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Abstract: Luminogens with aggregation-induced emission (AIEgens) have been widely applied in
the field of photodynamic therapy. Among them, aggregation-induced emission photosensitizers
(AIE–PSs) are demonstrated with high capability in fluorescence and photoacoustic bimodal imaging,
as well as in fluorescence imaging-guided photodynamic therapy. They not only improve diagnosis
accuracy but also provide an efficient theranostic platform to accelerate preclinical translation as
well. In this short review, we divide AIE–PSs into three categories. Through the analysis of such
classification and construction methods, it will be helpful for scientists to further develop various
types of AIE–PSs with superior performance.

Keywords: aggregation-induced emission; reactive oxygen species; electron transfer; energy transfer;
photodynamic therapy

1. Introduction

Although important advances in cancer diagnosis and therapy have been achieved
over recent decades, cancer patients are still suffering from severe side effects and con-
stant relapses [1,2]. Fortunately, photodynamic therapy (PDT) has been investigated as
a noninvasive modality for cancer treatment owing to its high selectivity and low side
effects since the end of 20th century [3,4]. A PDT system is usually composed of three
separately nontoxic parts: a photosensitizing drug or photosensitizer (PS), a light source
that emits visible and/or near-infrared (NIR) photons and molecular oxygen dissolved
in the target tissue [5], and among them, PSs can transfer photon energy to surrounding
oxygen molecules to produce reactive oxygen species (ROS); in particular, singlet oxygen
(1O2) that causes cell death [6] is the most important one.

Porphyrins and phthalocyanines are the most widely studied PSs with fast intersys-
tem crossing and long triplet lifetime and have already been applied in clinical applica-
tions [7,8]. Nevertheless, these PSs usually aggregate in aqueous media due to their low
water solubility. This leads to low fluorescent intensity and PDT efficiency owing to the
aggregation-caused quenching (ACQ) effect (Figure 1), which makes image-guided PDT
difficult to achieve [9–11]. To solve this problem, some water-soluble and nonaggregating
PSs have been synthesized [12]. However, such an approach greatly increased the cost of
material preparation [13]. So, it is of great importance and is meaningful to develop novel
PSs with outstanding fluorescent property in aqueous environments.
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Figure 1. Schematic diagrams illustrating fluorescence quenching of traditional photosensitizers (PSs)
such as porphyrin in their aggregate states vs. fluorescence turn-on effect of aggregation-induced
emission (AIE) fluorogens such as tetraphenylethene (TPE) upon aggregate formation. Adapted and
modified with permission from reference 15 (copyright 2015, American Chemical Society).

In 2001, a new concept termed as aggregation-induced emission (AIE) was proposed
by Tang and co-workers [14,15], and since then, a series of luminogens with aggregation-
induced emission property (AIEgens) have been developed. A typical AIEgen shows
neglectable emission in dilute solutions but much enhanced emission in molecular ensem-
bles [16,17]. In other words, AlEgens can utilize aggregation to play a positive instead of
a negative role in enhancing luminescence [18]. The systematic study of the mechanism
has profoundly revealed the molecular mechanism of the AIE phenomenon: molecules
with AIE characteristics often have a propeller-like configuration—a number of conjugated
units are connected through single bonds that can rotate [19]. In dilute solutions, the
conjugated units within the molecule can rotate upon the promotion of solvent molecules.
When molecules are excited by light or other energy sources, these rotations consume
almost all of the excited state energy (non-radiation decay, e.g., thermal motion), and the
molecules emit very weak luminescence or are even non-emissive. When the molecules
aggregated, the conjugated units can be bound by the enhanced intermolecular interac-
tions, and their rotations are evidently inhibited. Thus, the channels for non-radiation
decay are largely closed and the excited state energy of the molecules is released in the
form of fluorescence/phosphorescence (radiation decay). As a result, luminescence can
be observed. This mechanism for AIE phenomenon is termed as restricted intramolecular
rotation (RIR) [19–22]. On the other hand, AIE properties have been observed for some
conjugated molecules with shell or butterfly wing-like structures [23,24]. The results of sys-
tematic study indicate that their AIE behavior is due to the molecular vibration. The open-
ing/closing of the shells or the flapping of the butterfly wings of these kinds of molecules
consume their excited state energy, causing them with lack emission in dilute solution,
while they are strongly emissive in the aggregated state as the intramolecular vibrations
are restricted. This is another mechanism of AIE phenomenon explained as restricted in-
tramolecular vibration (RIV) [25]. Nowadays, the RIR and RIV mechanisms are integrated
into the restricted intramolecular motions (RIM) theory for AIE phenomenon [15].

