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Abstract: The demand of foods with high antioxidant capacity have increased and research on these
foods continues to grow. This review is focused on chlorogenic acids (CGAs) from green coffee,
which is the most abundant source. The main CGA in coffee is 5-O-caffeoylquinic acid (5-CQA).
Coffee extracts are currently the most widely used source to enhance the antioxidant activity of foods.
Due to the solubility of CGAs, their extraction is mainly performed with organic solvents. CGAs
have been associated with health benefits, such as antioxidant, antiviral, antibacterial, anticancer, and
anti-inflammatory activity, and others that reduce the risk of cardiovascular diseases, type 2 diabetes,
and Alzheimer’s disease. However, the biological activities depend on the stability of CGAs, which
are sensitive to pH, temperature, and light. The anti-inflammatory activity of 5-CQA is attributed to
reducing the proinflammatory activity of cytokines. 5-CQA can negatively affect colon microbiota.
An increase in anthocyanins and antioxidant activity was observed when CGAs extracts were added
to different food matrices such as dairy products, coffee drinks, chocolate, and bakery products. The
fortification of foods with coffee CGAs has the potential to improve the functionality of foods.

Keywords: chlorogenic acids; coffee; 5CQA; functional foods; biological activity

1. Introduction

The chlorogenic acids (CGAs) are a class of phenolic compounds widely distributed in
various plants sources such as fruits, vegetables, coffee beans, tea, apples, and wine [1–3].
CGAs are esters of quinic acid (QA) and one trans-cinnamic acid residue such as caffeic acid
(CA), p-coumaric acid (p-CoA), and ferulic acid (FA), which are known as caffeoylquinic
acids (CQAs), p-coumaroylquinic acids (p-CoQAs) and feruloylquinic acid (FQAs) [1–5].
Caffeoylquinic acid may theoretically form four isomers, but only three are present in plants:
3-O-caffeoylquinic acid (3-CQA), neochlorogenic acid (5-O-caffeoylquinic acid, 5-CQA), or
cryptochlorogenic acid (4-O-caffeoylquinic acid, 4-CQA). The most common isomer, 5-CQA,
is an ester composed of caffeic acid and (−)-quinic acid and referred as chlorogenic acid [4,6].
According to the number of caffeoyl groups attached to the quinic acid, these CQAs can
be classified into monophosphoylquinic acids (MCQAs), dicaffeoylquinic acids (DCQAs),
tricaffeoylquinic acids (TCQAs), and tetracaffeoylquinic acids (tetra-CQAs) [3]. The chemi-
cal structures of the main CGAs are shown in Figure 1. The structural diversity and broad
bioactivities of CGAs have increasingly attracted the attention of researchers [4,5,7–10]. It
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has been demonstrated that these compounds are potent antioxidants and may also exert
other physiological activities. For example, there is evidence that CGAs possess a wide
variety of bioactivities, such as antiparasitic [11], antibacterial [12], anti-inflammatory [13],
neuroprotective [14], anticancer [15], antiglycemic [16], and antiviral [17]. In addition, it
has been demonstrated that CGAs have therapeutic effects in the prevention and treatment
of some chronic and cardiovascular diseases [5,18,19]. This review aims to describe the
main biological activities attributed to coffee CGAs, and their bioavailability and potential
addition to different food matrices to obtain functional foods.
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2. Dietary Sources of Chlorogenic Acids (CGAs)

CGAs are a large family of esters of quinic acid and trans-cinnamic acids; up to date,
at least 71 different chemical compounds are identified from different plants sources such
as fruits, vegetables, coffee beans, tea, apples, artichoke, eggplant, and grapes [4,20,21].
However, those found in the highest concentration in plants are caffeoylquinic acids (CQAs),
specifically mono- and di-CQAs, as well as the different isomeric forms of feruloylquinic
acids (FQAs) [21,22]. Meinhart et al. [23] analyzed the CGAs concentration (CA, 3-CQA,
4-CQA, 5-CQA, 3,4-DQA, 3,5-DQA and 4,5-DQA) of 100 plants commonly used in Brazil
as infusions. In their study, the highest concentrations of CGAS were yerba mate (Ilex
paraguariensis), white and green tea (Camellia sinensis), and winter’s bark (Drimys winteri).
A study of the presence of CGAs in 53 vegetables consumed in Southern Brazil reported
the highest concentrations of 3-CQA, 5-CQA, and 4-CQA in collard greens and chicory
whereas the highest concentration of 3,4-DQA, 3,5-DQA, and 4,5-DQA were found in bay
leaves and mustard [20]. At present, green coffee beans and yerba mate are recognized
as the most important plant sources of CGAs, accounting for up to 6 to 12% in the case of
green coffee and 9% for mate. 5-CQA is the most abundant CGA in green coffee beans,
with a concentration of about 100 mg/g (dry basis), representing 76 to 84% of the total
content of CGAs [4]. The main food sources of CGAs are shown in Table 1.
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Table 1. Main sources of CGAs.

Source Concentration
(g/100 g) 1 (dm) CGA Composition References

Artichoke 1–8
5-CQA, 1,5-DCQA

3,4-DCQA and
DCQA

[24]

Artichoke leaves 0.92 CA, 3-CQA, 4-CQA, 5-CQA,
3,4-DQA, 3,5-DQA and 4,5-DQA [23]

Sweet potato leaves -
3-CQA, 3,4-DCQA,

3,5-DCQA, 4,5-DCQA and
3,4,5-TCQA

[15]

White tea (Camelia
sinensis) leaves 1.64 3-CQA, 4-CQA, 5-CQA,

3,4-DQA, 3,5-DQA and 4,5-DQA [23]

Green tea (Camelia
sinensis) leaves 1.32 3-CQA, 4-CQA, 5-CQA,

3,4-DQA, 3,5-DQA and 4,5-DQA [23]

Yerba mate (Ilex
paraguariensis) leaves

and thalli
9.19 3-CQA, 4-CQA, 5-CQA,

3,4-DQA, 3,5-DQA and 4,5-DQA [23]

Green coffee beans 4.10–11.3 2 CQA, FQA and DCQA [25]

Apples 0.38
0–0.2 g/L (juice) 3-CQA, 5-CQA, 4,5-DCQA [26]

Pears 0.28
0–0.24 g/L (juice) 3-CQA, 5-CQA, 3,6-DCQA [27]

Blueberries 2 5-CQA, 3-FQA [28]

Grapes 0.15 5-CQA, CoQA [29]

Spinach 0.2 p-CoQA [30]

Beans and peas 0.12 p-CoQA [31]

Stone fruits 0.01–0.6 p-CoQA, 5-CQA, FQA,
4,5-DCQA, 3,4-TCQA [32]

Potato tubers 0.5–1.2 CQA; DCQA [33]
1 Units may have been changed for consistency and expressed in dry matter (dm). 2 It depends on the variety and
geographic origin of the coffee.

