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Abstract

Background. Scar and vulnerability models assert that increased psychopathology may predict
subsequent executive functioning (EF) deficits (and vice versa) over protracted timescales, yet
most prior work on this topic has been cross-sectional. Thus, we tested thewithin- and between-
person relations between EF, depression, and anxiety.
Methods. Older adult participants (n = 856) were assessed across four waves, approximately
2 years apart. Performance-based EF and caregiver-rated symptommeasures were administered.
Bivariate latent change score and random-intercept cross-lagged panel models were conducted.
Results. Within persons, random-intercept cross-lagged panel models revealed that prior
greater depression forecasted lower subsequent EF, and vice versa (d = �0.292 vs. �0.292).
Bivariate dual latent change score models showed that within-person rise in depression pre-
dicted EF decreases, and vice versa (d = �0.245 vs. �0.245). No within-person, cross-lagged,
EF-anxiety relations emerged. Further, significant negative between-person EF-symptom rela-
tions were observed (d = �0.264 to �0.395).
Conclusion. Prospective, within-person findings offer some evidence for developmental scar
and vulnerability models.

In daily life, most of us depend on our global executive functioning (EF) capacity to effectively
accomplish tasks, communicate, handle emotions, make choices, prioritize goals, and solve
problems [1,2]. Global EF is defined as a group of multidomain cognitive control systems entwined
with attention, information processing, and other cognitive abilities [3,4]. Our global EF systems
comprise facets of inhibition (capacity to abstain from autopilot actions), working memory (WM;
ability to alter cognitive representations with incoming data in real-time), shifting (adeptness to
flexibly switch from one mental set to another) [5], and verbal fluency [6]. Relatedly, evidence has
shown consistently that language-based, temporal lobe-mediated verbal fluency ability (marked by
scores on diverse time-limited word generation on animal- and phonemic-cued tests) had strong
and unique relations with common EF variance (i.e., global EF capacity) in diverse youth and adult
samples [7–10]. Given its importance, EF problems have been linked to issues with career, social
relationships, diet, nutrition, and health [11,12]. Executive dysfunction-related health problems
include cardiorespiratory, metabolic, neuroendocrine, and psychiatric disorders [13,14]. Thus,
understanding the risk factors and consequences of EF decrements is essential.

Scar theories propose that increases in psychiatric symptoms can precede and predict future
EF decline. Specifically, scar models posit that chronic increased depression and anxiety may
build up oxidative and inflammatory-stress, thereby adversely impacting EF-related brain
regions over protracted durations [15–17]. Relatedly, scar models such as the vascular- [18]
and executive dysfunction syndrome-depression [19] hypotheses assert that increased depres-
sion and anxiety could impair future EF via buildup of tissue injury (e.g., lacunes, microinfarcts,
and white matter hyperintensities) in cardiovascular systems, cognitive control-, and reward
processing-related brain regions, over long timescales [20]. These brain areas might include
frontal–striatal pathways (e.g., dorsolateral prefrontal cortex, basal ganglia, thalamus, and
anterior cingulate cortex) [21,22].

Thus far, 47 longitudinal studies have offered support for scar models. For instance, higher
depression severity during adolescence was associated with lower vocabulary score in early
adulthood 8 years later [23]; however, whether such pattern applied to various stages in
adulthood could not be inferred from that study. Other studies suggested such a possibility.
Swedish and American adults with (vs. without) major depression displayed worsened episodic
memory, EF, or verbal fluency after 6 months to 5 years despite symptom remission
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[24,25]. Likewise, among mid-life and older community adults,
increased anxiety was related to reduced immediate and delayed
auditorymemory abilities following 12 years [26]. Similarly, 2meta-
analyses of 43 studies showed that heightened anxiety and depres-
sion dovetailed with larger EF decline and incidence of major
neurocognitive disorders in diverse community and clinical sam-
ples across 1–17 years [27,28].

Simultaneously, vulnerability models argue that EF decline can
function as a precursor of later heightened depression and anxiety.
Vulnerability models assert that poorer EF may forecast future
anxiety and depression across prolonged periods due to chronic
problems with disengaging from negative self-referential persever-
ative thinking (e.g., worry and rumination) [29,30]. Likewise, EF
deficits canmake it perpetually hard to detach from threats, leading
to excessive focus on anxiety-inducing factors in one’s surround-
ings and risk for increased anxiety [31,32]. Moreover, it has been
thought that poorer EF, especially WM, can predict increased
depression and anxiety across long durations, in part due to diffi-
culties with adjusting to various changing emotion-eliciting con-
texts in versatile and optimal ways [33]. In sum, vulnerability
theories argue that worse EF may forecast increased depression
and anxiety over long durations.

To date, 31 prospective investigations have empirically sup-
ported vulnerability theories. For example, an earlier study dem-
onstrated that poorer WM was related to future chronic course of
increased depression [34]. Likewise, reduced inhibition,WM, shift-
ing, verbal fluency, and other cognitive functioning indices were
connected with pathological worry dimensionally and categorically
9 years later in community adults [35]. More recently, meta-
analytic data on 29 studies (n = 121,749) showed that cognitive
deficits were associated with increased major depression severity
following several months to 45 years in diverse clinical and
community-dwelling samples [36].