AIEgens with free rotational/vibrational structures can enhance the intersystem cross-
ing (ISC) between the excited singlet state (S1) and the excited triplet state (T1), and thereby
increase the quantum yield and lifetime of the triplet state, as well as the efficiency of ROS
generation. Taking advantage of the high-efficiency luminescence in an aggregated state,
nanoparticles prepared from AIE molecules (AIE–dots) can exhibit strong luminescence as
well as good photostability in the bio-system, and effectively overcome the shortcomings of
the traditional dye with ACQ property. Therefore, aggregation-induced emission photosen-
sitizers (AIE–PSs) can present huge potential in the field of imaging-guided PDT [26,27].
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In this short review, we will outline the latest developments in AIE–PSs from the
perspective of the mechanism by which PSs produce ROS. We will first introduce the
mechanism of aggregation-induced generation reactive oxygen species. The AIE–PSs will
be classified into Type I and Type II according to the production methods of the reactive
oxygen species, which are electron transfer and energy transfer between PSs and oxygen,
respectively. Moreover, some AIE–PSs that produce ROS in two pathways: Type I and
Type II, or produce both singlet oxygen (1O2) and reactive oxygen radicals, will also be
introduced. Finally, we will clarify the limitations, challenges and future opportunities of
ROS generation based on AIE–PSs.

2. Aggregation-Induced ROS Generation Mechanism

Absorption of a photon leads to the formation of an “excited state” of the photosensi-
tizing agent. As illustrated in Figure 2, the common features of the electronic excitation and
the consequent photochemical reactions may be described by three electronic states: singlet
ground state (S0), singlet excited states (S1, S2), and longer-lived triplet excited state (T1).
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Figure 2. Photophysical and photochemical processes illustrated by a modified Jablonski energy
diagram: The aggregated aggregation-induced emission photosensitizer (AIE–PS) in singlet excited
(S1) state may undergo intersystem crossing (ISC) to an excited triplet state (T1) and then generate
reactive oxygen species (ROS). Adapted and modified with permission from references 5 (copyright
2017, Elsevier), 6 (copyright 2016, Royal Society of Chemistry), and 16 (copyright 2020, Wiley-VCH).

Electronic absorption occurs between the vibrational and rotational energy levels of
the excited singlet states. Immediately after photon absorption, several photophysical and
photochemical processes occur, but the most likely deactivation pathway is a relaxation
to the lowest vibrational energy level of the first excited state. This very fast process
(10−15 s) is defined as relaxation. For AIE–PSs in the aggregated state, the non-radiative
decay process such as intramolecular rotation (RIR) and intramolecular vibration (RIV)
will be restricted in the excited state. If relaxation from S1 is accompanied by emission
of a photon, the process is known as fluorescence. Several other relaxation pathways
compete with the photonic processes are also described above, and among them, the most
important one is a nonradiative process to the lowest excited triplet state (T1), which is
known as intersystem crossing (ISC). The latter event may result in either the emission
of a photon from triplet excited state (T1) through spin-forbidden phosphorescence, or
the photochemical reactions. It is noteworthy that molecules in the excited states are
generally stronger oxidizing and reducing species than their analogues in the ground states.
Thus, apart from the radiative decay processes of fluorescence and phosphorescence, the
exciton may also undergo internal conversion to release energy as heat, or generate ROS by
the electron transfer (Type I)/energy transfer (Type II) of triplet oxygen [28,29].
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Before introducing the mechanism of electron transfer and energy transfer while
generating ROS, we need to understand the electronic structure of singlet oxygen and
triplet oxygen first. As shown in Figure 2, molecular oxygen has two low-lying singlet
excited states, the first excited state (1∆g) and the second excited state (1∑g), which are
95 and 158 kJ mol−1 above the triplet state (3∑g), respectively, and the only difference in
their electronic configuration is the structure of the π-antibonding orbitals. For 1∆g, the
configuration of the molecular orbitals is: O2 [KK(σ2s)2(σ*2s)2(σ2px)2(π2p)4(π*2py)2(π*2pz)0],
while for 1∑g, the electronic configuration is identical to that of the ground state, except that
the last two electrons have antiparallel spins. Normally, the transition from the 1∆g state
to the 3∑g state is spin forbidden, which means that the 1∆gO2 is a relatively long-lived
species, meanwhile, the second excited state of oxygen is short-lived due to its spin-allowed
transition to the 1∆g state, and all of these have been confirmed by the radiative lifetimes
of O2 (1∆g) and O2 (3∑g) [30].

2.1. Electron Transfer (Type I) Mechanism

As reported in the literature, molecules in the excited state always have larger ox-
idation/reduction potential than their ground state analogs [5]. AIE–PSs can generate
superoxide anion (O2

•−), hydroxyl radical (•OH), peroxide (O2
2−), and other free radi-

cal ROS through electron transfer under low concentrated oxygen conditions. The first
oxygen-centered radical generated according to Type I mechanism is O2

•−. It is formed
when an electron is captured by one of the π*2p orbitals of oxygen either in the presence of
a reducing agent or directly from an excited photosensitizer.