Coffee as a Source of CGAs

Coffee is one of the most widely consumed beverages in the world. This infusion
contains several compounds that can exert beneficial biological activities for human health.
Many beneficial effects have been investigated, mainly attributed to caffeine and other sub-
stances, such as polyphenols, mainly chlorogenic acids [1,34]. There are at least 30 different
types of CGAs found in coffee, and this includes caffeoylquinic acids (CQAs), dicaf-
feoylquinic acids (DCQAs), tricaffeoylquinic acids (TCQAs), feruloylquinic acids (FQAs),
and p-coumaroylquinic acids (p-CoQAs) [35]. One cup (200 mL) of coffee brew contains
between 20–675 mg of CGAs depending on the variety of coffee and brewing method [36].

Whether green or roasted, the beneficial health effects of coffee have been attributed to
the high content of CGAs and the antioxidant activity provided by the phenolic compounds
in green coffee in addition to the those produced during the roasting process [37]. The
concentration of active polyphenols inside green coffee depends on the variety of the bean
and its geographical origin; in beverages, it also depends on the brewing process [38].
During the coffee roasting process, phenolic compounds undergo a series of intermolecular
and intramolecular reactions and interactions [21]. Higher concentration of CGAs in
lightly roasted coffee over dark roasted coffee has been established; however, the highest
concentration of CGAs is found in green coffee beans [39]. In green coffee, CQAs alone
account for up to 80% of the total CGAs and among CQAs, 5-CQA account for almost 60%.
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Thus, 5-CQA is the most studied isomer of the CGAs and is responsible for the bitter and
astringent taste in coffee [25].

3. Extraction of Chlorogenic Acids (CGAs) from Coffee

The extraction recovery of a wide variety of compounds from vegetal species is a
critical step in the production of bioactive substances. The chemical properties of CGAs such
as thermal stability, solubility, and oxidation-reduction reactions, need to be considered
when combined with other substances [21]. Studies focused on the development of new
extraction methods of CGA’s have been made over the last couple of decades, mainly
focusing on increasing mass transfer and extraction yields while minimizing the use of
toxic organic solvents and energy consumption [40–46].

3.1. Organic Solvent Extraction

Madhava-Naidu et al. [46] extracted green coffee CGAs by sterilizing the beans at
120 ◦C for 20 min and Soxhlet extraction with hexane at different rates. The samples were
then separated in glass columns and extracted with selected solvents at different ratios
(80:20, 70:30, and 60:40) using mixtures of isopropanol and water. They obtained the best
extraction yield (29.1%) and a CGAs content of 29.7% when they used a 60:40 isopropanol-
water ratio in Robusta coffee, whereas in Arabica coffee the yield of extraction and CGAs
content were 27.3 and 30.2%, respectively. Suárez-Quiroz et al. [40] compared four different
methods of CGAs extraction using different solvents (water, aqueous methanol, aqueous
isopropanol, and ethyl acetate). The extract yield values were not significantly different,
demonstrating the high solubility of CGAs in organic solvents. CGA’s extraction from
green coffee (C. arabica) using water at 80 ◦C and activated carbon were not significantly
different from the values of the previous investigation [47]. Thus, activated carbon is a
suitable and more eco-friendly extraction method with a minimum of 97% CGAs purity in
the extract was reported in this study [47].

Dibert et al. [48] tested the effect of different physicochemical parameters (temperature,
particle diameter, and solvent-mass ratio) when extracting CGAs from green coffee beans
with a methanol-water extraction (70:30 ratio) at three different temperatures (30, 40, and
50 ◦C). The highest yield of extraction of CGAs (18.1%) was obtained at 40 and 50 ◦C, when
a mass-solvent ratio of 1:4 w/v was used. By increasing the mass ratio of green coffee beans
an improvement in the yield of extraction of CGAs can be achieved.

3.2. Pulsed Electric Field Extraction

Bilge et al. [45] evaluated the effect of pulsed electric field on green and roasted C.
arabica beans as a pretreatment by exposing them to monopolar pulses of 2 Hz with
an interval of 0.5 s and generating an electric field of 28 kV/10 cm with water at 20 ◦C.
The use of an electric field increased radical scavenging activity up to 31% and 11%, for
green and roasted coffee beans, respectively, compared to untreated samples confirming
that using electric pulses as a pretreatment before extraction can enhance the phenolic
content extraction and reduce Maillard reaction products that occur at high temperatures
of extraction and during the coffee roasting process. Phongsupa et al. [44] studied the
extraction of CGAs by pulse electric field induction over C. arabica. The number of pulses
and concentrations for this study was set to 1000 pulses at 5 kV and 62.7% methanol-
water solution as solvent. The mass-solvent ratio with the most effective extraction was
0.75 g/mL and 30 s of blending which had the CGAs content of 9.8 µg/g. However, the
results obtained in this study showed that an increase in the sample-solvent ratio leads to a
higher concentration of CGAs [45].

4. Biological Activities of CGAs

Several studies have associated CGAs with beneficial health properties, such as an-
tioxidant, antiviral, antibacterial, anticancer, and anti-inflammatory activity [4–6,49]. It
has also been shown that it can modulate the gene expression of antioxidant enzymes
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and reduce the risk of cardiovascular disease by suppressing the expression of P-selectin
in platelets [49]. In addition, CGAs can reduce the relative risk of type 2 diabetes and
Alzheimer’s disease [6,50–54]. The main biological activities attributed to CGAs are shown
in Figure 2.
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Some of these properties are well recognized and demonstrated by in vitro and in vivo
studies, such as antioxidant activity. However, other bioactivities of interest in recent
years, although not yet well demonstrated, such as the potential anti-obesity [52,55–60] or
prebiotic [61–63] properties of CGAs. In addition, it has also been shown that CGAs can
modulate the activity of glucose-6-phosphatase, an enzyme involved in glucose metabolism,
and therefore it may have a positive effect on diabetes management [64].