However, the mostly two-time-point, between-person, regres-
sion studies testing the prospective relations between mental
health symptoms and global EF to date introduce shortcomings
to clinical science. Such methods do not account for the nesting of
repeated assessments within persons to capture change-to-future
change trajectories across time [37]. Mounting global pressures
related to neuropsychiatric illnesses, increasing life expectancy,
and aging [38–40] make it crucial to explore whether change in
global EF over long durations may be related to future change in
mental illness during adulthood development. Further, between-
person differences across time may be due to stable variations
observed across the lifespan [41], or to individual differences in
aging-associated rate of EF decrements [42–45]. The latter possi-
bility can only be captured by using within-person methods that
also capture change. Moreover, the foregoing scar and vulnera-
bility theories posit that EF-symptom relations unfold within
persons across long durations [46–51]. Awareness of within-
person prolonged trajectories of increased depression or anxiety,
EF decrements, and their covariation may guide the design of
personalized prevention, diagnostic, and treatment efforts that
rely on idiographic (or within-person) more than between-person
data, as part of precision psychiatry [52–54]. It is also important to
note that observations of between- and within-person differences
in EF and psychopathological symptoms do not always align with
each other [55–57]. To broaden and deepen comprehension of EF
and mental health in mid-life and older adulthood, within-person
(co)variations and change must be considered. Tethering within-
person data analytic approaches with longitudinal study designs is
thus important to comprehend the bidirectional within-person

changes in EF and subsequent changes in symptoms (and vice
versa).

Two cutting-edge techniques that attain these aims are random-
intercept cross-lagged panel models (RI-CLPM) [58] and bivariate
dual latent change score models (BLCS) [59]; two forms of longi-
tudinal structural equation modeling (SEM). These longitudinal
SEM approaches benefit researchers by accounting for prior lagged
relations and regression to the mean, minimizing measurement
unreliability, and using all available values instead of listwise dele-
tion [57]. Further, by adjusting for temporally stable between-
person differences and autoregressive effects, these models can test
if change in one variable across a previous time-period or time-lag is
associated with change in another variable at the next time-period
or time-lag within persons. Accordingly, by evaluating lead–lag
change-to-future change connections, RI-CLPM and BLCS models
move us toward the ability to draw causal inferences [60]; inquiries
essential to clinical science.

Thus far, three studies of adult participants have tested the
longitudinal, dynamic, within-person relations between EF and
anxiety, depression, or pertinent concepts with BLCS. Using BLCS,
increase in anxiety was related to cognitive functioning decline in
older adults [57]; despite that, the two-wave study prevented
understanding of how symptom change predicted subsequent EF
change (and conversely). Relatedly, BLCS models across three
waves showed that 9-year growth in excessive worry dovetailed
with future 9-year decline in global and unique EF facets [49];
however, whether change in EF forecasted later change in worry
was not examined. Another five time-point study demonstrated
that rise in trait neuroticism at one time-lag preceded and linked to
reductions in spatial processing, WM, and processing speed at the
next time-lag [57]; nonetheless, one-item assessments of cognitive
functioning were used in the study. To our knowledge, no studies
have tested EF-psychological symptom relations in older adults
with RI-CLPM. However, a recent study in youths that utilized
RI-CLPM [61] suggested the possibility of EF problems serving as
risk factors for later increased depression and anxiety.

Buildingon this literature, this study aimed to examine thewithin-
person associations between a global EF composite (formed via a
latent composite of fivemeasures) and depression or anxiety severity
using RI-CLPM and BLCS in older adults. Based on scar theories, we
hypothesized that within persons, higher anxiety or depression
severity would reliably precede and relate to greater future EF decline
at the next time-point and time-lag.Moreover, based onvulnerability
models, we hypothesized that within persons, lower EF would fore-
cast subsequent rise or increased depression or anxiety severity at the
next time-point or time-lag. Last, using a SEM-based model com-
parison approach [62], we aimed to directly juxtapose the effect sizes
indicating the scar (vs. vulnerability) hypothesis to determine if any
differences emerged.

Method

Participants

The present study was a secondary analysis of the Aging, Demo-
graphics, and Memory Study (ADAMS) publicly available and
restricted-use datasets [63]. Ethical approval was provided by the
University of Michigan and Duke University Medical Center, and
all participants voluntarily consented to enroll. Participants
(n = 856) averaged 81.59 years of age (SD = 7.10, range = 70–
110), 58.53% were female, and 76.87% identified as White , com-
pared to the other 23.13% who identified African American or
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other ethnicities. In addition, 28.62% (n = 245) of the participants
needed support for dressing, feeding, or bathing based on caregiver
report, or were diagnosed with Diagnostic and Statistical Manual-
Fourth Edition-Text Revised (DSM-IV-TR) [64,65]—defined
dementia, major depressive disorder, stroke, or other neurological
condition. These dementia syndromes included probable and pos-
sible Alzheimer’s disease, cardiovascular, and other causes. All
DSM-IV-TR diagnoses were attained through expert consensus
with a multidisciplinary team of neurologists, psychiatrists, geriat-
ric psychologists, and other healthcare professionals [66]. The
online supplementary material (OSM) offers more details on the
sample characteristics.

Procedures

Participants completed performance-based EF measures and had a
significant other caregiver (e.g., spouse and children) who could
reliably report on their behavioral symptoms across multiple time-
points. Data were collected across four waves in 2004 (Time 1; T1),
2006 (Time 2; T2), 2008 (Time 3; T3), and 2010 (Time 4; T4)
[66]. The following caregiver-rated symptom assessment and EF
tests were administered.

