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Source, Spatial Distribution and 
Pollution Assessment of Pb, Zn, Cu, 
and Pb, Isotopes in urban soils of 
Ahvaz City, a semi-arid metropolis 
in southwest Iran
Ahad Nazarpour1, Michael J. Watts   2, Ayoub Madhani4 & Somayeh Elahi3

This study examined the status of toxic metal contamination of the urban industrial city of Ahvaz in 
Iran. Two hundred and twenty-seven surface soils from a depth horizon of 0–10 cm were collected 
from urban areas. In addition, 15 soil samples were collected to recognise the sources of Pb in urban 
topsoils in Ahvaz city. Mean concentration of Pb, Zn, Cu and As were 181 ± 167, 123 ± 118, 185 ± 167 
and 6.9 ± 8.9 mg.kg−1, respectively. Results of inter-element relationship among studied toxic metals 
revealed that Pb, Zn and Cu may have the same anthropogenic origin, whilst As originated from 
different sources. The results of pollution index (PI) and Nemerow pollution index (NPI) implied that Pb, 
Zn, and Cu had a moderate to high level of pollution. The Pb isotopic composition analysis suggested 
clear anthropogenic origins of Pb including industrial emission, vehicle exhaust and dust storm with the 
mean contributions of 47%, 15% and 7%, respectively, by a four-end member model.

With the rapid growth and industrial improvement in recent decades, urban environments are increasingly deter-
mining human health and wellbeing1. Urban surface soil as an attribute of urban environments is the primary 
sink of potentially toxic metals and other pollutants2–4. In general, subsurface and surface soil contains natural 
quantities of potentially toxic metals, so-called baselines. The baseline concentrations depending on the nature 
and constitution of parent rock material5–7. Amongst different pollutants, potentially toxic metals are harmful to 
public health and the urban ecosystem8,9. Humans are exposed to potentially toxic metals contained in soil via 
three main pathways, including inhalation, ingestion and skin exposure4,10–14. Potentially toxic metals can have 
adverse impacts on the central nervous system, cardiovascular, and bones10. Children are particularly at risk to 
potentially toxic metal pollution owing to rapid mental and physical development15. The anthropogenic origins 
of potentially toxic metals including lead (Pb), zinc (Zn), copper (Cu), and arsenic (As) are mainly attributed to 
traffic, vehicle emission, brake and tyre wear and street industrial activities. In addition, industrial discharge of 
potentially toxic metals into the urban environment can include: power and desalination plants, oil well drill-
ing activities, fuel combustion, local industrial zones, metallurgical industry, household release, weathering of 
asphalt and roadside material, atmospheric and dust deposition16–23. The common applied toxic metal pollution 
indices in soils and sediments can be defined in two main categories: single and integrated indices24–26. Firstly, 
single methods include the enrichment factor (EF), index of geo-accumulation (Igeo) and pollution index (PI), 
which which provide a measure of single metals and distinguish background from threshold pollution level26,27. 
Secondly, integrated indices such as the integrated pollution index (IPI), Nemerow pollution index (NPI), and 
risk index (RI) are applied to more than one metal and is an integration of toxic metal pollution values for every 
sampling point and can be composed by each of the single indices27,28.
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The measurement of total Pb in environmental samples provides valuable information regarding the level of 
contamination16,29. However, it does not provide an estimation of the origin of Pb. Usage of Pb isotopes can clear 
the origin of Pb contamination and differentiate the potential anthropogenic source of Pb from geogenic sources 
of Pb30–33. The main naturally occuring of lead isotopes are: 204Pb, 206Pb, 207Pb, and 208Pb. While 204Pb is the only 
non-radiogenic isotope and thus it’s concentration in soil is constant over time31, whilst 206 Pb, 207 Pb, and 208 Pb 
are 238U, 235U, and 232Th end members of the decay series, respectively. Since the Pb isotopic ratios are not consid-
erably influenced through physico-chemical fractionation processes such as smelting, purifying, manufacturing, 
and industrial activities29, different or overlapping isotopic ratios of Pb can be observed by integration of natural 
and anthropogenic sources of Pb34.