The reduction potential of superoxide ion may change with the surrounding envi-
ronment. For example, O2

•− is a weak oxidizing agent in aqueous media, but it is still
able to oxidize to, for example, ascorbic acid [31]. Meanwhile, it can also act as a strong
reducing agent and enable the reduction of iron complexes in cytochrome c, as well as in
the ferric/ethylene diamine tetraacetic acid (EDTA) complex [32]. The subsequent perhy-
droxyl radical is formed. The perhydroxyl radical is a more potent oxidant than superoxide
ion, thus it is able to oxidize O2

•− and resulting in the H2O2 formation. Dismutation of
O2

•− is often occur under the catalysis of superoxide dismutase (SOD) or PS, and leads
to the formation of hydrogen peroxide (H2O2), which is characterized by a much longer
half-life than other kinds of ROS. In contrast with other kinds of ROS, H2O2 can pass
through biological membranes and cause the damage of other cellular compartments [33].
Moreover, H2O2 can be detoxified by the enzyme catalase, resulting in the formation of
water and molecular oxygen, or may further react with either superoxide ion, or form
highly reactive hydroxyl radicals. The produced hydroxyl radicals are able to oxidize major
biologically relevant molecules such as proteins, lipids, carbohydrates, and DNA, and are
also able to inactivate natural antioxidants (e.g., tocopherol).

In view of the possible electron transfer from the PS in triplet excited state, the mech-
anism of hydroxyl radical generation through photocatalysis is proposed and presented
in Figure 3. Although H2O2 is a worse electron acceptor than molecular oxygen, elec-
tron transfer reaction from PS* to H2O2 may occur if the PS triplet state lifetime is long
enough [34]. Under the biological conditions with ferrous ions, H2O2 can undergo the
Fenton reaction and produce hydroxyl radicals by one-electron reduction, meanwhile,
the produced ferric iron can be reduced back to the ferrous state by superoxide for further
use, which is termed the iron-catalyzed Haber–Weiss reaction [35]. On the other hand,
H2O2 can react with the sensitizer radical anion to form hydroxyl radicals and hydroxide
anion. The results of the completed and ongoing projects show that PDT is more effective
if mechanism I is operative and completed with the generation of highly reactive hydroxyl
radicals [36–38].
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2.2. Energy Transfer (Type II) Mechanism

Based on the characteristics of singlet/triplet oxygen electrons and energy levels, the
Type II mechanism means the energy transfer from the triplet excited state of an AIE–PS to
the ground state of molecular oxygen. Most of the PDT agents produce singlet oxygen (1O2,
1∆g) via a Type II mechanism, which can oxidize the nearby biological species and lead to
cytotoxicity. The unoccupied π*2p orbital of these singlet oxygen makes it highly reactive
toward electron-rich compounds. For example, 1O2 can oxidize lipids to produce hy-
droperoxides, and also can react with amino acids (such as tryptophan, tyrosine, histidine,
methionine, cysteine, and cystine) to form hydroperoxides and endoperoxides, which are
also the products of oxidation reaction between 1O2 and deoxyguanosine presented in DNA.
The above reactions are subsequently responsible for cellular toxicity, but the cytotoxic
effects induced by 1O2 are independent of the activity of the antioxidant enzymes.

The triplet energies for many AIEgens exceed the energy requirement of the generation
of 1O2 (1∆g), which is reported as 22.5 kcal/mol [39,40]. Hence, most AIE–PSs can generate
singlet oxygen efficiently [41,42], and the most common mechanism for generating 1O2 is
the quenching process of the PS excited states with molecular oxygen.