Measures

Mental health symptoms
The widely used caregiver-rated Neuropsychiatric Inventory
(NPI) [67]—depression and anxiety domains were utilized to
assess past-month depression and anxiety severity in the form
of a structured interview. Caregiver ratings were used in this
study as self-reported mental health symptom severity data was
only available at T1 and T2 [63,68,69], and due to the reliable
nature of caregiver-reported data that tends to align with self-
rated symptom measures [70]. To measure depression, caregivers
were asked about the presence and duration of depression symp-
toms (e.g., sadness, irritability, feels worthless, and suicidal
thoughts) the participant may have exhibited. To assess for
anxiety, caregivers were inquired on the presence of any anxiety
symptoms (e.g., excessive worry, breathlessness, and behavioral
avoidance). Also, for each participant’s symptom domain, the
informants reported on the degree of the following four facets:
severity (3-point scale; 1 = mild to 3 = marked); change from past
typical behaviors (3-point scale; 0 = no; 1 = yes; 2 = exaggeration
of previous problems); distress (6-point scale; 0 = not at all to
5 = very severely or extremely). Supplementary Tables S1 and S2
in the OSM show that these four manifest indicators for the
depression and anxiety scales had excellent model fit using a
series of confirmatory factor analysis (CFA) at distinct time-
points. Further, the NPI has reliably shown strong internal con-
sistency, as well as convergent and discriminant validity
[67,71]. In this study, internal consistencies were high for the
depression severity (Cronbach’s αs = 0.93, 0.94, 0.92, and 0.93 at
T1, T2, T3, and T4, respectively) and anxiety severity scales
(αs = 0.93, 0.96, 0.93, and 0.90 at T1, T2, T3, and T4, respec-
tively).

Executive functioning
The following five measures of EF were used to create a composite
latent global EF composite: (a) controlled oral word association
(a verbal fluency assessment that captures unplanned generation of
words within a time limit that start with some assigned letter) [72];
(b) animal fluency (another time-limited verbal fluency test based

on the animal category) [73]; (c) serial 7 subtraction (extent of
accuracy of counting down from 100 by 7 within a time limit) [74];
(d) backward digit span (degree of accuracy of recall in reverse
order of integer strings of increasing length) [75]; and (e) symbol
digit modality test (level of accuracy of replacing a single-digit
integer for randomized displays of geometric patterns) [76]. These
EF assessments have been shown to have good internal consistency,
strong convergent, and discriminant validity [77–79]. In this study,
the αs for the global EF composite were strong across all time-points
(αs = 0.92, 0.83, 0.87, and 0.88 at T1, T2, T3, and T4, respectively).
Moreover, at each time-point, a composite global EF index was
created by standardizing each EF measure and averaging the scores
across EFmeasures. Further, exploratory factor analysis and a series
of CFA demonstrated that a one-factor latent global EF composite
had good model fit across waves of assessment (refer to page 4 and
Supplementary Table S3 of the OSM). In addition, these global EF
scores have been normed based on age and education, and appro-
priate adjustments weremade for participants with hearing impair-
ments [80–83]. Also, Supplementary Table S4 in the OSM shows
the descriptive statistics of the study variables based on SEM
analyses.

Data analyses

All longitudinal SEM analyses were performed with the lavaan
package [84] in R Version 3.6.3. Model fit was assessed utilizing
practical fit indices and heuristic cut-offs: confirmatory fit index
(CFI; CFI ≥ 0.90) [85] and root mean square error of approxima-
tion (RMSEA; RMSEA ≤ 0.09) [86]. To maximize all available data
points, we used full information maximum likelihood, the gold
standard [87], to manage missing data. In total, 16.29% of the data
were missing. Further, the data were missing completely at random
(χ2[df = 113] = 134.32, p = 0.084).

Next, we established longitudinal measurement invariance; a
prerequisite for longitudinal SEM [88]. We progressively evaluated
for configural invariance (equivalence of factor structure), metric
invariance (equal factor structure and item loadings [λs], freely
estimated item intercepts [τs], and item error variances [εs] across
the time-points), scalar invariance (equal factor structure, λs, and
τs, but freely estimated εs across time-points), and strict invariance
(equal factor structure, λs, τs, and εs, across time-points) [62]. To
test for measurement invariance, we conducted a Δχ2 difference
test. A statistically significant Δχ2 meant that the more (vs. less)
restricted model had poorer fit [89]. However, as Δχ2 is affected by
sample size despite negligible misfit changes, the following change
in practical fit indices, ΔCFI ≤ �0.01 or ΔRMSEA < +0.015 [90],
from the less restricted to more restricted models signaled mea-
surement nonequivalence.

The RI-CLPM was used to manage interdependent repeated
assessments nested within persons, and to distinguish between
within-person (dynamic state) variance and between-person (trait)
variance [91]. RI-CLPM procedures permitted us to test these
within-person reciprocal cross-lagged relations (γs) accounting
for within-person autoregressive effects (βs; level of one variable
forecasting its subsequent level), trait variances (αs), and regression
to the mean [92,93]. Of primary interest were the within-person
cross-lagged associations between level of EF at a prior time-point
(T� 1) and level of depression or anxiety symptom severity (SYM)
at the next adjacent time-point (T) following about 2 years (γs) (and
vice versa), as shown in Equations (1) and (2).