Ahvaz as a major industrialised center is one of the fastest developing metropolises in Iran. In this current study, 
we present the first comprehensive report on the spatial distribution, pollution level and source identification of main 
anthropogenic sources of toxic metals (Pb, Zn, Cu and As) by a systematic sampling strategy in urban topsoils in Ahvaz 
City. Previous reports have applied a geographical information sysytem (GIS) survey to study the distribution and 
hot-spot identification of potentially toxic metal pollution assesment in urban soils35–37. However, GIS-based work 
in soil environmental quality has never been reported in Ahvaz. The current study aims are: (1) to present the spatial 
distributions of potentially toxic metals in surface soils in Ahvaz city; (2) to identify the co-sources of pollutants with the 
application of robust multivariate analysis (principle component) and Pb isotopic signature; (3) to explore the degree 
of toxic metal pollution in the soils by applying pollution indices to provide a metric for hazard to human health; (4) 
application of Pb isotope tracing method to identify the source of metal pollution in surface soils.

Study Area
Ahvaz city as the capital of Khuzestan province, is situated in 31° 20N, 48° 40E 12 meters above sea level in the 
south west of Iran (Fig. 1) with 1.5 million inhabitants. It is situated in an arid area near Iraq, Kuwait, Syria, and 
Saudi Arabia, which are the major origins of sand and dust storm events in the Middle East. In addition, Ahvaz 
city is located on the Ahvaz oil field, one of the most important Iranian giant oil fields, with more than 450 active 
wells. The existence of great industrial hubs, i.e., Iran National Steel Industrial Group (INSIG), Khuzestan Steel 
Company (KSC), National Iranian Drilling Company (NIDC), Carbon Black (CB) company, local industrial 
zones, pipe industry, official and industrial facilities and a transportation junction from the Persian Gulf bays 
from the southwest to all parts of the country, has turned Ahvaz into one of the most important industrial, eco-
nomic, educational, cultural, manufacturing and high-tech industrial centres in Iran.

The average temperature in Ahvaz city is 32 °C in January, 38 °C in April and 49 °C in July. Average of annual 
rainfall is 213 mm per year, mainly falling December to April. The study area is characterised as mainly alluvial 
and sedimentary rocks, with sand and silt fractions comprised of quartz, and fine silt and clay fractions mainly 
controlled by clay minerals38.

Soils in this study were categorized as sandy loam to loam, and clay loam39. The pH of these soils was deter-
mined in CaCl2 0.01 M solution and ranged from 7.9 to 8.2, that suggest sub-alkaline property for topsoils in the 
study area40,41.

Material and Methods
Two hundred twenty-seven (227) topsoil samples from (0–10 cm) were collected in July 2015 (dry season), to pre-
vent rain/flood washing out the potentially toxic metals. A regular grid sampling plan was implemented to spec-
ify a systematic sampling system (240 km2). The study area was divided into 227 grid nodes of 1 km2. Each soil 
sample was carefully obtained from a composite of five sub-samples (0–10 cm), with a plastic trowel and mixed 
samples sieved through a 2 mm nylon mesh, air-dried and stored in polyethylene bags. Deionised water was used 
to clean the trowel before and after sample collection. Sampling sites are displayed in Fig. (1). In addition, eight 
sub-surface soil samples as a baseline were collected from eight pits at a depth of 120 cm.

