dose that can be safely delivered and causes adverse effects.[2-6] 
Radiation dose escalation has been shown to significantly 
improve local control and survival for lung cancer patients,[7-12] 
for example, the 5-year overall survival of inoperable non-
small cell lung cancer patients increased from 4% to 28% when 
patient dose increased from 63 - 69 Gy to 92–103 Gy,[8] and 
survival of extensive-stage small cell lung cancer patients at 1 

and 2 years for >45 Gy arm was 58.1% and 25.2% compared 
to 43.8% and 15.1% for <45 Gy arm.[12] However, the benefits 
of dose escalation can be hampered by increased normal tissue 
toxicities, mainly due to the size of the target volume.[5,6,13] 
Recently, stereotactic body RT (SBRT) has been used to 
escalate dose successfully and is one of the most significant 
advances in treating medically inoperable non-small cell lung 
cancer,[14-16] but it also faces the challenges of multiple adverse 
effects.[17-20]

Purpose: Volumetric modulated arc therapy (VMAT) has been increasingly used for cancer patients due to the fast delivery and improved 
dose conformity. Adaptive radiotherapy (ART) can significantly decrease dose to normal tissues and allow for dose escalation. However, 
current imaging techniques cannot provide four-dimensional (4D) patient anatomy or dose information during VMAT, which is critical for 
ART that involves respiratory motion. A novel imaging tool named VMAT–computed tomography (VMAT-CT) has the potential to reveal 
intra-fractional patient information. The goal of this study was to evaluate the feasibility of 4D adaptive VMAT based on 4D VMAT-CT. 
Materials and Methods: A commercial QUASAR respiratory phantom and an in-house deformable lung phantom were used in this study, 
and lung VMAT plans, including 4D union plan and 4D ART plan, were generated for the phantoms. A real lung patient’s plan was also used 
in this feasibility study. ART plans based on 4D VMAT-CT were created for the phantoms and the real patient when planning goals were not 
met. Dose escalation plan based on 4D VMAT-CT was also created for the real patient. Results: Planning target volume (PTV) coverage for 
the QUASAR phantom was 85.5% after breathing pattern being changed, and went up to 95% after adaptive re-planning. PTV coverage for 
the deformable phantom was 93% after deformation and breathing pattern being changed, and went up to 95% after re-planning. Re-planning 
and dose escalation were feasible and can spare normal tissues for the real patient. 4D ART plan based on 4D VMAT-CT required smaller 
margins than 4D union plan while maintaining the same prescription dose coverage. Conclusions: ART based on 4D VMAT-CT is feasible 
and would potentially facilitate re-planning and PTV dose escalation for VMAT patients who have the motion issue.
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Advanced RT techniques, such as intensity-modulated RT 
and volumetric modulated arc therapy (VMAT), allow more 
efficient delivery of radiation to achieve dose escalation while 
minimizing normal tissue doses. Among various techniques, 
VMAT has been increasingly used and shows specific 
advantages for lung and upper abdominal cancers,[21-25] and is 
considered the best way to deliver SBRT because of its short 
treatment time and improved dose conformity.[26-28] However, 
as VMAT contains a high degree of complexity, the need for 
accurate monitoring and verification also increases, especially 
for hypo-fractional treatment such as SBRT, since dosimetric 
errors that occur in one fraction can have a significant impact.[29]

Adaptive RT (ART) holds the potential to compensate for 
errors or uncertainties and reduce target margin in RT by 
changing treatment plans based on patient-specific variation 
in a treatment session.[30] This is particularly helpful for 
cancer sites that involve complex uncertainties such as patient 
motion, tumor regression, and migration. Numerous studies 
have shown ART can significantly decrease the dose to normal 
tissues and allow for dose escalation.[30-34] Accurate tracking 
of the treatment, patient anatomy, and dose will significantly 
help determine when an ART is needed. Mid-treatment or 
weekly ART is performed in most current ART studies, 
although the literature has shown daily ART will offer the 
largest benefit.[31,35] Computed tomography (CT) or cone beam 
CT (CBCT) is the most commonly used imaging technique 
for ART.[30-32,36,37] In many clinics, three-dimensional (3D) 
or four-dimensional (4D) CBCT is performed both before 
and after SBRT to help with patient setup and determine the 
patient’s final position for dose estimation.[38,39] However, CT 
or CBCT allows only a snapshot of the patient before or after 
RT, and introduces excessive dose and extra treatment cost, 
especially when ART is performed frequently. ART based on 
these images may remedy inter-fractional changes but not 
intra-fractional errors, and the actual patient dose, which is 
critical for ART, remains unknown.