Furthermore, it is important to highlight that these biological activities are dependent
on the CGA’s stability. CGAs are particularly susceptible to environmental conditions, such
as solvent type, pH, temperature, and light. These factors must be considered during the
CGAs extraction. Moreover, the concentration of these compounds in plants is low. For
this reason, the methodologies used for the CGAs extraction from plant sources must be
efficient to guarantee the necessary concentration of CGAs to exert their biological activity.

4.1. Antioxidant Activity

There is a strong correlation between oxidative stress and the development of various
degenerative diseases such as cancer and other aging-related diseases [65,66]. Extensive
in vitro and in vivo studies have been performed to evaluate the antioxidant activity of
CGAs [67]. As a result, CGAs are known to exhibit a radical scavenging effect similar
to ascorbic acid [68]. In addition, CGAs can chelate transition metals such as Fe2+ to
scavenge free radicals and disrupt chain reactions [21]. Studies have shown that CGAs may
prevent the oxidation of low-density lipoproteins (LDL) induced by different oxidizing
agents [69,70], as well as prevent DNA damage in vitro [71]. 5-CQA, which is the most
important CGA in coffee, can scavenge 1,1-diphenyl-2-picrylhydrazyl radicals (DPPH),
superoxide anions (O2

•−), hydroxyl radicals (• OH), and peroxynitrite (ONOO−) [72–74],
and protect DNA from damage caused by oxidative stress in different studies [67,75].

Therefore, there is enough evidence to support that CGAS can inhibit the formation of
reactive oxygen species and play a beneficial role in preventing oxidative and aging-related
diseases [65,66]. However, studies indicate that these compounds may also act as potent
pro-oxidants. Therefore, depending on their concentration, the presence of free transition
metal ions, or their redox state, the antioxidant and pro-oxidant properties of CGAs can be
modified [76–78].
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4.2. Anti-Inflammatory Activity

Inflammation is a complex physiological process of tissue injury caused by exogenous
or endogenous sources [67]. A prolonged unregulated inflammatory process can induce
tissue damage and is the cause of many chronic pathologies, such as diabetes, alcoholic liver,
chronic kidney disease, and cardiovascular and neurodegenerative diseases [79,80]. CGAs,
mainly 5-CQA, have been shown anti-inflammatory activity by reducing pro-inflammatory
cytokines, due to modulation of key transcription factors, such as tumor necrosis factor-
alpha (TNF-α) and interleukins, such as IL-8 [67,81]. Another study performed in murine
RAW264.7 macrophages showed that 5-CQA decreased lipopolysaccharide (LPS)-induced
cyclooxygenase (COX-2) up-regulation at both the protein and mRNA levels, suggesting
that 5-CQA might exert anti-inflammatory effects through inhibition of prostaglandin
E2 (PGE2) production [82]. It has also been reported that CFA can enhance the wound
healing process [67]. In a study with diabetic rats, oral administration of 5-CQA increased
hydroxyproline concentrations and decreased malondialdehyde/nitric oxide levels in
wound tissues. In addition, it allowed elevation of reduced glutathione [83,84]. Topical
administration of 5-CQA-containing hydrogels to mouse skin wounds significantly reduced
the size of the wound area in the inflammatory phase, improving the healing process [85].

4.3. Neuroprotective Activity

Alzheimer’s disease is a neurodegenerative disease characterized by progressive de-
terioration of learning, memory, and other cognitive deficits, along with the extracellular
deposition of β-amyloid peptides into the brain leading to neuroinflammation, synap-
tic loss and neuronal death [86,87]. According to Alzheimer Association [88], in 2050,
the number of people aged 65 and older with Alzheimer’s disease will reach 12.7 mil-
lion. Several studies found an inverse relationship between coffee consumption and
the development of Alzheimer’s disease, suggesting its possible use in managing treat-
ments [86,89–92]. The neuroprotective mechanisms of coffee are suggested to be related to
the anti-inflammatory effects of caffeine and CGAs on A1 and A2 receptors. In addition,
it reduces toxic deposits of β-amyloid peptides in the brain, which is a distinctive feature
in Alzheimer’s patients [6,90,92,93]. Furthermore, some coffee compounds could inhibit
brain acetylcholinesterase and butyrylcholinesterase (causing a delay in the degradation of
acetylcholine and butyrylcholine), resulting in the prevention of oxidative stress-induced
neurodegeneration due to their high antioxidant activity [6,90,94].

On the other hand, murine model trials have shown a significant association between
the consumption of CGAs and the prevention of the development of degenerative diseases
and aging [6,95–98]. The effect of phenolic compounds from coffee on human cognitive
function has not been well studied [99]. However, the number of in vitro studies concerning
the neuroprotective effects of polyphenols is rapidly increasing. It has been demonstrated
that intraperitoneal injections of 5-CQA reduced oxidative damage in the cerebellum of
rats exposed to methotrexate, a drug with serious side effects used to treat some types of
cancer, rheumatoid arthritis, and psoriasis [100]. In the same study, these researchers also
observed that application of 5-CQA decreased lipopolysaccharide (LPS)-induced IL-1β
and (TNF-α) release in the substantia nigra, indicating neuroprotective effects of 5-CQA on
neurodegenerative diseases caused by proinflammatory cytokines [100]. Taram et al. [101]
studied the neuroprotective effects of 5-CQA and caffeic and ferulic acids on rat cerebellar
granule neuron cultures. This research proposed that caffeic acid showed enhanced neuro-
protection against a wide range of stressors compared to the other compounds evaluated.
Thus, the authors suggest that caffeic acid could be a promising candidate in preclinical
models of neurodegeneration [101].