To characterise metal concentrations of soil samples (<63 μm fraction) were digested using HNO3 (65%) + HCl 
(37%) + HF (40%) as stated in the EPA 3050B1 method42. Digested samples were passed through an 8μm mem-
brane filter and diluted with Milli-Q water. Selected toxic metals (Pb, Zn, Cu and As) were measured by flame 
atomic absorption spectrophotometry (PG990 Model). Quality control and quality assessment (QC/QA) 
included analytical duplicates samples, a reagent blank, standard reference materials (SRM- Montana I SRM-
2710) (multi-element soil standard OREAS45EA and OREAS24P) and procedural blanks provided a measure of 
analytical performance. The average of recovery values ± SD in SRMs for selected metals were Pb (99 ± 3.23, Zn 
(102 ± 10.25), Cu (99 ± 4.58) and As (99 ± 4.87), which indicating a good agreement between measured and certi-
fied value. Detection limits for selected metals in AAS was calculated by using 3 × SD (standard deviation) of con-
centration of ten blank samples. Detection limit were 0.05 mg.kg−1, 0.04 mg.kg−1, 0.02 mg.kg−1, and 0.03 mg.kg−1 
for Pb, Zn, Cu and As, respectively. Precision, specified by duplicate measurements was ±5% for all selected metals.

Fifteen topsoil samples and four samples used as ‘control’ soils from areas with low traffic density with no indus-
trial activities at a depth of 50 cm were collected and Pb isotopic ratios 204Pb, 206Pb, 207Pb, and 208Pb determined in 
samples along with SRM-981 (National Institute of Standards and Technology; NIST, USA) by Inductively Coupled 
Plasma-Mass Spectrometry (ICP-MS; Perkin-Elmer Elan 6100 DRCplus). Comprehensive analytic specifications 
of Pb isotope quantities are provided in Ettler, et al.43 and MacKenzie and Pulford44. Lead isotopes ratios includ-
ing 204Pb,206Pb, 207Pb, 208Pb that are used in current study have been frequently interpreted in previous studies45–47. 
Correction for mass bias during the determination of the isotopic ratios was performed using analyses of NIST 
SRM-981 after every three samples. The measured values for NIST SRM-981 were 206Pb/204Pb = 15.9773 ± 0.0054, 
207Pb/204Pb = 15. 3536 ± 0.0063, 208Pb/204Pb = 35.6784 ± 0.0175, 207Pb/206Pb = 0.894131 ± 0.0181, and 
208Pb/206Pb = 2.15342 ± 0.0123 (2σ, external standard deviation, n = 5). The standard errors for measurement of the 
206Pb/207Pb and 208Pb/206Pb ratios were <0.5% and <0.4% relative standard deviation (RSD), respectively.
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Descriptive and statistical analysis.  To assess the relationship among variables, correlation coefficient, 
multivariate analysis including robust principle component analysis (RPCA) was applied using R packages (see 
http://cran.r-project.org/). PCA is extensively applied to decrease data dimension and to extract relationship 
among the experimental variables. The PCA method involves an unsupervised classification process that includes 
determining the geochemical association based on correlation anlysis or similarity among variables to be classi-
fied according to their source similarity48.

Potentially Toxic Metal Pollution Assessment
Pollution index (PI) is a powerful tool for processing, analysing, and conveying raw environmental information 
to decision makers, managers, technicians, and the public49. The pollution index (PI) for every studied toxic metal 
and the Nemerow pollution index (NPI) for all studied toxic metals were calculated to assess the potential hazard 
associated with the soil samples. The PI is calculated as:
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where Ci is concentration of each toxic metal i, and Xa, Xc and Xp are threshold concentrations of toxic metal 
indicating enrichment, low pollution intensity, and high pollution intensity, respectively. Methods for estimations 

Figure 1.  (A) Location of Khuzestan province and study area in the southeastern part of Iran, (B) sampling 
sites, the image was made by ArcGIS10.2, background from Google Earth (Image: Google, Landsat/
Copernicus).
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of Xa, Xc and Xp are explained in Table (1). Then, the PI was categorized as follow: non-polluted for PI < 1, low 
pollution level (1 < PI < 2), moderate level of pollution (2 < PI < 3), and high pollution level (PI > 3)4:

The NPI of every sample i was calculated as4:

=
+NPI PI PI
2 (2)

i max i ave
2 2

where PIimax and PIiave are the maximum and average values of PI for every metal, respectively4, NPI values classify 
as: non-pollution (NPI ≤ 0.7); warning line of pollution (0.7 < NPI ≤ 1); low pollution level (1 < NPI ≤ 2); mod-
erate pollution level (2 < NPI ≤ 3) and high pollution level (NPI > 3).