3. AIE–PSs Based on Electron Transfer (Type I) Mechanism

Similar to the development of ACQ–PSs, few reports were available on the capability
for Type I ROS generation of AIE–PSs [43]. In 2020, Tang and Zhao reported two new Type
I PSs, α-TPA-PIO and β-TPA-PIO, from phosphindole oxide-based isomers with efficient
Type I ROS generation abilities (Figure 4) [44]. The AIE attributes of α-TPA-PIO and β-TPA-
PIO were investigated in DMSO/water mixtures, by employing water as a poor solvent.
The emission intensity of β-TPA-PIO in pure DMSO solution was very weak. By increasing
the fraction of the water, the emission intensity increased gradually and boosted up quickly
when the water fraction was over 80%. The emission intensity of the mixture with 99% H2O
was about 90 times higher than in pure DMSO (λem = 560 nm). The AIE property of α-TPA-
PIO was similar to β-TPA-PIO. These results indicated that α-TPA-PIO and β-TPA-PIO were
typical AIEgens. To validate the ROS generation ability, electron paramagnetic resonance
(EPR) spectroscopy using 5-tert-butoxycarbonyl-5-methyl-1-pyrroline-N-oxide (BMPO) as
a spin-trap agent was carried out to monitor the formation of oxygenous radicals. EPR
showed the typical EPR spectra of oxygenous radical adducts formed with BMPO after
white light irradiation of 100 mW cm−2 for 5 min, which was in good agreement with
those in the literature. α-TPA-PIO, β-TPA-PIO and crystal violet (CV) exhibited similar
BSA-promoted signal enhancements, but β-TPA-PIO exhibited the strongest EPR signal
intensity, indicative of its best generation ability of oxygenous radicals, namely Type I ROS.
These two PSs could be selectively accumulated in a neutral lipid region, particularly in the
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endoplasmic reticulum (ER) of cells and efficiently induce ER-stress mediated apoptosis
and autophagy in PDT. In vivo models indicated that β-TPA-PIO successfully achieved
remarkable tumor ablation. The ROS-based ER stress triggered by β-TPA-PIO-mediated
PDT had high potential as a precursor of the immunostimulatory effect for immunotherapy.
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Figure 4. (A) Chemical structures of α-TPA-PIO and β-TPA-PIO. (B) Electron paramagnetic resonance
(EPR) signals of BMPO (for Type I ROS detection) in the presence of 1 mM α-TPA-PIO, β-TPA-
PIO or CV (without/with 500 nM BSA) in PBS with 1 vol % DMSO. Schematic illustration of
(C) photophysical and photochemical mechanisms and (D) the cytological process of photodynamic
therapy (PDT) treatment mediated by phosphindole oxide based fluorogens. (i) Disproportionation
reaction; (ii) Haber–Weiss/Fenton reaction. Adapted and modified with permission from reference
44 (open access 2020, Royal Society of Chemistry).

4. AIE-PSs Based on Energy Transfer (Type II) Mechanism

As the energy transfer process is faster than the electron transfer process, most of the
PSs reported so far for AIEgens are singlet oxygen ROS generators. There are several ways
to distinguish Type II mechanism from a Type I one. For example, direct monitoring 1O2
formation involves the detection of its phosphorescence at 1270 nm. Actually, the use of a
variety of specific fluorescent probes is the most common way to detect the singlet oxygen
generated by AIE–PSs. The following is a summary of the Type II AIE–PSs applied in the
design of new ROS generation system for PDT in recent years.

As reported in the literature, the smaller the singlet–triplet energy gap (∆EST), the
higher the ISC rate, and designing molecules with a D-A structure is one of the most effec-
tive way to reduce the ∆EST [45]. In order to illustrate energy transfer in AIE–PSs clearly,
the structure of AIE cores are divided into three categories: “neutral” AIE core, “donor”
AIE core and “acceptor” AIE core, the latter two are based on the electron withdraw-
ing/donating abilities of the core structures (Figure 5) [46–48]. Based on this, AIE–PSs of
Type II can be divided into two categories: donor-AIE (neutral)-acceptor and AIE (donor)-
acceptor. The photophysical properties, photosensitivity efficiency and singlet oxygen
quantum yield of all the AIE–PSs are shown in Table 1.
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represented by the black, blue and red scheme, respectively).

4.1. Donor-AIE (Neutral)-Acceptor PSs

Table 1 shows the donor-AIE (Neutral)-acceptor PSs that have been reported in re-
cent years [49–53,63]. AIE–PSs 1–8 all possess an electron donor and an acceptor on a
tetraphenylethene (TPE)-conjugated skeleton, and can induce the effective generation of
reactive oxygen species (ROS) for PDT. High 1O2 generation efficiency can be obtained
through inorganic–organic hybridization, chemical linkage, etc. Among them, AIE–PSs 1–6
are all constructed in the way of D-π-A, while AIE–PSs 7 and 8 use thiophene and benzoth-
iazole to extend the conjugated structure in the D-π-A structure, which can decrease ∆EST
effectively. The characteristics of several typical PSs of this type are described as follows, for
example, NP-1 was prepared via the encapsulate of AIE–PS 1 by encapsulation of AIE–PS
1 using surfactant (DSPE-PEG-MAL) as the polymer matrix, and then followed by the
surface decoration of HIV-1 transactivator (RKKRRQRRRC) (Figure 6A) [49]. It could emit
near-infrared (NIR) fluorescence centered at 820 nm, and displayed 1O2 generation ability
even greater than that of Ce6, one of the most efficient PSs reported so far [64,65]. Similarly,
Liu and co-workers designed and synthesized two conjugated polymer PSs of 4 and 5
based on a small molecule AIE–PS 2 [50]. Subsequently, they were encapsulated by an
amphiphilic polymer to yield nanoparticles for both in vitro cancer cell ablation and in vivo
zebrafish liver tumor treatment via two-photon excited photodynamic therapy (2PE-PDT)
with high efficiency. Under two-photon excitation, 4 and 5 showed high efficiency of 1O2
production in aqueous solutions and cells due to the enhanced ISC process and molecular
conjugation, and among them, 5 presented higher 1O2 generation efficiency compared
with 2. This two-photon photodynamic therapy could perform precise 3D manipulation
of the treatment volume, and provide a target level that cannot be achieved with current
treatment technology.
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Table 1. Chemical structures, absorption/emission peaks, ∆EST, consuming rate of ABDA, treatment efficiency and singlet oxygen quantum yield of different AIE–PSs (the donor and acceptor
groups of different AIE–PSs are represented by the blue and red scheme, respectively).