The concept of utilizing therapeutic beams in VMAT to 
reconstruct 3D VMAT-CT was proposed in 2010.[40] It does 
not introduce extra dose or cost, and can potentially reveal 
patient information during treatment, but it did not gain 
popularity due to multiple limitations and technical challenges. 
Our group extended the concept of VMAT, and showed the 
feasibility of 3D[41] and 4D VMAT-CT[42] based on the latest 
linear accelerator (linac) and real clinical plans. The goal of 
this study was to adapt VMAT plan involving tumor motion 
based on 4D VMAT-CT. We will focus on lung cancer in this 
study, although our methods can also be used for other cancer 
sites that involve target movement.

MaterIals and Methods

Treatment planning and data collection
A QUASAR™ programmable respiratory motion phantom 
(Modus Medical Devices Inc., London, Ontario, Canada) 
and an in-house deformable lung phantom[41,42] were used 

in this study. The QUASAR phantom has a wood cylinder 
mimicking the lung and the cylinder contains a 3 cm diameter 
ball mimicking a tumor. The deformable phantom has a balloon 
filled with gel mimicking a tumor, and the balloon is tied with a 
string that can be attached to the QUASAR phantom to deform 
the tumor and drive the tumor with desired breathing patterns. 
4D cine planning CT of the phantoms and a respiratory signal 
were acquired, a probability density function (PDF) of tumor 
position versus time was obtained, and the mean position of 
the PDF was calculated. The gross tumor volume (GTV) was 
delineated on all four phases of 4D planning CT, and one 
phase’s data set was chosen as the mean position planning 
CT (MPPCT) if that phase’s GTV was closest to the mean 
position.[31]

For the phantoms, we created the 4D union plan which is the 
standard of care for lung cancer in our clinic and many other 
clinics.[31] This technique utilizes the contour of the maximum 
intensity projection of the target and encompasses all possible 
tumor locations. We also created the initial 4D ART plan similar 
to the technique proposed by Harsolia et al.[31] mean position 
GTV in MPPCT was expanded by 0.5 cm as the clinical target 
volume (CTV) and a static plan was generated first based on 
this mean position CTV. The static dose was then convolved 
with the PDF obtained from 4D planning CT to determine the 
effect of respiratory motion and to find out the necessary initial 
margin (CTV to planning target volume [PTV]) to ensure the 
target coverage.

For a real lung cancer patient who has a malignant neoplasm 
on the lower left lobe, the clinical nonadaptive VMAT plan (PN) 
was a 4D union VMAT plan with 50 Gy/5 fraction dose 
prescription and was created by the dosimetrist in our clinic. 
An initial 4D ART plan was also created by us for this patient 
based on planning CT using the method described above.

All VMAT Plans were created in Pinnacle v9.10 treatment 
planning system (TPS) (Philips Medical Systems, Fitchburg, 
WI) with two full 6 MV arcs, 45° (clockwise arc) or 
135° (counterclockwise arc) collimator angle, 50 Gy/5 fraction 
heterogeneous dose prescription, 3 mm × 3 mm × 3 mm dose 
grid, 1800–2000 total Monitor Units per fraction. All plans 
were delivered through Elekta Versa Linac (Elekta Oncology 
Systems, Crawley, UK).