Results and Discussion
Potentially toxic metal concentration.  Results of analytical data indicated that the coefficient of skew-
ness for Pb, Zn, Cu and As were extensively higher than zero, showing a right skewed distribution (Table 2). 
It shows that samples with high value of Pb, Zn, and Cu occurred in the collected samples and indicated the 
non-similar distribution of concentration values. In contrast, As with close to zero skewness coefficients demon-
strate a normal distributions. High standard deviation (SD) were observed in all potentially toxic metals except 
As, revealing the large variation of toxic metals in Ahvaz topsoils. The mean values of Pb, Zn, Cu and As in Ahvaz 
topsoils were noticeably greater than the corresponding baseline concentrations, demonstrating the pollution 
from anthropogenic sources and considerable contamination level in the Ahvaz city. Findings achieved for stud-
ied toxic metals are reviewed in the following sections:

Pb.  Total Pb concentrations had a considerable range from 9.36 to 793.3 mg.kg−1 with an average value of 
181±167 mg.kg−1, with 97% of topsoils higher than the baseline value of 12.5 ± 2.3 mg.kg−1. The average value of 
181 mg.kg−1 Pb in Ahvaz surface soil is higher than the target value of 85 mg.kg−1 suggested by The Netherlands 
soil contamination guideline50; greater than the 130 mg.kg−1 mean Pb found for 34 European cities51; 35 mg.kg−1 
Pb in 21 Chinese cities51; 112 mg.kg−1 Pb in Sialkot52; and lower than 231 mg.kg−1 in Baltimore53; 395 mg.kg−1 in 
Chicago54 in the USA; 208 mg.kg−1 in Islamabad55, Pakistan, and 262 mg.kg−1 in Naples, Italy29 (Table 3).

It is probable that in newly developed districts, the total amount of Pb in soils were less than 20 mg.kg−1 but in 
places with high residential and historical general, low level concentrations have elevated values from 30–100 mg.
kg−1 5. In this investigation, 44% of the soil samples had Pb values greater 100 mg.kg−1, these samples were located 
in areas with population density, high traffic volume, and presence of industrial hubs such as drilling activities 
(mostly oil-based mud pits), pipe industry, Black Carbon company (BC), Iran National Steel Industrial Group 
(INSIG), Khouzestan Oxin Steel Company (KOSC), Khuzestan Steel Company (KSC) and local industrial zones. 
Therefore, locations with high contamination of Pb, suggesting that human activities are the major sources of Pb 
in the topsoil of Ahvaz city.

Zn.  Even though Zn is an essential micronutrient for a healthy body, extreme amounts of zinc can be destruc-
tive, and cause Zn toxicity56,57. High levels of Zn can interrupt the balance of other essential minerals to sustain 
healthy life, such as Fe and Cu10. Anthropogenic Zn is common in car lubricants, tires and Carburettors58.

The range of Zn value was 13–297 mg.kg−1, with an average of 123 ± 118 mg.kg−1, which is greater than the 
average concentration of baseline samples with 15.7 ± 3.4 mg.kg−1. The average value of Zn in Ahvaz surface soil 
is also greater than 72 mg.kg−1 in Izmit59 and Sialkot52, 94 mg.kg−1 in Ibadan60, 90 mg.kg−1 in 21 Chinese cities51, 
but it is lower than 130 mg.kg−1 in 34 European Cities51,53 141 mg.kg−1 Baltimore53, 397 mg.kg−1 in Chicago, 1643 
mg.kg−1 in Islamabad, and 118 mg.kg−1 in Bangkok61 (Table 3).

Xa Xc Xp

As 15 25 30

Pb 35 250 500

Cu 30 50 400

Zn 85 200 500

Table 1.  Threshold concentrations of each level of pollution for each metal (mg.kg−1).