AIE-PSs Chemical Structures Absorption/Emission
[nm] ∆EST [eV] (a) Consuming Rate of

ABDA Treatment Efficiency
1O2 Quantum Yield

(b) Ref.

Donor-AIE (Neutral)-Acceptor AIE–PSs

1
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Table 1. Cont.

AIE-PSs Chemical Structures Absorption/Emission
[nm] ∆EST [eV] (a) Consuming Rate of

ABDA Treatment Efficiency
1O2 Quantum Yield

(b) Ref.

Donor-AIE (Neutral)-Acceptor AIE–PSs

5
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Table 1. Cont.

AIE-PSs Chemical Structures Absorption/Emission
[nm] ∆EST [eV] (a) Consuming Rate of

ABDA Treatment Efficiency
1O2 Quantum Yield

(b) Ref.
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Table 1 shows the donor-AIE (Neutral)-acceptor PSs that have been reported in re-

cent years [49–53,63]. AIE–PSs 1–8 all possess an electron donor and an acceptor on a 

tetraphenylethene (TPE)-conjugated skeleton, and can induce the effective generation of 

reactive oxygen species (ROS) for PDT. High 1O2 generation efficiency can be obtained 

through inorganic–organic hybridization, chemical linkage, etc. Among them, AIE–PSs 

1–6 are all constructed in the way of D-π-A, while AIE–PSs 7 and 8 use thiophene and 

benzothiazole to extend the conjugated structure in the D-π-A structure, which can de-

crease ΔEST effectively. The characteristics of several typical PSs of this type are described 

as follows, for example, NP-1 was prepared via the encapsulate of AIE–PS 1 by encap-

sulation of AIE–PS 1 using surfactant (DSPE-PEG-MAL) as the polymer matrix, and then 

followed by the surface decoration of HIV-1 transactivator (RKKRRQRRRC) (Figure 6A) 

[49]. It could emit near-infrared (NIR) fluorescence centered at 820 nm, and displayed 1O2 

generation ability even greater than that of Ce6, one of the most efficient PSs reported so 

far [64,65]. Similarly, Liu and co-workers designed and synthesized two conjugated 

polymer PSs of 4 and 5 based on a small molecule AIE–PS 2 [50]. Subsequently, they were 

encapsulated by an amphiphilic polymer to yield nanoparticles for both in vitro cancer 

cell ablation and in vivo zebrafish liver tumor treatment via two-photon excited photo-

dynamic therapy (2PE-PDT) with high efficiency. Under two-photon excitation, 4 and 5 

showed high efficiency of 1O2 production in aqueous solutions and cells due to the en-

hanced ISC process and molecular conjugation, and among them, 5 presented higher 1O2 

generation efficiency compared with 2. This two-photon photodynamic therapy could 

perform precise 3D manipulation of the treatment volume, and provide a target level that 

cannot be achieved with current treatment technology. 

 

Figure 6. (A) Schematic illustration for the synthesis of AIE–PS dots and Aggregation-induced 

emission trans-activating protein (AIE-TAT) PS dots using PTPEDC2 as an example. Adapted and 

modified with permission from reference 50 (copyright 2019, American Chemical Society). (B) 

469/690 - -

IC50 = 1.1 × 10−6 M
(HeLa cell)

White light: 20 mW
cm−2 for 30 min

- [59]

(a) The data of singlet-triplet energy gap were theoretical calculation results according to references; (b) quantum yield was estimated in reference to Rose Bengal.
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Figure 6. (A) Schematic illustration for the synthesis of AIE–PS dots and Aggregation-induced
emission trans-activating protein (AIE-TAT) PS dots using PTPEDC2 as an example. Adapted
and modified with permission from reference 50 (copyright 2019, American Chemical Society).
(B) Schematic illustration of in vivo self-assembly of nanoparticle 8. Adapted and modified with
permission from reference 53 (copyright 2020, American Chemical Society).