μ EFð Þ T½ � ¼ αY� EFð Þ T‐1½ � þβY� EFð Þ T‐1½ � þ γX� SYMð Þ T‐1½ � (1)
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μ SYMð Þ T½ � ¼ αX� SYMð Þ T‐1½ � þβX� SYMð Þ T‐1½ � þ γY� EFð Þ T‐1½ �
(2)

Concurrently, BLCS approaches were utilized to test if within-
person change in depression or anxiety symptom severity at a
previous time-lag (ΔT � 1) would be related to change in EF at
the next successive time-lag (ΔT) (and vice versa). BLCS is a
cutting-edge method that empowers researchers to test within-
person change-to-future change associations (coupling effects; δs)
after accounting for trait-level initial status, trait-level constant
change parameters (αs), and within-person autoregressive paths
(proportional effects; change in a variable predicting subsequent
change in itself; βs) [59]. The BLCSmodels relevant to our research
question can be denoted in Equations (3) and (4) as follows.

Δ EFð Þ ΔT½ � ¼ αY� EFð Þ ΔT�1½ � þβY� EFð Þ ΔT�1½ � þδX� SYMð Þ ΔT�1½ �
(3)

Δ SYMð Þ ΔT½ � ¼ αX� SYMð Þ ΔT‐1½ � þβX� SYMð Þ ΔT‐1½ � þδY� EFð Þ ΔT‐1½ �
(4)

As recommended, the within-person cross-lagged associations (γs)
in the RI-CLPM and within-person coupling effects in the BLCS
(δs) were constrained to be equal across waves of assessments to
reduce SEs in parameter estimates (refer to Supplementary
Figure S1 shows a BLCS model in [94]). Also, baseline psychopa-
thology and EF were controlled for in all models.

As we aimed to directly compare the scar and vulnerability
hypotheses, we contrasted a model that freely estimated the
cross-lagged or coupling effects (EF predicting future SYM and
conversely) to a model that constrained the cross-lagged or cou-
pling effects to equality. A statistically significant change (Δ) in χ2

value in comparing these two models would indicate notable dif-
ferences in the strength of effect sizes for one hypothesis versus the
other [62]. If the Δχ2 test was not significant, the more parsimoni-
ous model with equality constraints on cross-lagged or coupling
effects was chosen as the final model. Effect sizes were calculated

using the formula, Cohen’s d¼ β
SD βð Þ�

ffiffiffiffiffiffiffiffi
2
N

� �q
[95], where β is the

unstandardized regression estimate, SD(β) its standard deviation,
and N is the sample size. Cohen’s d values of 0.2, 0.5, and 0.8
indicated small, moderate, and large effects, respectively.

Power analysis

Following best practices [96], an a priori Monte Carlo power
analysis based on a conservative effect size of d = 0.20 for the
cross-lagged effects in the RI-CLPM and coupling effects (bidirec-
tional change-to-future change EF-symptom relations) in the BLCS
was performed using the RAMpath R package [97]. After 1,000
replications per condition, we observed 90.6–100.0% power to
detect significant within-person cross-lagged or coupling effects.
Further, there was 90.0–100.0% power to identify other significant
parameter estimates.

Results

Longitudinal measurement invariance

Supplementary Table S5 in the OSM shows the longitudinal mea-
surement invariance analyses for the constructs of interest. Overall,
strict level of equivalence (equal λs, τs, εs) was observed for the

constructs of depression severity, anxiety severity, and EF. There-
fore, conducting analyses using RI-CLPM and BLCS approaches
were appropriate.

Lagged relations between depression severity and executive
function

Table 1 displays all of the parameter estimates for the RI-CLPM
testing the cross-lagged relations between depression severity and
EF. The model with equality constraints on the cross-lagged effects
did not significantly differ from the model that freely estimated
those parameters (Δχ2[df= 1] = 0.017, p= 0.895). The parsimonious
model with equality constraints showed good model fit
(χ2[df = 24] = 45.160, p = 0.006, CFI = 0.984, RMSEA = 0.032).
Within persons, higher prior depression severity substantially pre-
dicted lower EF at the subsequent time-point (β = �0.073, 95% CI
[�0.119,�0.026], d =�0.292). Likewise, lower previous EF signif-
icantly predicted greater depression severity at the next time-point
within persons (β =�0.073, 95%CI [�0.119,�0.026], d =�0.292).
Also, between persons, higher random intercept depression severity
was significantly correlated with lower random intercept EF
(β = �0.055, 95% CI [�0.094, �0.016], d = �0.264).

Table 2 presents the parameter estimates for the BLCS models
examining the change-to-future change associations between
depression severity and EF. The freely estimated (vs. constrained)
models were not significantly different from each other
(Δχ2[df = 1] = 0.235, p = 0.628). The final model with equality
constraints on the coupling effects showed acceptable model fit
(χ2[df = 25] = 47.000, p = 0.005, CFI = 0.974, RMSEA = 0.039, 95%
CI [0.021, 0.057]). Within persons, greater growth in depression
severity at a prior time-lag significantly predicted EF decrement at
the next time-lag (β = �0.540, 95% CI [�0.955, �0.124],
d = �0.245). Likewise, within persons, EF decline at a previous
time-lag was significantly associated with larger increase in depres-
sion severity at the subsequent time-lag (β = �0.540, 95% CI
[�0.955, �0.124], d = �0.245). Figures 1 and 2 summarize the
analyses of the lagged relations between depression severity and EF.