Metal
Minimum 
(mg kg−1)

Maximum 
(mg kg−1)

Average 
(mg kg−1)

Std. 
Deviation Variance Skewness

Mean standard deviation of 
baseline value (mg kg−1)

Pb 9.36 793.3 181 167 2815 1.25 12.5 ± 2.3

Zn 13 297 123 118 334 0.1 15.7 ± 3.4

Cu 8 1060 185 167 273 1.7 29.5 ± 3.7

As 0.5 18.3 6.9 8.9 29 0.02 3.5 ± 1.1

Table 2.  Descriptive statistics of the metal concentrations determined in urban soil samples, and in soil samples 
from non-human impacted soils in the urban fringe (mg.kg−1).
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Cu.  The concentration of Cu in soil samples of Ahvaz ranged from 8–1060 mg.kg−1, with an average of 
185±167 mg.kg−1. This concentration is noticeably higher than the Ahvaz baseline soil-Cu concentration of 
29.5± 3.7 mg.kg−1, however, the mean Cu value is markedly greater than 46 mg.kg−1 found in 34 European cit-
ies51, the 45 mg.kg−1 in Baltimore53, the 150 mg.kg−1 in Chicago54 in the USA, the 101 mg.kg−1 in Mexico14, the 
47 mg.kg−1 in Naples29 and 63 mg.kg−1 in Palermo62 (Table 3).

As.  The As concentrations with a range of 0.5–18.3 mg.kg−1 have an average of 6.9 ± 8.9 mg.kg−1 (Table 2). The 
mean value of As in the baseline soil is 3.5 ± 1.1 mg.kg−1. As shown in Table 2, the mean value of the As in the 
Ahvaz urban soil samples is much lower than those stated from many large and/or industrialised cities as reported 
in Table (3).

PCA has been performed to further identify the source of potentially toxic metals63,64. PC1 with 82% of total 
variance was the most important component and high loadings dominated by Pb (0.723), Zn (0.602) and Cu 
(0.874) had a significant positive correlation. PC2 with 11% with variance loading was dominated by As (0.641) 
seperated from other toxic metals thay may indicate different sources or different geochemical behavior of As65. 
In addition, the correlation of PC1 and PC2 achieved from the biplot (Fig. 2) indicates that the PC1 scores show a 
positive relationship between Pb, Zn and Cu, with eigen values greater than 0.6, confirm that these metals origi-
nate from common sources, markedly emission sources as reported in earlier studies21,66,67. Traffic related pollut-
ants are mainly vehicle exhaust and other particles form tyre and brake lining erosion68. As previously reported, 
the major source of Pb is the fuel combustion of leaded gasoline69,70. Motor lubricating oil leakage, street paint, 
mechanical abrasion, car parts wearing-out, corrosion, physical abrasion of vehicles can also be considered as the 
sources of Zn in urban soil71–73.

It appears that PC1 metals are from anthropogenic origins, while the second factor with a positive loading of 
As might be from natural origins and resuspension of soil-derived particles74,75. As shown, there is a relatively 

City As Cu Pb Zn Reference

34 European Cities 13 46 102 130 51

Baltimore (USA) — 45 231 141 53

Chicago (USA) 20 150 395 397 54

Mexico (Mexico) — 101 140 307 14

Ibadan (Nigeria) 3 32 47 94 60

Bangkok (Thailand) — 42 48 118 61

Islamabad (Pakistan) 74 18 208 1643 55

Izmit (Turkey) — 37 35 72 59

Sialkot (Pakistan) — 19 112 72 52

21 Chinese cities 12 30 35 90 51

Ahvaz (Iran) 6.9 185 181 123 This Study

Table 3.  Comparison of mean concentration (mg.kg−1) of metal in urban soils from different cities.

Figure 2.  Biplots of the first and second PCs.
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weak association with other potentially toxic metals. On the other hand, the As concentration in urban soils was 
larger than those of baseline areas. Therefore, there seems to be an additional As source to the geogenic one, 
although this source is apparently different from the other metals.