4.4. Anticancer Activity

The antimutagenic properties of CGAs was demonstrated decades ago [102]. This
activity is partially related to the antioxidant activity of these compounds since the overpro-
duction of oxygen free radicals leads to oxidative DNA damage. This damage is leading
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cause of the proliferation of several types of cancer, such as breast, colon, bladder, pan-
creatic, liver, skin, and prostate cancer [103]. Dietary polyphenols, including CGAs, can
protect the initiation of tumor processes by inhibiting DNA lesions caused by both free
radicals and carcinogens [104]. Indeed, some epidemiological studies demonstrated an
inverse relationship between coffee consumption and the risk of certain types of cancer.
This effect has been associated with the intake of CGAs [105–107]. Several mechanisms
have suggested that CGAs may have a chemopreventive effect [80]. Among those, modula-
tion of the expression of enzymes involved as endogenous antioxidant defenses, in DNA
replication, as well as in cell differentiation and aging are prominent [104,108]. Moreover,
metal chelation, inactivation of reactive compounds, and changes in metabolic pathways
have been proposed to impact anticancer activity significantly [109]. Boettler et al. [110]
demonstrated by in vitro and in vivo assays that coffee-derived CGAs can induce a cellu-
lar and tissue protection mechanism against carcinogenesis via the Nrf2/ARE pathway.
This pathway regulates the expression of S-transferases (GST), γ-glutamate-cysteine ligase
(γGCL), NAD(P)H: quinone oxidoreductase 1 (NQO1), and heme oxygenase (H01). In
another study by Feng et al. [108] using mouse epithelial JB6 cells, it was found that 5CQA
had a protective effect against carcinogens. This effect was due to its ability to decrease the
generation of free radicals and stimulate glutathione-S-transferase activity.

4.5. Antidiabetic Activity

According to International Diabetes Federation [111] diabetes (type 1 and 2) is one
of the fastest-growing global health emergencies of the 21st century. It was estimated
that 537 million adults aged 20–79 years are currently living with diabetes and type 2
diabetes mellitus (T2DM) is the most common type of diabetes, accounting for over 90% of
all diabetes worldwide [111]. Several studies have demonstrated an association between
moderate consumption of coffee and a lower risk of developing T2DM. This was observed in
all sexes, obesity levels, and geographic locations [112–119]. This effect has been attributed
to the bioactive compound 5-CQA. Through a meta-analysis, Huxley et al. [120] concluded
that daily consumption of three to four cups of coffee decreased the risk of T2DM by 25%.

Furthermore, Bakuradze et al. [121] suggested that consumption of three to four cups
of coffee per day could reduce oxidative damage, body fat mass, and energy/nutrient intake
and that these effects were partially attributed to CGAs. Shearer et al. [122] studied the
effects of regular and decaffeinated coffee (with CGAs) consumption for 28 days on insulin
functions, in vivo using a rat model. They observed that the ingestion of decaffeinated
coffee improves insulin-stimulated disposal in the high-fat-fed and insulin-resistant rats.
Other suggested mechanisms of CGAs are related to the improvement of glucose and
lipid metabolism by activating of AMP activated protein kinase (AMPK) [119], as shown
in Figure 3. AMPK is a master sensor and regulator of cellular energy balance. This
enzyme is activated by diverse pathological, metabolic, and pharmacological stressors
such as hypoxia, exercise, thiazolidinediones, and metformin. This activation provokes
the translocation of glucose transporter type 4 (GLUT4) from intracellular membranes to
plasma and, therefore, the increase of glucose transport [119,123,124].

4.6. Cardiovascular Protection Activity

Currently, cardiovascular diseases (CVDs) comprise one of the leading causes of
death and disability worldwide. The incidence of various chronic CVDs, including stroke,
atherosclerosis, hypertension, ischemic heart disease, and heart failure, probably continues
to increase [4]. Some risk factors, such as smoking, high blood pressure, hyperlipidemia,
and hyperglycemia, have been reported to contribute, partially, to the development of
CVDs [4]. According to the World Health Organization (WHO), ischemic heart disease is
the leading cause of death worldwide, accounting for 16% of deaths worldwide (8.9 million
people) [125]. Recently, many studies have shown that the consumption of CGAs-rich
foods may be recommended to prevent CVDs [49,119,126–128]. The high antioxidant
and anti-inflammatory activity of CGAs can improve endothelial dysfunction and reduce
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insulin resistance which could be critical mechanisms to enhance the cardiovascular pro-
tection attributed to these compounds, as shown in a large number of in vitro and in vivo
studies [67]. Taguchi et al. [129] observed that CGAs could improve endothelial function
through by releasing of vasoactive molecules such as nitric oxide. This effect was studied
in streptozotocin-treated diabetic rats. On the other hand, CGAs could decrease blood
pressure by the following proposed mechanisms: (i) stimulation of nitric oxide production
through the endothelium-dependent pathway [130], (ii) reduction of free radicals through
decreased expression and activity of NADPH oxidase [131], and (iii) through inhibition of
the angiotensin-converting enzyme (ACE) [67].
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4.7. Antibacterial, Antifungal, and Antiviral Activity

The antimicrobial (bacteriostatic and bactericidal) effects of 5-CQA and coffee extracts
on various types of detrimental microorganisms that may grow in different parts of the
body, from oral bacteria causative of caries to harmful intestinal bacteria, are well known.
Roasted C. arabica and C. canephora extracts and brews exhibited antibacterial activity
against Streptococcus mutans and other oral types of bacteria [132,133]. Furthermore, 5-CQA
can have a positive affect against the adverse microbiota present in the colon. Therefore,
this chlorogenic acid can be used as a preservative and food additive [10]. For this reason,
CGAs, mainly 5-CQA, could be potential natural antibacterial, antifungal and antiviral
agents [2]. For example, 5-CQA exhibited a broad-spectrum antimicrobial activity against
Gram-positive (Streptococcus pneumoniae, Staphylococcus aureus, and Bacillus subtilis) and
Gram-negative (Escherichia coli, Shigella dysenteriae, and Salmonella typhimurium) pathogenic
bacteria by increasing the membrane permeability, leading to plasma membrane barrier
dysfunction, as well as leakage of nucleotide [134,135]. The suggested mechanism by
which 5-CQA provokes the membrane disruption could involve the perturbation of the
membrane lipid bilayer, resulting in cell leakage and dissipation of the membrane electrical
potential [4,135].

In addition, Sung and Lee [136] studied the antifungal properties of 5-CQA against
Candida albicans, a pathogenic yeast. They suggested that this compound could exert
antifungal activity by disrupting the cell membrane structure and consequently, it can be
used as an option for fungal treatment. In several studies, both caffeic acid and 5-CQA
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have demonstrated multiviral activities against herpes simplex virus (HSV) types 1 and
2 [137], adenovirus [138], and HIV [139].