Lagged relations between anxiety severity and executive
function

Table 3 shows the model parameter estimates for the RI-CLPM
evaluating the cross-lagged relations between anxiety severity and
EF. The freely estimated model was not significantly different from
the constrained model (Δχ2[df = 1] = 0.069, p = 0.792). The final
model with equality constraints on the cross-lagged effects dem-
onstrated goodmodel fit (χ2[df= 23] = 86.84, p < 0.001, CFI = 0.952,
RMSEA = 0.057). Within persons, no cross-lagged relations were
observed between prior anxiety severity and EF at the subsequent
time-point (β = �0.025, 95% CI [�0.101, 0.051], d = �0.062).
Likewise, no within-person cross-lagged relations were found
between previous EF and anxiety severity at the next time-point
(β = �0.025, 95% CI [�0.101, 0.051], d = �0.062). However,
between persons, higher random intercept anxiety severity was
significantly related to lower random intercept EF (β = �0.070,
95% CI [�0.104, �0.036], d = �0.395).

Table 4 shows the parameter estimates for the BLCS models
testing the change-to-future change relations between anxiety
severity and EF. The constrained (vs. freely estimated) models were
not significantly different (Δχ2[df = 1] = 0.005, p = 0.943). The final
model with equality constraints on the coupling parameters showed
acceptable model fit (χ2[df = 25] = 46.996, p < 0.001, CFI = 0.966,
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RMSEA = 0.057). Within persons, prior change in anxiety severity
at a previous time-lag was not significantly associated with change
in EF at the subsequent time-lag (β = �0.254, 95% CI [�0.951,
0.444], d = �0.068) and vice versa (β = �0.254, 95% CI [�0.951,
0.444], d = �0.068).1

Discussion

Partially supporting scar and vulnerability hypotheses, robust
RI-CLPM and BLCS methods showed that within persons, higher
prior level and change in depression (but not anxiety) severity

predicted greater reduced EF at the next time-point and subsequent
time-lag, and conversely. Simultaneously, these models demon-
strated stronger between-person, cross-sectional magnitude
between EF and anxiety compared to EF and depression severity.
Overall, findings concurred with up-to-date, cross-sectional,
between-person evidence from recent meta-analytic data (e.g.,
[36]). Results also extended an early seminal cross-sectional study
[98] which observed that whereas patients with (vs. without)
depression performed poorly on auditory and visual WM tasks,
patients with anxiety disorders attained scores comparable to
healthy controls. Findings also built on hierarchical linearmodeling
results that whereas inverse EF-depression relations tended to
predominate within persons, negative EF-anxiety associations
tended to be larger between persons [99]. The divergence between
within- and between-person findings for anxiety is likely due to the

Table 1. Random-intercepts cross-lagged panel model of DEP and EF across four time-points.

Estimate 95% CI Cohen’s d

Within-person cross-lagged effects

(DEP)[T-1] à (EF)[T] �0.073** [�0.119, �0.026] �0.292

(EF)[T-1] à (DEP)[T] �0.073** [�0.119, �0.026] �0.292

Within-person autoregressive effects

(DEP)[T-1] à (DEP)[T] 0.248*** [0.157, 0.338] 0.518

(EF)[T-1] à (EF)[T] 0.289** [0.074, 0.504] 0.252

Between-person covariances

(EF)[T] $ (DEP)[T] �0.027*** [�0.042, �0.011] �0.324

RI(EF)[T] $ RI(DEP)[T] �0.055** [�0.094, �0.016] �0.264

RI(DEP)[T] $ (DEP)[T1] 0.006 [�0.067, 0.078] 0.016

RI(EF)[T] $ (EF)[T1] �0.121*** [�0.176, �0.066] �0.415

Between-person intercepts

Mean of (DEP)[T1] 0.371*** [0.316, 0.426] 1.272

Mean of (DEP)[T2] 0.256*** [0.176, 0.336] 0.599

Mean of (DEP)[T3] 0.290*** [0.212, 0.368] 0.696

Mean of (DEP)[T4] 0.266*** [0.173, 0.360] 0.532

Mean of (EF)[T1] �0.000 [�0.058, 0.058] 0.000

Mean of (EF)[T2] �0.094* [�0.168, �0.020] �0.237

Mean of (EF)[T3] �0.655*** [�0.735, �0.575] �1.534

Mean of (EF)[T4] �0.785*** [�0.872, �0.698] �1.713

Residual variances

Variance of RI(DEP)[T1-T4] 0.000 – –

Variance of RI(EF)[T1-T4] 0.904*** [0.783, 1.025] 1.400

Variance of (DEP)[T1] 0.670*** [0.513, 0.827] 0.804

Variance of (EF)[T1] 0.089*** [0.059, 0.120] 0.534

Variance of (DEP)[T2-T4] 0.412*** [0.371, 0.453] 1.883

Variance of (EF)[T2-T4] 0.088*** [0.067, 0.109] 0.768

Note:Model fit indices: χ2(df = 24) = 45.160, p = 0.006, CFI = 0.984, RMSEA = 0.032, 95% CI [0.017, 0.046]. Within-person cross-lagged effects refer to level in DEP at a prior time-point (T-1) predicting
(à) future Δ in EF at the next adjacent time-point (T) (and vice versa). Within-person coupling effects and proportional effects, residual covariances between DEP and EF, as well as variances of
DEP and EF were each uniquely fixed to be equal across all three time-lags.
Abbreviations: CI, confidence interval; DEP, depression severity; EF, executive functioning; RI, random intercept.
*p < 0.05.
**p < 0.01.
***p < 0.001.