The details of respiratory signal extraction based on the 
normalized cross-correlation (NCC) method,[43] reconstructions 
of 4D VMAT-CT, 4D VMAT-CT+, and 4D dose can be 
found in our previous study.[42] Briefly, the respiratory signal 
was quantified by computing the NCC matrices of the same 
rectangular area in consecutive portal images. A time-based 
sorting method was used to split the collected portal images 
into four phases, and 4D VMAT-CT image sets were created by 
reconstructing 3D VMAT in each phase. Rigid and deformable 
registrations were performed to register VMAT-CT in each 
phase to MPPCT to generate 4D VMAT-CT+. The respiratory 
signal based on the NCC method was also applied to the linac 
log file to generate 4-phase beam delivery files, and the dose 
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was calculated in each phase based on the beam delivery 
file and VMAT-CT+ images. Note the conceptual difference 
between VMAT-CT+ and simulated CT proposed by Varian 
Ethos™ (Varian Medical Systems, Palo Alto, CA, USA): Both 
planning CT and daily CBCT have a full or large field of view, 
so the generation of simulated CT only involves deformable 
registration and is relatively straightforward; in contrast, 
VMAT-CT is limited to the target area, so the generation 
of VMAT-CT+ involves local registration that extracts the 
position and anatomy information from VMAT-CT, and also 
expands VMAT-CT to a larger field of view.

Adaptive radiotherapy based on four‑dimensional 
volumetric modulated arc therapy‑computed tomography
When the PTV coverage did not meet the prescription goal, 
we performed adaptive re-planning and re-optimization based 
on 4D VMAT-CT+. For 4D ART plans, daily VMAT-CT was 
used to form updated PDF and new PTV margins. Harsolia 
et al.[31] used daily fluoroscopy and reported daily 4D ART plan 
can significantly decrease dose to normal tissues and allow 
for dose escalation. In this study, we wanted to investigate 
if VMAT-CT can provide sufficient image information for 
adaptive correction as daily fluoroscopy.

For the QUASAR phantom, the planning CT captured the 
original breathing pattern [input signal 1 in Figure 1]. When 
the phantom was on the treatment couch, we changed the 
breathing pattern (both time period and amplitude) [input signal 
2 in Figure 1] to mimic a change from treatment simulation, 
took CBCT of the phantom as the ground truth (CBCTground), 
and delivered the VMAT plan to the phantom with the new 
breathing pattern. For the deformable phantom, the planning 
CT captured the original phantom geometry and breathing 
pattern. When the phantom was on the treatment couch, we 
changed both the deformation of the phantom and the breathing 
pattern, took CBCTground and delivered the VMAT plan.

For the real patient, we tracked geometry and dose changes 
based on 4D VMAT-CT+, and compared the delivered dose 
and planned dose to evaluate the necessity of re-planning. 
Simulated adaptive plans (PA), including both 4D union and 

4D ART plans, were created when target coverage or organs 
at risk (OAR) dose exceeds constraints. Each PA plan was 
planned using target and OAR constraints that were scaled to 
5 fractions, and was deemed acceptable when OAR constraint 
compliance was met. In addition, we tried to escalate the PTV 
dose to 60 Gy (12 Gy/fraction) if more favorable daily OAR 
anatomy was observed, i.e., the distance between the target and 
normal tissue increased, since the benefits of dose escalation 
have been well established for lung cancer.

results

For both phantoms, VMAT plans based on both 4D union 
and 4D ART plans were investigated, but only results based 
on the 4D ART plan were shown in this paper because of 
the similarity. Figure 2 shows dose calculation and adaptive 
re-planning for the QUASAR phantom. 4D VMAT-CT + can 
track the change of respiratory pattern correctly compared 
to the ground truth (100% 3D Gamma passing rate with an 
acceptance criterion of 3% and 3 mm.[44]) The PTV coverage 
of the prescription dose in the original 4D ART plan was 
95%, dropped to 85.5% after the breathing pattern being 
changed because the prescription dose line did not cover the 
superior part of PTV completely, but went up to 95% after 
re-planning. The new margin of the PTV compared to the old 
margin showed a 1.6-mm shrinkage in the superior direction, 
which is a combined result of the change of breathing pattern, 
re-optimization with the new static mean position CTV, and 
convolution of dose with the new PDF.