4.8. Other Bioactivities
4.8.1. Hepatoprotective Activity

The beneficial effects of coffee on liver diseases, in general, have been reported in
several studies [140–142] for example, cirrhosis and hepatitis B and C [142]. Hepatic injury
may be due to multiple factors, such as viral hepatitis, obesity, excessive alcohol consump-
tion, and iron overload [67]. On the other hand, according to a meta-analysis of 16 human
studies, coffee consumption (2 cups per day) decreased the risk of developing liver can-
cer by 40% compared to no coffee consumption [143,144]. The suggested mechanisms of
hepatic protection were the prevention of cell apoptosis and oxidative stress damage due
to the activation of natural antioxidant and anti-inflammatory systems [145,146]. These
protective mechanisms have been mainly related to CGA [147] and caffeine [148], among
other components of coffee.

4.8.2. Potential Prebiotic Activity

According to the International Scientific Association for Probiotics and Prebiotics (IS-
APP), a prebiotic definition is “a substrate that is selectively utilized by host microorganisms
conferring a health benefit” [149]. Usually, well-established prebiotics are carbohydrate-
based, but other substances such as polyphenols and polyunsaturated fatty acids trans-
formed into their respective conjugated fatty acids can potentially fit into this new prebiotic
definition, provided there is sufficient evidence of their positive effect on the host [149].
The consumption of prebiotic foods or compounds selectively favors the growth of pro-
biotic and other health-promoting microorganisms in the gut, especially Bifidobacterium
and Lactobacillus [150–152]. Thus, indirectly, the health benefits of prebiotics are the follow-
ing: (i) production of short-chain fatty acids that lower luminal pH, (ii) stimulation of the
growth of beneficial intestinal bacteria and suppression of pathogenic bacteria [151,152],
(iii) stimulation of the immune system [153,154], (iv) prevention of colon cancer [155],
(v) decrease the prevalence to develop diabetes [156,157], and (vi) increased calcium ab-
sorption [158]. Furthermore, Kellow et al. [159] observed that dietary supplementation
with prebiotics could reduce or delay the accumulation of advanced glycation end products
(AGEs) formed through the Maillard reaction in individuals at high risk for type 2 diabetes
and improve or restore the microbial balance within the gastrointestinal tract, potentially
reducing AGE absorption.

Several studies have suggested that the non-absorbed part of 5-CQA and caffeic acid
in the human gastrointestinal tract serves as a substrate for beneficial intestinal microbiota,
thus stimulating their growth [160,161]. Whereas the bifidogenic effect of 5-CQA would
seem consensus [61,62], the effect of 5-CQA on Lactobacillus growth remains debatable, as
only selected strains can utilize it as a substrate [62,63]. Furthermore, Parkar et al. [61]
reported an increase in short-chain fatty acids (butyric, acetic, and propionic acid) promoted
by 5-CQA. Nevertheless, it has also been observed that 5-CQA promotes the growth of
Firmicutes and Bacteroides, and Clostridium. Moreover, an inhibitory effect on the growth of
E. coli has only been demonstrated in one study [135]. Therefore, more studies are needed
to validate the effect of 5-CQA as a prebiotic.

5. Bioavailability of CGAs

Numerous studies have shown the potential health benefits of CGAs. Consequently,
evidence of the absorption and bioavailability of CGAs is needed to evaluate these com-
pounds’ health benefits fully. However, the absorption and bioavailability of CGAs are
controversial due to the significant interindividual differences regarding their utilization,
metabolism, and excretion found in scientific and clinical studies.
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5.1. Absorption of CGAs

Past studies have considered that 5-CQA, such as other phenolic compounds, could be
poorly absorbed by the digestive system [162]. However, other studies have shown that a
part of this compound can be absorbed intact in the stomach and/or small intestine [163,164].
It is now known that, on average, almost one third of the 5-CQA obtained from the diet
is absorbed from the gastrointestinal tract into the bloodstream, although its absorption
varies among humans [162,165–168]. For example, after coffee consumption, two plasma
concentration peaks of CGAs corresponding to 5-CQA and DCQA were found at 0.5 to 1.0
and 1.5 to 4.0 h, respectively [163]. Furthermore, Mubarak et al. [169] reported a higher
concentration of intact 5-CQA in plasma at 2.5 h in all healthy volunteers following intake of
pure 5-CQA (400 mg, approximately corresponding to two cups of coffee). Therefore, it has
been suggested that 5-CQA is absorbed through at least two pathways. One pathway may
involve immediate absorption of intact 5-CQA in the stomach and/or upper gastrointestinal
tract, whereas the other involves slow absorption of intact 5-CQA throughout the small
intestine [4]. Additionally, Erk et al. [170] reported that a high intake of 5-CQA from coffee
could modify gastrointestinal transport and influence its absorption and metabolism.

5.2. Metabolization of CGAs

The human metabolism of CGAs is somewhat complex but well defined. The main
pathways of CGAs metabolism are as follows: (i) absorbed non-transformed, (ii) absorbed
in the stomach or small intestine, with or without hydrolysis, and then conjugated (sulfate,
glucuronide, or methyl) or otherwise metabolized (hydrogenated, α- or β-oxidized, con-
jugated with glycine), (iii) undergo gut microbiota-mediated metabolism, after which the
microbial catabolites are absorbed without further change, or (iv) undergo metabolism via
the intestinal microbiota, after which the microbial catabolites are absorbed and undergo
mammalian phase II metabolism (conjugation with glucuronide, sulfate, methyl, or glycine)
or are otherwise metabolized (hydrogenated, dehydrogenated, α- or β-oxidations) [171].
Thus, it has been found that 33% of the total intake of 5-CQA from the diet is absorbed
intact, unhydrolyzed, in the stomach or upper intestine and subsequently passes into the
bloodstream. About 7% of the total intake of 5-CQA is absorbed through the small intestine
by hydrolysis to CA and QA. Furthermore, part of the metabolism of 5-CQA is mediated
by the colonic microbiota. In some studies, traces of 5-CQA have been found in the urine
(0.3–2.3%) after ingesting foods with a high content of this phenolic compound, indicating
that the absorption of intact 5-CQA is intensively metabolized [163,165]. It is important to
highlight that the absorbed part of 5-CQA and its metabolites can induce various physio-
logical effects through the bloodstream, while unabsorbed 5-CQA can induce biological
effects throughout the digestive tract, such as modification of the gut microbiota [62,165].