1As part of a sensitivity analysis, we determined that the results were similar
when analyses were restricted to a sample without baseline major depression
and cognitive or physical disabilities (n = 611), as shown on page 9 of the OSM.
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fact that between-person analyses do not account for individual
differences in person-specific changes across time. Whereas
between-person differences across time could be due to group dif-
ferences in stable variations observed across the lifespan, they may
not be capturing individual differences in aging-associated rate of EF
ormental health deterioration. In fact, whereas prior between-person
findings were interpreted to suggest that moderate levels of anxiety
(but not depression) could facilitate performance on EF tests up to a
certain point, this relation has not held up when examined at the
within-person level [100–102]. Another potential explanation per-
tains to the fact that anxiety (vs. depression) severity tends to bemore
stable across the lifespan, as illustrated by prospective [103] and
gene–environment studies [104]. Accordingly, higher stability and
lower variability in anxiety severity across the lifespan could translate
to stronger predominance of between-person, as opposed to within-
person, effects on EF over long durations. Clearly, more longitudinal
work is needed to test these notions.

Why did rise in depression severity consistently predict future
EF decline at the next time-point and time-lag within persons?
Overall, our findings offered support for scar theories. Conceivably,
recurrent depression episodes might be a factor in cognitive func-
tioning decline and diseased neurological aging processes (e.g.,
shrinkage in learning- andEF-linked brain regions andwhitematter
hyperintensities) over the years [105,106]. Biologically, elevated
depression might have this adverse effect on EF across prolonged
durations via chronic wear-and-tear of the hypothalamic–pitui-
tary–adrenal axis function, such as buildup of glucocorticoids and
proinflammatory cytokines (e.g., C-reactive protein) [107,108]. On
that note, elevated depression might precede or speed up the onset
of dementia, possibly via the accumulation of neurofibrillary pla-
ques and tangles in emotionmodulation-, EF-, and learning-related
brain areas [109–111]. Equally tenable are scar models centering on
behavioral, environmental, and lifestyle factors observed for
extended durations in depression (e.g., decreased physical exercise,

Table 2. Bivariate dual latent change score model of DEP and EF across four time-points.

Estimate 95% CI Cohen’s d

Within-person coupling effects

(DEP)[ΔT-1] à Δ(EF)[ΔT] �0.540* [�0.955, �0.124] �0.245

(EF)[ΔT-1] à Δ(DEP)[ΔT] �0.540* [�0.955, �0.124] �0.245

Within-person proportional effects

(DEP)[ΔT-1] à Δ(DEP)[ΔT] �0.462*** [�0.738, �0.185] 0.315

(EF)[ΔT-1] à Δ(EF)[ΔT] 0.093** [0.033, 0.152] �0.298

Between-person covariances

(DEP)[T-1] $ Δ(DEP)[ΔT] 0.010 [�0.038, 0.059] 0.038

(EF)[T-1] $ Δ(EF)[ΔT] �0.021 [�0.058, �0.017] �0.106

(EF)[T-1] $ Δ(DEP)[T-1] �0.092*** [�0.139, �0.045] �0.368

(EF)[ΔT] $ Δ(DEP)[ΔT] �0.010* [�0.018, 0.001] �0.192

(DEP)[T-1] $ Δ(EF)[ΔT] �0.014 [�0.032, 0.005] �0.149

(EF)[T-1] $ Δ(DEP)[ΔT] 0.002 [�0.031, 0.035] �0.011

(EF)[T] $ Δ(DEP)[T] 0.003 [�0.016, 0.022] �0.029

Between-person intercepts

Mean of (DEP)[T1] 0.367*** [0.313, 0.422] 1.258

Mean of Δ(DEP)[T] 0.079 [�0.000, 0.159] 0.185

Mean of (EF)[T1] 0.003 [�0.055, �0.061] 0.010

Mean of Δ(EF)[T] �0.103*** [�0.137, �0.068] �0.549

Variances

Variance of (DEP)[T1] 0.278*** [0.152, 0.405] 0.411

Residuals of Δ(DEP)[T] 0.395*** [0.315, 0.475] 0.925

Variance of Δ(DEP)[T] 0.000 – –

Variance of (EF)[T1] 0.696*** [0.646, 0.746] 2.673

Residuals of Δ(EF)[T] 0.067*** [0.055, 0.079] 1.072

Variance of Δ(EF)[T] 0.000 – –

Note:Model fit indices: χ2(df = 25) = 47.000, p = 0.005, CFI = 0.974, RMSEA = 0.039, 95%CI [0.021, 0.057]. Within-person coupling effects refer to change (Δ) in DEP at a prior time-lag (ΔT-1) predicting
(à) futureΔ in EF at the next adjacent time-lag (ΔT; and vice versa). Within-person coupling effects and proportional effects, residual covariances between DEP and EF, aswell as variances of DEP
and EF were each uniquely fixed to be equal across all three time-lags.
Abbreviations: CI, confidence interval; DEP, depression severity; EF, executive functioning.
*p < 0.05;
**p < 0.01;
***p < 0.001.
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Figure 1. Random-Intercept Cross-Lagged Panel Models Between EF and Depression Severity.
Note. **p < .01; ***p < .001. Δ = within-person change in construct from a time-lag to the next adjacent time-lag; DEP = depression severity; EF = executive functioning.