Figure 3 shows dose calculation and adaptive re-planning 
for the in-house deformable phantom. VMAT-CT can track 
the phantom’s deformation and change of respiratory pattern 
correctly compared to ground truth (100% Gamma passing 
rate with an acceptance criterion of 3% and 3 mm). The PTV 
coverage of the prescription dose in the original 4D ART plan 
was 95%, dropped to 93% after phantom deformation and 
respiratory pattern being changed, but went up to 95% after 
re-planning. New margin of the PTV compared to the old 
margin showed a 1-mm expansion in the superior direction 

Figure 1: Breathing patterns used in this study. Both signals were from a real lung cancer patient



Zhao and Zhang: 4D adaptive VMAT based on VMAT‑CT

Journal of Medical Physics ¦ Volume 48 ¦ Issue 2 ¦ April‑June 2023 157

and 1-mm shrinkage in the inferior direction, which is again 
a combined effect.

Figure 4 shows the result of the geometry change and dose 
calculations for the real lung patient. The PTV coverage in the 
original 4D union plan was 95.8%, while VMAT-CT+ showed 
PTV had a 2-mm shrinkage in the superior direction and a 5-mm 

shrinkage in the inferior direction after the treatment fraction. 
The PTV coverage was 96.2% when PN was transferred to 
VMAT-CT+, but the surrounding normal tissues received 
higher exposure as the prescription dose lines penetrated more 
into the diaphragm. To spare normal tissues, we reoptimized 
the 4D union plan. Finally, we escalated the PTV dose to 
60 Gy successfully without violating any OAR constraint by 

Figure 2: ART demonstrated on a QUASAR phantom. (From left to right) (top row) comparison of MPPCT, CBCTground+ (MPPCT registered to 
CBCTground), VMAT‑CT+; (bottom row) dose distributions in the original plan, dose ground truth which is dose based on CBCTground + after 
change of breathing pattern, dose based on VMAT‑CT+ after change of breathing pattern, Gamma plot comparing VMAT‑CT dose and dose ground 
truth, re‑optimized dose based on VMAT‑CT+. The blue shaded area is the original or new PTV contour. Y‑axis is the direction of breathing motion, 
and difference in the target height means the difference in breathing magnitude. ART: Adaptive radiotherapy, MPPCT: Mean position planning computed 
tomography, VMAT‑CT: Volumetric modulated arc therapy‑computed tomography, PTV: Planning target volume

Figure 3: ART demonstrated on an in‑house deformable phantom. (From left to right) (top row) comparison of MPPCT, CBCTground+ (MPPCT registered 
to CBCTground), VMAT‑CT+; (bottom row) dose distributions in the original plan, dose ground truth which is dose based on CBCTground after change of 
deformation and breathing pattern, dose based on VMAT‑CT+ after change of deformation and breathing pattern, Gamma plot of comparison between 
VMAT‑CT dose and dose ground truth, re‑optimized dose based on VMAT‑CT+. The blue shaded area is the original or new PTV contour. Y‑axis is 
the direction of breathing motion, and difference in the target height means the difference in breathing magnitude. MPPCT: Mean position planning 
computed tomography, VMAT‑CT: Volumetric modulated arc therapy‑computed tomography, PTV: Planning target volume, ART: Adaptive radiotherapy, 
CBCT: Cone beam computed tomography
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following Radiation Therapy Oncology Group (RTOG) 0813 
SBRT protocol.[45] For this patient, we also evaluated 4D ART 
plans [Figure 4]. We created an initial 4D ART plan based on 
the initial breathing PDF collected during planning CT, and the 
PTV was much smaller than the PTV in 4D union plans and had 
95% coverage. VMAT-CT + showed PTV coverage dropped to 
35% after the treatment fraction. We then reoptimized the 4D 
ART plan based on VMAT-CT + to restore PTV coverage to 
be above 95%, and escalated PTV dose successfully without 
violating any OAR constraint.

dIscussIon

We demonstrated the feasibility of 4D adaptive VMAT based 
on 4D VMAT-CT, which has never been investigated before. 
Harsolia et al.[31] used daily fluoroscopy for ART plans and 
obviously fluoroscopy will introduce significant imaging 
dose,[46] while our method does not introduce any extra dose 
since VMAT-CT comes directly from treatment beams.