In recent years, many AIE–PS nanoparticles (NPs) have been designed based on the
same strategy [52,53]. Moreover, by connecting thiophene ring or benzothiophene ring
between the donor and the acceptor structure, AIE–PS with red-shifted emission and
better performance can be obtained [66,67]. Wang reported a metal–organic framework
(ZIF-8, ZIF = zeolitic imidazolate framework) by AIE–PS 8 assisted in vivo self-assembly
nanoplatform, ZIF-8-PMMA-S-S-mPEG (nanoparticle 8), as an effective tool for organic PS
payload to achieve efficient PDT [53]. As shown in Figure 6B, when nanoparticle 8 went
through the vessel and entered the tumor tissue owing to the suitable size (about 50 nm),
the mPEG chain would cleave under the effect of the disulfide bonds in the tumor, trigger
the self-assembly of PS@ZIF-8-PMMA with the AIE-NPs nearby, and promote the retention
of AIE–PSs in the tumor significantly because of their relatively large size of 200 nm.
When O2 was delivered to AIE–PSs, 1O2 could be produced and maintain in the tumor
for a long time. This strategy achieved the largest intratumoral 1O2 photosensitization of
organic PS loaded with organic PS under light activation. It was proved to be advantageous
for organic PSs typically suffering from moderate tumor accumulation and compromised
intratumoral ROS generation.

4.2. AIE (Donor)-Acceptor PSs

Another kind of most widely used core for the preparation of AIE–PSs is tripheny-
lamine and its analogues. Triphenylamine is not only the core of AIE–PSs but also a
typical electron donor, so this type of photosensitizers is called “AIE (Donor)-Acceptor
PSs”. As reported, triphenylamine moiety has been widely used to enhance the AIE effect
of the PSs and pyridinium group is proved to be a specific targeting site toward mito-
chondria [55,68,69]. The two kinds of moiety are bridged through different units such as
phenyl and thiophene groups to regulate the molecular electron effect. As shown in Table
1 (AIE–PSs 9–19), most of the AIE (donor)-acceptor AIE–PSs are constructed in this way
and exhibit good performance [42,56,58,59]. For instance, 10 and 12, respectively, showed
strong AIE with the emission enhancement up to 290-fold and 34-fold, large two-photon
absorption cross-section up to 477 and 303 GM, respectively, and highly specific targeting to
mitochondria in living cells with good biocompatibility [55]. When 10 and 12 were excited
at 405 nm, they could emit a light peak at about 800 nm, and produce ROS as well. There-
fore, they showed great potential in the clinical application of cell/tissue bioimaging by
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two-photon fluorescence as well as the image-oriented and mitochondrial photodynamic
cancer therapy.

Besides, Tang et al. proposed a new strategy for imaging and killing certain bacteria
at the same time, which was suggested to form a new class of antibacterial conjugated
organisms (TVP-PAP) by integrating AIEgens together with bacteriophages (Figure 7).
AIE molecule 14 displayed excellent fluorescent characteristics, effective PDI activity and it
could be easily modified to the surface of phage entities through a simple amino-carboxyl
reaction. The generated TVP-PAP perfectly retained the characteristics of the AIEgen and
bacteriophages, and entrusted the inherent AIE fluorescence with both the function of
real-time monitoring and bacterial targeting. Moreover, by significantly exceeding two
individuals in the bioconjugate, it was endowed with an effective synergistic antibacterial
effect [57]. The in vitro test demonstrated that even MDR P. aeruginosa could be nearly
100% killed, attributed to the synergistic effect within TVP-PAP.Molecules 2020, xx, x FOR PEER REVIEW 12 of 19 
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bioconjugates. The processes are as follows: (I) the particular recognition of bacteria by AIEgen
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as well as the ROS generation of luminogens with aggregation-induced emission (AIEgens); (III)
the synergistic killing of the target bacteria by phage infections and AIE-based photodynamic
inactivation. Adapted and modified with permission from reference 57 (copyright 2020, American
Chemical Society).

Moreover, to improve the efficiency of ROS generation, Tang and his co-workers
adopted the method of supplying more donor/acceptor electronic cores to construct AIE–
PSs [60,61]. As a representative, AIE–PS 20 possessed an ultra-high 1O2 quantum yield
of 98.6% in water; the PS of 20 could efficiently induce cell death in a series of carcinoma
cells (IC50 values less than 300 × 10−9 M) upon irradiation with an extremely low fluence
(460 nm, 4 mW cm−2 for 10 min) [60]. Atypical structures such as AIE–PS 22 were also
classified into this category as they containing -CN groups with electrons that are strongly
attractive. Compared with the part that strongly attracts electrons, the other part can be
regarded as “donor” core. Photosensitizer 22 showed strong NIR emission centered at
800 nm, good photostability, and high 1O2 generation efficiency and could induce more
tumor cell apoptosis than traditional PSs (CE6) [62]. In addition, Xie et al. rationally
designed red-emitting AIE Ir(III) complexes 23 and 24 with different central metal numbers
(di-nuclear and tri-nuclear) in 2019. It provided the possibility to develop multi-nuclear
Ir(III) complexes with long excitation wavelength for in vivo imaging and PDT [59].