Metal pollution assessment.  The pollution index (PI) was evaluated using the baseline values of poten-
tially toxic metals in the urban surface soils of Ahvaz. Pollution index (PI) ranges for Pb were from 0.3 to 4.2 with 
an average value of 2.3. Approximately, 68% of the analysed soil samples indicating moderate to high PI values 
for Pb. The PI value for Cu and Zn represent moderate to high levels of pollution, with a range of 0.3 and 5.9 for 
Cu and 0.15 and 2.3 for Zn. The moderate to high PI values were obtained in 34 and 32% of soil samples for Cu 
and Zn, respectively.

The NPI values ranged from 0.3 to 4.5 with a mean value of 2.8. Figure (3) shows the spatial distribution map 
of NPI in Ahvaz soils. The evaluation of the analysed samples indicates that the surface soil of Ahvaz city have 
noticeably been effected by potentially toxic metals. About 38% of soil samples had high levels of pollution with 
a NPI > 3. There is an obvious distribution in the spatial distribution map of PI and NPI in Ahvaz city that high-
lights a rapid urbanisation with no defined residential and industrial zones.

Furthermore, evaluation of the data indicated that only nine samples (4% of all soil samples) had an NPI < 0.7, 
which were classified as non-pollution. Approximately 8% and 6% of all soil samples were on the NPI warning 
line and suggested low-level pollution, respectively, whilst 44% and 38% of all samples had an NPI between 2 and 
3 and NPI ≥ 3, respectively, which indicates moderate and high levels of pollution.

Isotope composition.  The range of 206Pb/204Pb, 207Pb/204Pb, 208Pb/204Pb were 18.4–17.3, 16.4–14.4, and 
42.8–38.2, respectively. The highest average ratio of 206Pb/204Pb (19.05) indicated Pb in soils from fuel combustion 
sources45–47. A plot of 1/Pb and 207Pb/206 could be applied to identify the source of Pb in surface soils46,76. Results 
indicated non-significant linear relationship between 1/Pb and 207Pb/206 (R2 = 0.0076, Fig. (4A), which implying 
that combination of major anthropogenic emission as well as the geogenic sources in the Ahvaz surface soils46,77. 
In addition, plot of 208Pb/206Pb and 208Pb/206Pb of natural background and potential Pb pollution sources indicat-
ing a non-linear correlation in the selected soil samples proposing a combination of a complex constituents with 
distinct Pb isotopic ratios70,78. In addition, Fig. (4B) indicate that the isotopic composition of Pb revealing that 
industrial emission, vehicle exhaust emissions, dust deposition, and parent materials are the major resources of 
Pb in the Ahvaz surface soil samples. Even though, Pb isotopic ratios of vehicle exhaust were reasonably scattered 
as leaded and unleaded samples, the Pb isotopic ratios in studied soil samples were clearly in adjacent to the 
vehicle exhaust samples (Leaded and unleaded gasoline), industrial waste, and chemical fertilizer47,79 (Fig. 4B). 
Therefore, it can be concluded that vehicle exhaust/emission and dust deposition were the main contributors of 
Pb deposition in the soil environment. According to the above results, we can conclude that the Pb concentration 
in the studied soil samples could be the consequence of natural sources including geogenic process and anthro-
pogenic activities.

In addition, in this investigation the Pb isotopic composition of Ahvaz dust collected during a storm of differ-
ing particulate matters was used to represent the isotopic composition of Ahvaz Pb isotopic ratios on dusty days33. 