6. Incorporation of CGAs into Food Matrices

The growing demand for healthier foods and better lifestyles is relevant for consumers
nowadays. Nutrition scientists and food scientists have established that the best way to
enrich and fortify food products in overall nutrient intake with minimum side effects is
by using extracts and compounds from natural sources (cereals, greens, fruits, etc.) [172].
Chlorogenic acids obtained from distinct vegetal species and their wastes can be used as
natural ingredients for different food products as shown in Table 2. Plant foods such as
vegetables and fruits are the main source of calories, carbohydrates, and other essential
compounds for the human body and play an important role in human health, such as
polyphenols [173]. To increase the intake of polyphenols and the level of acceptance among
consumers around the globe, studies on food technology using polyphenols have been
increasing over the last couple of decades. Polyphenols are a very significant source of
phytochemicals which have been used by the pharmaceutical industry for many years in a
wide variety of products [174].
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Table 2. Principal incorporation of coffee extracts with CGAs into food products a.

Food Product Technological
Improvement Extract Conditions CGAs Content in

Green Coffee Extract Major Findings Sensory Evaluation References

Fried doughnuts Dough stability Heated at 110 ◦C for
15 min and Freeze-dried 25.5 g/100 g

Dough stability was not affected
during mixing and GCA showed

high stability increasing
antioxidant activity

No significant difference up to
1% of GCE addition

(Score 5–4.9)
[175]

Instant coffee Fortification
Heated at high pressure
at 180 ◦C for percolation

and extraction
14.0 g/100 g

Enriched coffee with green coffee
extract showed high antioxidant

potential but decreased
sensory score

No significant difference in C.
arabica samples
(Score 7.3–6.8)

[176]

Soymilk Fortification
Heated aqueous

extraction (1:10 w/v) at
100 ◦C for 1 h

N.A.

Phenolic compounds and
antioxidant activity content

increased significantly, and overall
digestibility improved

No decrease in the acceptance
level up to 0.25 mg/mL of CGA

(Overall score 4.3–5.2)
[177]

Wheat bread Dough stability and
fortification

Heated aqueous
extraction at 60, 70 and

80 ◦C for 1 h
37.3 g/100 g

GCE addition increased CGAs and
antioxidant activity in bread, baking

quality was not affected.

Maximum level of GCE without
adverse effect was 1.5% flour

basis (Overall score 64–60)
[178]

Liquid Khask Enrichment

Heated aqueous
extraction (1:10 w/v) at
100 ◦C for 30 min and

encapsulated with water
and oil emulsion

39.1 g/100 g

Encapsulated GCE protected color.
pH remained unaffected and

rheological properties were not
affected and antioxidant activity

highly increased

No significant difference up to
1% of encapsulated GCE
addition(Score 4.7–4.9)

[179]

Dark
chocolate Enrichment

Heated aqueous
extraction (1:5 w/v) at

80 ◦C for 30 and
encapsulated

N.A.

Addition of CGAs (free and
encapsulated) had no significant

effect on dark chocolate color.
However, the addition of free or

encapsulated CGAs had a
significant effect on chocolate flavor.

This adverse effect of CGAs on
chocolate flavor were lower in the
case of encapsulated form addition

No significant difference in the
bitterness up to 50.1 mg/5 kg of

encapsulated CGAs
(Score 1.5–2)

[180]
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Table 2. Cont.

Food Product Technological
Improvement Extract Conditions CGAs Content in

Green Coffee Extract Major Findings Sensory Evaluation References

Yoghurt Enrichment

Heated aqueous
extraction

(1:6 w/v) at 70 ◦C for 1 h.
The extract was filtered

and concentrated by
evaporation (70 ◦C,

30 min) and
spray drying

46.5 g/100 g

Green coffee-enriched
yoghurt have desirable pH (4.7),

acidity, color, and
minimum syneresis.

The flavor, texture and other
sensory attributes of yoghurt

were improved.

Higher score in overall
acceptance up to 2% w/v of GCE [181]

a GCE, green coffee extract; GCA, green coffee addition; N.A., not available.
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Corso et al. [176] studied the antioxidant properties of CGAs and enriching coffee
itself. CGAs extract was obtained by a series of percolation stages with pressure water at
180 ◦C in the first and 100 ◦C at the final stages. The extract was freeze-dried and added
to instant coffee formulations. It was added to obtain a concentration of 7% polyphenols
in four different instant coffee formulations. The green coffee extract had 14% CQAs, and
5-CQA was the most abundant [25]. The formulation of instant coffee increased its 5-CQA
content and showed 3.18 g/100 g compared to the control 1.20 g/100 g. Moreover, CGAs
addition increases antioxidant activity in the instant coffee (evaluated by the ABTS and
Folin methods); for enriched coffee, the antioxidant activity was in a range of 30.9–32.0 g
of Trolox/100 g, whereas for the control, the content was 24.0–25.6 g of Trolox/100 g.
Additionally, the authors reported that the antioxidant activity is not significantly affected
by the roasting process. Since the polyphenols reduction (CGAs) is balanced by increasing
melanoidin content, Vignoli et al. [182] had similar results. Moreover, no significant
difference was found when the sensory evaluation was performed, and all formulations
were accepted, obtaining average scores from 6.6 to 7.7 on a hedonic 10-point scale.