Figure 2. Bivariate Dual Latent Change Score Models Between EF and Depression Severity.
Note. **p < .01; ***p < .001. Δ = within-person change in construct from a time-lag to the next adjacent time-lag; DEP = depression severity; EF = executive functioning.
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suboptimal sleep, diet, and nutrition), that could impact proinflam-
matory and cardiovascular processes [112,113]. Future longitudinal
studies using RI-CLPM and BLCS models can further examine the
“neurotoxic” scar effect of increased depression.

Findings suggested that reduced EF functioned as a risk factor
for subsequent heightened depression (but not anxiety) within
persons. This could be because poorer EF may have compromised
abilities to harness “top-down” cognitive control over depressed
mood (but not necessarily anxiety symptoms), and to refocus
thoughts and actions to create and sustain more positive emotions
(e.g., via engaging inmood-lifting activities or searching for suitable
social support). However, the result that change in EF deficits did
not forecast change in future anxiety within persons was inconsis-
tent with prior longitudinal, between-person studies that found
evidence supporting the vulnerability hypothesis. For instance,

two studies showed that EF deficits were risk factors for generalized
anxiety disorder symptoms across time (e.g., [35,114]). Also, using
BLCS, two studies observed that within-person rise in anxiety or
trait neuroticism at a time-lag predicted worsened cognitive func-
tioning at the next time-lag [57,115] in community-dwelling Swed-
ish adults. Similarly, another recent BLCS study found that within
persons, worse cognitive functioning forecasted increased anxiety
and depression across 4 years in patients with Parkinson’s disease
[116]. Differences in data analysis (e.g., linear regression vs. SEM),
sample characteristics (e.g., age and data collection site), anxiety
measures (e.g., worry vs. anxiety symptoms), and study design (e.g.,
time-lags) might account for such variability in findings.

In addition, between persons, cross-sectional relations between
lower EF and greater depression or anxiety severity were reliably
observed. Observations at the between-person level are concordant

Table 3. Random-intercepts cross-lagged panel model of ANX and EF across four time-points.

Estimate 95% CI Cohen’s d

Within-person cross-lagged effects

(ANX)[T-1] à (EF)[T] �0.025 [�0.101, 0.051] �0.062

(EF)[T-1] à (ANX)[T] �0.025 [�0.101, 0.051] �0.062

Within-person autoregressive effects

(ANX)[T-1] à (ANX)[T] 0.120* [0.026, 0.213] 0.245

(EF)[T-1] à (EF)[T] 0.287 [0.070, 0.643] 0.151

Between-person covariances

(EF)[T] $ (ANX)[T] �0.008 [�0.020, 0.003] �0.128

RI(EF)[T] $ RI(ANX)[T] �0.070*** [�0.104, �0.036] �0.395

RI(ANX)[T] $ (ANX)[T1] 0.104* [0.006, 0.201] 0.200

RI(EF)[T] $ (EF)[T1] �0.125*** [�0.175, �0.074] �0.462

Between-person intercepts

Mean of (ANX)[T1] 0.229*** [0.182, 0.277] 0.916

Mean of (ANX)[T2] 0.141*** [0.064, 0.217] 0.347

Mean of (ANX)[T3] 0.176*** [0.109, 0.243] 0.497

Mean of (ANX)[T4] 0.149*** [0.76, 0.222] 0.387

Mean of (EF)[T1] �0.000 [�0.058, 0.058] 0.000

Mean of (EF)[T2] �0.096* [�0.171, �0.021] �0.243

Mean of (EF)[T3] �0.657*** [�0.733, �0.582] �1.617

Mean of (EF)[T4] �0.789*** [�0.875, �0.704] �1.762

Variances

Variance of RI(ANX)[T1-T4] 0.000 – –

Variance of RI(EF)[T1-T4] 0.912*** [0.816, 1.009] 1.786

Variance of (ANX)[T1] 0.297** [0.107, 0.486] 1.584

Variance of (EF)[T1] 0.088*** [0.052, 0.123] 0.338

Variance of (ANX)[T2-T4] 0.262*** [0.151, 0.373] 0.441

Variance of (EF)[T2-T4] 0.090*** [0.058, 0.122] 0.540

Note:Model fit indices: χ2(df = 24) = 33.102, p = 0.102, CFI = 0.982, RMSEA = 0.021, 95% CI [0.008, 0.031]. Within-person cross-lagged effects refer to level in ANX at a prior time-point (T-1) predicting
(à) future Δ in EF at the next adjacent time-point (T) (and vice versa). Within-person coupling effects and proportional effects, residual covariances between ANX and EF, as well as variances of
ANX and EF were each uniquely fixed to be equal across all three time-lags.
Abbreviations: ANX, anxiety severity; CI, confidence interval; EF, executive functioning; RI, random intercept.
*p < 0.05.
**p < 0.01.
***p < 0.001.
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with several community-based studies. For example, poorer EF
facets (e.g., shifting and inhibition) or global cognition have been
shown to consistently forecast increased worry, anxiety, and
depression at a later time in children [117], adolescents [118],
mid-life adults [35], and older adults [114], across 3–12 years.
Our study extended those findings by bolstering arguments that
the strength and sign of magnitudes between within- and between-
person associations might not coincide [56]. The field can benefit
from using prospective designs (e.g., cross-panel and ecological
momentary assessment) and SEM to clarify the between- and
within-person relations among EF, depression, and anxiety severity
across years and smaller timescales (e.g., within-day and day-to-day
fluctuations) [48,119].