Figure 3.  Spatial distribution of the Nemerow pollution index (NPI) in the studied area, the image was made by 
ArcGIS10.2, background from Google Earth (Image: Google, Landsat/Copernicus).
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The mean 207Pb/206 of Ahvaz soils (0.98) is higher than the natural baseline soils (0.68), and both of them are lower 
than the 207Pb/206Pb average value of Ahvaz dust samples in dusty days. The average of 208Pb/206Pb ratio of Ahvaz 
soil samples (2.122) is higher than the natural baseline value (2.088) and lower than the Ahvaz dust mean value 
(2.14). The higher 208Pb/Pb206 and 207Pb/206Pb ratios in Ahvaz topsoils compared to baseline samples suggest two 
distinct sources of Pb; one of obvious natural source (parent material/geogenic) and the other of anthropogenic 
contributors such as vehicle emission (leaded gasoline), industrial releases and atmospheric deposition46,70,80.

A nonlinear mixing of four-end-member technique was utilised to calculate the contribution of natural 
sources (f1), industrial emission (f2), vehicle emission (f3), and dust deposition (f4) to total Pb in soil samples46,47,81.

+ + + =f f f f1 2 3 4 1 (3)

×
+

×
+

×
+

×
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C
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C
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C

f C
C
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s s s s

1 2 3 4

× + × + × + × =f R f R f R f R R1 1 2 2 3 3 4 4 (5)S

where, C1, C2, C3, C4, are the average of Pb concentration of baseline soils (27 mg.kg−1), industrial release 
(6682 mg.kg−1), vehicle emission (2380 mg.kg−1), and surface dust as a function of upper crust concentration 
(17 mg.kg−1) respectively82,83.

The factors of R1, R2, R3 and R4 are the average values of 206Pb/207Pb ratios of natural background soil 
(1.21)84,85, industrial release (1.170)46,82, and vehicle exhaust (1.130)46,47,86, Ahvaz dust storm sample (0.96)87 
respectively. Cs and Rs factors are Pb concentration and the 206Pb/207Pb value of every soil sample. The determined 
inputs of surface soil as a function of natural (geogenic) source, vehicle emission, industrial release, and dust 
source to total Pb in the each of soil samples are presented in Table (4). According to the integration end-member 
model the values of natural background, industrial release, vehicle emission and dust storm are 42–51%, 12–49%, 
5–45% and 5–12%, respectively (Table 4). It is indicated that, in the Ahvaz city, industrial activities including oil 
well waste, not well defined land use planning companies, such as the Carbon Black Company, steel companies 
and local industrial zones are the main anthropogenic lead sources in surface soil of Ahvaz city.

Figure 4.  Plots of 207Pb/206Pb versus 1/Pb (A) and 208Pb/206Pb versus 206Pb/207Pb (B) in Ahvaz urban soil and 
the known sources, data of natural background, vehicle exhausts of leaded and unleaded gasoline, chemical 
fertilizer, dust are from references therein.
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Conclusions and Remarks
In the present investigation, the total concentration of toxic metals in the Ahvaz surface soils was examined. Lead 
isotope ratios were analysed to identify the major source of Pb in the Ahvaz surface soil. Mean concentrations of 
Pb, Zn, Cu and As were higher their corresponding baseline levels. Coefficient correlation, principle component 
and cluster analysis indicated that distinct types of toxic metals from anthropogenic sources can be separated. 
Specifically, the As value which may be controlled by different sources from one of the other metals, whereas the 
level of Pb, Zn and Cu in Ahvaz soils mostly originate from common anthropogenic contaminations such as vehi-
cle emissions and industrial sources. Pollution index values indicated that there was no significant pollution for 
As, but 68, 32 and 34% of the analysed urban soil samples were highly polluted with Pb, Zn and Cu, respectively. 
The NPI of the four potentially toxic metals also demonstrated that soil samples in Ahvaz show moderate to high 
levels of pollution. More than 44 and 38% of soil samples had a 2 < NPI < 3 and NPI ≥ 3, indicating moderate and 
high level pollution, particularly in the areas with high traffic volumes and industrial zones. Calculated four-end 
member model of Pb isotopic ratios suggested that industrial emission, vehicle exhaust and dust storm with the 
mean contributions of 47, 15 and 7% are the main source of Pb in Ahvaz surface soil.
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