Bakery products are well-known sources of energy and nutrients such as carbo-
hydrates, proteins, minerals, and vitamins. However, these also lack antioxidant-rich
polyphenolic compounds, fiber, minerals, vitamin B6, thiamine, folate, vitamin E, and
some phytochemicals, mostly because the bakery products are formulated with refined
wheat flour [183,184]. A study to determine the functional and technological properties
of GCE rich in hydroxycinnamic acids (CGAs) in wheat flour and bread was made by
Mukkundur et al. [178]. Three levels of GCE obtained from defatted and decaffeinated
C. canephora green coffee beans were added at 1, 1.5, and 2% on wheat flour. A decrease
in total polyphenols (TTP), CGAs, and radical scavenging activity (RSA), 20.0, 36.2, and
93.1%, respectively, was observed due to the high temperature of extraction (80 ◦C). While
the extract obtained at 60 ◦C was higher for TTP, CGAs, and RSA (21.4, 37.3, and 94.4%,
respectively) due to the thermal sensibility of polyphenols [41]. In bread, CGAs addition
was found to improve overall key parameters. First, the addition of 2% GCE improved
the bread volume (565 cc) compared to the control (525 cc) due to polyphenols’ interaction
with gluten proteins and starch giving more tenacity and extensibility to the dough. GCE
addition increased the greenness of bread crumb and reduced yellowness and lightness.
This effect was expected because the green color indicates CGAs hydrolyzation and thermal
degradation [41]. The texture of the bread was not significantly affected by GCE addition;
however, the bread containing 2% GCE was softer (4.38 N) compared to the control (4.81 N).
The content of TPP, RSA, and CGAs in bread significantly increased in all treatments; for
TPP, the content was 0.16, 0.25, and 0.34% (for 1, 1.5, and 2% GCE, respectively) compared
to the control (0.02%). RSA content increased from 12.7% for the control to 68.5% at the
highest level of GCE addition. CGAs content increased from 0.28 to 0.54% with the treat-
ments, whereas CGAs were not detected in control. Finally, for the sensory evaluation, the
authors reported that despite the benefits of GCE addition in all three levels, the maximum
level of enrichment without affecting the overall quality of the bread (especially taste) was
1.5% GCE.

The influence of addition of green coffee extract (GCE) prepared in aqueous extraction
at 110 ◦C for 15 min with high content of chlorogenic acids in fried doughnuts was ana-
lyzed [175]. The GCE had a content of 25.5 g/100 g of polyphenols. The most abundant
polyphenol was 5-CQA, two isomers of 5-CQA hydrolyzation (3-CQA and 4-CQA), and
another ferulic compound (5-FQA). Results indicated a significant increase of antioxidant
activity up to 37, 45, and 50% using three addition levels (0.25, 0.50, and 1%, respectively)
compared to the control. The authors compared this enhancement with another extract
from a different source of chlorogenic acids (green tea extract) GTE, and they found that
GTE addition increased antioxidant activity by 22, 28, and 29% compared to the control.
These data confirm that green coffee remains the vegetal species with the highest concen-
tration of polyphenols, for example, CGAs. However, it is relevant to consider that the
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frying process reduces the 5-CQA concentration at the final by hydrolyzing the diesters
to monoesters.

Moreover, the addition of raw coffee beans in food products has been attempted.
Another study on wheat bread properties was developed by Zain et al. [185]. The authors
proposed to use grounded green coffee beans (GCB) instead of an extract to substitute the
flour at three levels of addition (3, 5, and 7% GCB). After baking, there was a significant
increase in the TPP content since the addition of 3, 5, and 7% GCB increased TPP in bread up
to eight times at the highest level (1.61 mg GAE/g) compared to control (0.26 mg GAE/g)
and even at the first level (3% GCB) TPP content was nearly twice as much compared to
whole wheat bread. Since polyphenols were detected in control wheat bread, the authors
concluded that it was the ferulic acid present naturally in wheat flour after the milling
process and amino acids and smaller peptides formed in proteolysis of protein wheat flour
during fermentation of bread. Antioxidant properties of the bread were also analyzed,
and they found that with GCB addition, the RSA increased significantly (up to three times
more) than the control. As explained by several authors, the increase in antioxidant activity
is mainly attributed to the presence of phytochemicals in GCB (mainly chlorogenic acids).
However, GCB addition did affect the sensory properties of bread. According to the sensory
evaluation (shape, texture, attractiveness, color, chewability, odor, and taste) for control,
the overall score was around 7.3–7.5, whereas for 3, 5, and 7% GCB bread, the scores
were significantly lower (6.3, 5, and 4.2, respectively). Color and volume of bread were
negatively affected; the more GCB was added, the color of the crumb and crust turned
green and reduced volume. This suggested that CGB addition probably affects the stability
of the gluten matrix, making a compact structure. It is well known that bread types depend
on cultural and geographic requirements. Therefore, enriched food formulation must be
designed according to the target market [186].

The fortification of dairy products has increased in the last couple of decades [187].
A study on the field of fortification of dairy products using encapsulated green coffee
extract was made by Rahpeyma et al. [179]. The extract was obtained with boiling water at
110 ◦C for 30 min, cooled at room temperature and filtered. The authors used an emulsion
microencapsulation technique using glycerol monostearate (GMS) and canola oil, and
shaking at 4000 rpm and 70 ◦C. They used three levels of GCE addition (0.25, 0.5, and 1%)
and three levels of encapsulated green coffee extract (EGCE) at 1.25, 2.5, and 5% EGCE.
The TPP content and RSA of the extract were found to be 39 and 74%, respectively. Under
the microencapsulation condition, the coating material greatly impacted the retention of
phenolic compounds and antioxidant activity of the extract when added to kashk. The
enrichment of kashk does not affect rheological properties such as viscosity across all
treatments. Noteworthily, acidification by GCE, EGCE, and lactic fermentation caused
a decrease in the negative electric charge of the micelles by degrading the calcium and
inorganic phosphates.

Another study on dairy products was developed by Dönmez et al. [188]. They added
green coffee powder (GCP) at two levels (1 and 2%) into homemade yogurt to analyze
the polyphenols´ activity and interaction with proteins from yogurt. The coffee addition
reduced the serum release rate (syneresis) in yogurt. The serum separation was significantly
restricted by half of the control rate with the highest addition level of GCP. Polyphenols are
highly reactive to proteins since they can form protein-polyphenol complexes through mul-
tiple weak interactions (mainly hydrophobic, van der Walls, and hydrogen bridge-binding)
formed between protein side chains and polyphenol aromatic rings [189]. However, in-
teractions between GCP and proteins were strengthening the gel structure of yogurt and
hence, affected its rheological behavior. The yogurt consistency was increased during the
first 14 days of storage. There was no significant change in flow index of yogurt with the
highest level of GCP during 21 days of storage. Color significantly changed with GCP
addition; green color increased over storage time up to 40% of the greenness for day 21.