Connecting TPE to the atypical AIE (donor)-acceptor structure is also a typical method
to construct the near-infrared AIE–PSs. For example, Tang and his team used amphiphilic
polymers (i.e., DSPE-PEG2000 and DSPE-PEG2000-MAL) to encapsulate the hydrophobic
upconversion nanoparticles (UCNPs) and AIE–PSs 25 (Figure 8) [70]. With high photosta-
bility, the prepared UCNP@25-cRGD NPs could maintain their fluorescent intensity above
70% after 30 days, and under NIR light illumination, a significant amount of ROS could still
be detected even when covered within a 6 mm tissue. The UCNP@25-CRGD NPs could
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specifically target αvβ3 integrin over-expressed MDA-MB-231 cells and selectively kill these
cells in both 2D and 3D cancer models upon NIR light illumination, without obvious dark
cytotoxicity. The results of in vivo antitumor evaluation demonstrated that with NIR light
illumination, the intravenously injected UCNP@25-cRGD NPs could light up the tumors
and significantly induce apoptosis of tumor cells, and thus inhibit the growth of large
tumors in a mouse model compared to white light illumination.
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Figure 8. A rational design for a near-infrared (NIR) light-regulated theranostic nanoplatform based
on AIE luminogen-encapsulated upconversion nanoparticles. Schematic illustration of preparation
of UCNP@25-cRGD nanoparticles and their applications in bioimaging and PDT of deep-seated
tumors upon NIR laser illumination, in an in vitro three-dimensional (3D) cancer cell spheroid and in
a murine tumor model, respectively. Adapted and modified with permission from reference 70 (open
access 2019, Theranostics).

5. Both Energy Transfer and Electron Transfer AIE–PSs

As mentioned above, ROS mainly includes two types, among which superoxide
anion (O2

•−), hydroxyl radical (•OH), peroxide (O2
2−), and so on fall into Type I, while

singlet oxygen (1O2) belongs to Type II. However, there exist some AIE–PSs that can react
with oxygen to form both O2

•−/•OH/O2
2− and 1O2. For example, AIE –PSs 18 and 19

mentioned in Section 4.2 are mainly PSs of Type II, but their protonated products, 26 and 27
NPs are quite different (Figure 9) [13]. Through research, it is found that the ROS and 1O2
generation capacity of 19 and 27 NPs are inconsistent. Tang suggested that 27 produces
not only 1O2 but also ROS. To explain this observation, sodium azide (NaN3) as a 1O2
quencher was added to the 9, 10-anthracenediylbis (methylene)dimalonic acid (ABDA)
solution in the presence of 19, 26, or 27 NPs. Gradually, the absorption of ABDA with
26, or 27 declined with prolonged irradiation time even at a high concentration of NaN3
(240 mg/mL). In addition, dihydroethidium (DHE) was used as a sensitive O2

•− probe
to assess the O2

•− generation in HeLa cells by flow cytometry. Results showed that the
fluorescence of HeLa cells with DHE became stronger in the presence of 26, or 27 under
light irradiation. Clearly, 26 and 27 could generate a small amount of O2

•−, which is the
precursor of •OH and H2O2. Tang also used the indicator to detect the type of active
oxygen. AIE–PS 28 exhibited a prominent AIE property with strong NIR fluorescence in
aggregates and was capable of efficiently generating ROS of O2

•− and 1O2 under white
light irradiation (Figure 10) [71]. To demonstrate the AIE property of 28, its emission
behavior in THF/water mixtures with different volume fractions of water (f w, vol %)
was examined. The results showed that the emission peak of 28 moved to 690 nm and
intensified greatly in the mixture with fw of 90, indicating a prominent AIE characteristic.
This type of NIR photosensitizer with AIE characteristic could be a promising alternative
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for the fabrication of nanoprobes and nanomedicines for the potential clinical applications
of multiple tumors.
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Figure 9. Chemical structures of AIE–PSs 18, 19, 26, and 27 (among them, 18 and 19 have low
ROS generation efficiency, and 26 and 27 with cations can have high ROS generation efficiency).
Adapted and modified with permission from reference 13 (copyright 2019, American Chemical
Society).
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Figure 10. (A) Chemical structures of AIE–PS 28, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine
-N-[maleimide(polyethylene glycol)-2000] (MPD), and RGD-4R. (B) Cellular uptake and PDT process
of RGD-4R-MPD/28 NPs. (C) Xenograft tumor models of cervical, prostate, and ovarian cancers are
established with HeLa, PC3, and SKOV-3 cells, respectively. Adapted and modified with permission
from reference 71 (copyright 2020, American Chemical Society).