For real patients, we determined microscopic disease (MD) 
associated with the shrinking tumor will not be underdosed 
in adaptive plans based on VMAT-CT. Currently, there 
is no imaging technique that can image MD beyond the 
tumor boundary, and the extent of MD can be calculated 
using special probability models. Guckenberger et al.[47] 
evaluated doses to MD in ART for lung cancer, and studied 
two situations, including synchronous shrinkage of MD 
and GTV and stationary MD despite GTV shrinkage, and 
showed dose coverage of MD was not compromised in 
either situation. Sonke and Belderbos.[32] suggested the 
dose required for MD beyond the visible tumor can be 
significantly lower than the GTV dose. Our study prescribed 
100% dose to 95% of the PTV in PA plans, and over 95% 

coverage was achieved on the PTV, which indicates a good 
coverage of MD.

The real patient was treated with 4D union SBRT in our clinic, 
so the VMAT-CT was based on the delivery of 4D union plans. 
We did not have 4D ART plans in the clinic and did not have 
portal images of the patient based on the delivery of 4D ART 
plans. However, we do not consider this as a serious limitation 
of this simulated ART study because the location of the target 
area would be the same for 4D union and 4D ART plans; just 
the size of the PTV is different. 4D union plan usually has 
a larger coverage area, but 4D ART plan can still reveal the 
target [Figure 5]. To obtain Linac log files without causing any 
damage to the patient, we delivered all 4D ART plans to the 
air without any patient in the treatment room. Creating and 
delivering 4D ART plans for real patients will be performed 
in the future study.

The change in a patient’s breathing pattern could have an 
impact on the quality of 4D ART plans. Due to the limitation 
of computation speed, real-time VMAT-CT is not feasible 
currently and is a future direction that we are actively pursuing. 
Offline ART based on VMAT-CT, although not as effective 
as online ART, can still catch and compensate for possible 
errors without introducing any extra dose or cost, and it is well 
accepted that offline ART is highly beneficial to patients.[30,48] 
However, if a patient has drastic changes in breathing baseline 
and amplitude compared to the last fraction, it is possible that 
offline ART plans could underdose the target or overdose 
the surrounding OARs. This is an inherent drawback of 
offline adaptation, and the drastic change requires onsite 
decision-making. A potential solution to this type of urgent 
situation in the clinic is to create multiple 4D ART plans 
before the treatment. These plans are based on the patient’s 

Figure 4: (Top row) dose distributions in the original 4D union plan, dose based on 4D VMAT‑CT+, reoptimized plan and dose‑escalation plan based 
on VMAT‑CT+; (bottom row) dose distributions in the original 4D ART plan, dose based on 4D VMAT‑CT+, reoptimized plan and dose‑escalation 
plan based on VMAT‑CT+. The blue shaded area is the original or new PTV in 4D union or 4D ART plans. VMAT‑CT: Volumetric modulated arc 
therapy‑computed tomography, PTV: Planning target volume, ART: Adaptive radiotherapy, 4D: Four‑dimensional
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latest anatomy revealed by the latest VMAT-CT, and cover all 
possible breathing patterns for the patient based on recorded 
patterns from previous fractions. The plan that utilizes the 
breathing pattern closest to the pattern of the day will be used 
for the treatment.

Our study was performed using the copies of the patients’ 
treatment plans and no modification was made to the clinical 
plans. Evaluation of our imaging tool via randomized trials and 
patient follow-up will be carried out in a future clinical study, 
which will allow us to prospectively adapt cancer patients’ 
plans and escalate dose based on VMAT-CT + if possible after 
each treatment fraction, explore further if the image guidance 
based on VMAT-CT can reduce normal tissue toxicity, improve 
tumor control and patient satisfaction. In the future, we plan to 
include more patients and ultimately incorporate the workflow 
into daily clinical routines. With more patient data, we will be 
able to determine what type of patients will be subject to most 
movement or geometry change during VMAT, and benefit 
most from our study.

conclusIons

In this study, we demonstrated 4D adaptive VMAT can be 
generated based on 4D VMAT-CT. Both the 4D union plan and 
4D ART plan can be adapted, and the 4D ART plan required 
smaller margins while maintaining the target coverage. Overall, 
4D VMAT-CT can be a very promising imaging tool for VMAT 
plan adaptation without introducing any extra dose or cost, 
considering daily ART will offer the largest benefit for patients 
whose treatments involve the motion issue.
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