Relatedly, the cross-sectional, between-person negative associa-
tions between anxiety or depression and EF in this study may be
accounted for by the attentional control theory [120] and

attentional scope model of rumination [121]. Note that these theo-
ries are inappropriate for explaining the within-person, cross-
lagged, and long-term change-to-future change relations between
EF and depression severity found herein as they argue that
symptom-EF perturbation relations occur across brief durations
or at one time-point [49,122]. Further, these models assert that
elevated symptoms could deplete finite EF resources for task-
pertinent processing and increased anxiety and depression would
be reliably linked to greater cognitive rigidity (i.e., difficulty disen-
gaging from threat or distractions) at a single time-point. Such
mechanisms may unfold through excessive repetitive negative
thinking, such as worry, brooding, and obsessions, as consistently
evidenced by cross-sectional or experimental meta-analytic data
[123–125].

Findings must be interpreted in light of study strengths and
limitations. Unmeasured third variables (e.g., genetics) [126] may

Table 4. Bivariate dual latent change score model of ANX and EF across four time-points.

Estimate 95% CI Cohen’s d

Within-person coupling effects

(ANX)[ΔT-1] à Δ(EF)[ΔT] �0.254 [�0.951, 0.444] �0.068

(EF)[ΔT-1] à Δ(ANX)[ΔT] �0.254 [�0.951, 0.444] �0.068

Within-person proportional effects

(ANX)[ΔT-1] à Δ(ANX)[ΔT] 0.006 [�0.597, 0.608] 0.002

(EF)[ΔT-1] à Δ(EF)[ΔT] 0.080** [0.025, 0.135] 0.274

Between-person covariances

(ANX)[T-1] $ Δ(ANX)[ΔT] �0.049*** [�0.077, �0.021] �0.336

(EF)[T-1] $ Δ(EF)[ΔT] �0.014 [�0.044, 0.016] �0.090

(EF)[T-1] $ Δ(ANX)[T-1] �0.101*** [�0.144, �0.058] �0.441

(EF)[ΔT] $ Δ(ANX)[ΔT] �0.007 [�0.017, 0.002] �0.134

(ANX)[T-1] $ Δ(EF)[ΔT] 0.007 [�0.016, 0.030] 0.056

(EF)[T-1] $ Δ(ANX)[ΔT] 0.031 [�0.016, 0.078] 0.124

(EF)[T] $ Δ(ANX)[T] 0.004 [�0.009, 0.018] 0.055

Between-person intercepts

Mean of (ANX)[T1] 0.224*** [0.178, 0.270] 0.935

Mean of Δ(ANX)[T] �0.052 [�0.155, 0.051] �0.096

Mean of (EF)[T1] 0.003 [�0.055, 0.061] 0.010

Mean of Δ(EF)[T] �0.102*** [�0.136, �0.068] �0.576

Variances

Variance of (ANX)[T1] 0.231* [0.056, 0.407] 0.246

Residuals of Δ(ANX)[T] 0.256*** [0.138, 0.374] 0.410

Variance of Δ(ANX)[T] 0.000 – –

Variance of (EF)[T1] 0.692*** [0.642, 0.742] 2.657

Residuals of Δ(EF)[T] 0.071*** [0.058, 0.084] 0.974

Variance of Δ(EF)[T] 0.000 – –

Note:Model fit indices: χ2(df = 25) = 46.996, p < 0.001, CFI = 0.966, RMSEA = 0.057, 95%CI [0.044, 0.071]. Within-person coupling effects refer to change (Δ) in ANX at a prior time-lag (ΔT-1) predicting
(à) futureΔ in EF at the next adjacent time-lag (ΔT; and vice versa). Within-person coupling effects and proportional effects, residual covariances between ANX and EF, aswell as variances of ANX
and EF were each uniquely fixed to be equal across all three time-lags.
Abbreviations: ANX, anxiety severity; CI, confidence interval; EF, executive functioning.
*p < 0.05.
**p < 0.01.
***p < 0.001.
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have contributed to observed outcomes. Additionally, although
other studies have observed within- or between-person relations
between depression and EF domains of shifting and inhibition [49],
consistent with theory and neuroanatomical evidence [127], these
EF facets were not measured herein. Also, as no structured diag-
nostic interviews were included, future studies that include
such diagnostic instruments could determine if the results would
be similar. In addition, given the predominantly White sample,
subsequent investigations can determine if outcomes extend to
culturally diverse populations by conducting multiple-group SEM
(e.g., [128]). Limitations notwithstanding, study strengths included
the large and well-powered sample size, administration of behav-
ioral EF and caregiver-rated symptom assessments, four-wave
cross-panel longitudinal dataset, and use of potent SEM
approaches.

If the pattern of results herein was replicated, some clinical
implications deserve consideration. Offering preventive interven-
tions at early signals of increased depression might assist with
remediating depression, but would also probably benefit EF capac-
ities. Moreover, the field could benefit from continuing to test EF
indices as reliable predictors or markers of treatment response for
depression and anxiety, as suggested by various studies (e.g.,
[129,130]). Relatedly, based on recent evidence, such efforts might
be augmented by investigating if cognitive-behavioral therapies
(CBTs) (e.g., behavioral activation, cognitive remediation,
problem-solving therapy, personalized, environment-focused,
and technology-facilitated CBTs) [131–136], mindfulness-based
interventions [137], EF training [138], and pharmacological treat-
ments [139], could simultaneously alleviate depression and
enhance EF capacities.
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