In addition to the usage of indicators to detect the type of ROS, the operation of
instruments is also completely feasible. As shown in Figure 11A, EPR spectroscopy was
used to provide solid evidence for the free radical ROS generation of four AIE–PSs [54].
Both BMPO under irradiation and BMPO + AIEgens (30 and 31) in the dark did not produce
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any signal in the EPR spectra. In contrast, significant EPR signals could be observed upon
irradiation of the BMPO + 30/31 solution, associated with the production of paramagnetic
free radical species. Thus, it could be confirmed that 9 with low intramolecular charge
transfer (ICT) produced only 1O2, species. According to the results derived from 29 and
naphtho[2,3-c][1,2,5]thiadiazole-based (NZ-based) AIE–PSs, once the ICT intensity was
enhanced by a donor with strengthened electron-releasing ability (Figure 11B), the 1O2,
species were transformed into free radical ROS, which agreed well with the proposal of
“more ICT leading to the generation of more free radical ROS”.
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6. Conclusions and Outlooks

As a noninvasive treatment, PDT has been extensively studied for both cancer di-
agnosis and therapy. Notably, the therapeutic effect of PDT is directly influenced by the
ROS-generation ability of PSs. The emerging AIE–PSs and their application for image-
guided therapy have shown evident advantages over the classical ones and thus have
attracted much attention recently. In recent reports, the classification of the Type I and Type
II AIE–PSs oxidation reactions is still not clearly categorized. Thus, in this brief review, we
have tried to classify the AIE–PSs according to the following standards: (1) Type I: AIE–PSs
generates superoxide anion (O2

•−), hydroxyl radical (•OH), peroxide (O2
2−), and other

free radical ROS through electron transfer. Electron transfer can actually occur in either
direction, but most commonly, the excited sensitizer acts as an oxidant. Therefore, this type
of AIE–PSs can achieve the purpose of PDT under hypoxic conditions. (2) Type II: AIE–PSs
generate singlet oxygen (1O2) through energy transfer. This process must be under the
condition of concentrated oxygen to convert triplet oxygen into singlet oxygen. (3) Type
I and Type II: AIE–PSs generate both free radical ROS and 1O2 through electron transfer
and energy transfer, respectively. In the case of Type II, electron transfer occurs from the
AIE–PSs to oxygen, and the generation of oxidation sensitizer and O2

•− is also assigned to
this category. Simultaneously, we classify the Type II PSs into two categories: donor-AIE
(neutral)-acceptor and AIE (donor)-acceptor. The construction principle is to form a D-A
and/or a D-π-A structure.

The reported that AIE–PSs have rendered new power to PDT, however, it could be
noticed that most of the AIE–PSs used in PDT nowadays are Type II PSs. In fact, the
development of Type II PSs will be seriously influenced by the fundamental paradox which
existed between the high O2 dependency of AIE–PSs and the hypoxic (not anaerobic)
nature around solid tumors caused by insufficient blood supply. Furthermore, during the
PDT process, especially in the continuous treatment, the photochemical consumption of
O2 as well as the micro-vascular damage will aggravate the O2 shortage, and restrict the
effect of PDT to an unsatisfactory outcome. An effective pathway to solve this problem is
to design new PSs with low requirement of O2 and can adapt to the hypoxic environment
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around the tumor tissues. Compared to the Type II PSs, Type I PSs with stronger hypoxia
tolerance are a good choice, so the subsequent development of Type I AIE–PSs is full of
opportunities and challenges in the future. In addition, methods for distinguishing two
different mechanism types of ROS generation are also imperative to provide an insight
into the ROS formation mechanism of AIE–PSs. If only considering the effect of medical
treatment, the development of two-photon AIE–PSs with high reactive oxygen generation
efficiency is also crucial.
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33. Oszajca, M.; Brindell, M.; Orzeł, Ł.; Dąbrowski, J.M.; Śpiewak, K.; Łabuz, P.; Pacia, M.; Stochel-Gaudyn, A.; Macyk, W.; Van
Eldik, R.; et al. Mechanistic studies on versatile metal-assisted hydrogen peroxide activation processes for biomedical and
environmental incentives. Coord. Chem. Rev. 2016, 327–328, 143–165. [CrossRef]

34. Silva, E.F.F.; Serpa, C.; Dąbrowski, J.M.; Monteiro, C.J.P.; Formosinho, S.J.; Stochel, G.; Urbanska, K.; Simoes, S.; Pereira, M.M.;
Arnaut, L.G. Mechanisms of Singlet-Oxygen and Superoxide-Ion Generation by Porphyrins and Bacteriochlorins and their
Implications in Photodynamic Therapy. Chem. Eur. J. 2010, 16, 9273–9286. [CrossRef]

35. Kehrer, J.P. The Haber–Weiss reaction and mechanisms of toxicity. Toxicology 2000, 149, 43–50. [CrossRef]
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