In dairy-free milk-based products, the effect of CGA addition was investigated by
Seczyk et al. [177] with green coffee phenolics (CGAs) added to soymilk. The extract was
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obtained by aqueous heat-assisted extraction using 10 g of green coffee, boiled in 100 mL of
water at 110 ◦C, allowed to cool down at room temperature for 1 h with continuous orbital
shaking and then filtered (Whatman No. 4). Six levels of addition were used in the study
(0.0025, 0.05, 0.1, 0.25, 0.5, and 1 mg of phenolics (GAE, gallic acid equivalent) per 1 mL).
Compared to the control, the content of phenolics increased up to 70% at the highest level
of addition of CGAs. Antioxidant activity and reducing power were significantly affected,
increasing the content up to 3.5–13.8 times more than the control.

Furthermore, CGAs addition also improved the digestibility of starch and proteins
in soymilk, increasing digestibility up to 17.9% higher than the unfortified soymilk. CGE
addition improved soymilk aroma and texture, with grass-lemon notes. The taste was posi-
tively affected by CGAs addition showing a score range between 5–5.3 whereas the control
had a 4.7 score; however, at the highest level of fortification, the taste score significantly
decreased (3.0) [177].

7. Future Perspectives

Coffee chlorogenic acids have multifunctional properties as phytochemical and nu-
traceutical. Because of these properties, 5-CQA received considerable attention for its
potential functional effects. With the recent advances in food fortification and the growing
research interest in CGAs from different sources, its use as a natural additive to increase
the intake of phenolic compounds is attractive for the food industry. There are different
methods to recover CGAs; however, these extraction methods are conditioned by their
physical and chemical sensitivity. Extraction methods such as electric field pulse and
activated carbon purification might be used to reduce the use of toxic solvents and high
temperatures, which could contaminate and reduce CGAs content in the extract. However,
more research on optimization for obtaining solvent-free coffee chlorogenic acid extracts
is needed.

The potential to fortify foods with CGAs would represent an option for delivering
antioxidant concentrations beneficial to sustain wellbeing and health in humans, pets,
and farm animals. Due to CGA’s susceptibility to temperature, pH, and light, some food
processes are still challenging since they will reduce the content of CGAs in the final
product. Several studies demonstrated increased antioxidant activity without affecting
key quality parameters in baked products. CGAs are highly stable in yogurt and soymilk,
enhancing the flavor and color while increasing their antioxidant activity. However, for
products such as chocolate, more research is needed since CGAs addition significantly
affects the flavor; for this reason, more research on the encapsulation of CGAs by different
methods needs to be conducted to decrease the bitterness of foods enriched with CGAs
is needed.
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177. Sęczyk, Ł.; Świeca, M.; Gawlik-Dziki, U. Soymilk enriched with green coffee phenolics—antioxidant and nutritional properties in

the light of phenolics-food matrix interactions. Food Chem. 2017, 223, 1–7. [CrossRef]
178. Mukkundur Vasudevaiah, A.; Chaturvedi, A.; Kulathooran, R.; Dasappa, I. Effect of green coffee extract on rheological, physico-

sensory and antioxidant properties of bread. J. Food Sci. Technol. 2017, 54, 1827–1836. [CrossRef]
179. Rahpeyma, E.; Sekhavatizadeh, S.S. Effects of encapsulated green coffee extract and canola oil on liquid Kashk quality. Foods Raw

Mater. 2020, 8, 40–51. [CrossRef]
180. Zohreh, D. Properties of dark chocolate enriched with free and encapsulated chlorogenic acids extracted from green coffee. Braz.

J. Food Technol. 2020, 23, e2019118. [CrossRef]
181. Pimpley, V.A.; Maity, S.; Murthy, P.S. Green coffee polyphenols in formulations of functional yoghurt and their quality attributes.

Int. J. Dairy Technol. 2022, 75, 159–170. [CrossRef]
182. Vignoli, J.A.; Bassoli, D.G.; Benassi, M.T. Antioxidant activity, polyphenols, caffeine and melanoidins in soluble coffee: The

influence of processing conditions and raw material. Food Chem. 2011, 124, 863–868. [CrossRef]
183. Yu, L.; Nanguet, A.L.; Beta, T. Comparison of antioxidant properties of refined and whole wheat flour and bread. Antioxidants

2013, 2, 370–383. [CrossRef]
184. Prückler, M.; Siebenhandl-Ehn, S.; Apprich, S.; Höltinger, S.; Haas, C.; Schmid, E.; Kneifel, W. Wheat bran-based biorefinery 1:

Composition of wheat bran and strategies of functionalization. LWT—Food Sci. Technol. 2014, 56, 211–221. [CrossRef]
185. Zain, M.Z.M.; Baba, A.S.; Shori, A.B. Effect of polyphenols enriched from green coffee bean on antioxidant activity and sensory

evaluation of bread. J. King Saud Univ. Sci. 2018, 30, 278–282. [CrossRef]

http://doi.org/10.1186/1472-6823-14-55
http://www.ncbi.nlm.nih.gov/pubmed/25011647
http://doi.org/10.1016/S0891-5849(01)00506-8
http://doi.org/10.1016/j.biopha.2006.07.084
http://doi.org/10.1039/9781788015028-00364
http://doi.org/10.1093/jn/137.10.2196
http://doi.org/10.1093/jn/136.5.1192
http://doi.org/10.1093/jn/131.1.66
http://doi.org/10.2174/1570159X14666160325120625
http://doi.org/10.3945/jn.108.095554
http://www.ncbi.nlm.nih.gov/pubmed/19022950
http://doi.org/10.1021/jf303440j
http://www.ncbi.nlm.nih.gov/pubmed/22900702
http://doi.org/10.1002/mnfr.201200222
http://www.ncbi.nlm.nih.gov/pubmed/22945604
http://doi.org/10.1111/1541-4337.12518
http://doi.org/10.1021/acs.jafc.7b05830
http://doi.org/10.1201/9781315371153
http://doi.org/10.1016/j.foodres.2012.10.006
http://doi.org/10.1007/s13197-015-2163-y
http://doi.org/10.1016/j.foodchem.2016.12.020
http://doi.org/10.1007/s13197-017-2613-9
http://doi.org/10.21603/2308-4057-2020-1-40-51
http://doi.org/10.1590/1981-6723.11819
http://doi.org/10.1111/1471-0307.12813
http://doi.org/10.1016/j.foodchem.2010.07.008
http://doi.org/10.3390/antiox2040370
http://doi.org/10.1016/j.lwt.2013.12.004
http://doi.org/10.1016/j.jksus.2017.12.003


Molecules 2022, 27, 3400 23 of 23
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