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Introduction
80 to 90% of lung adenocarcinomas show heterogeneous 
histological patterns, and the predominant patterns have 
been found to be correlated with the prognosis [1, 2]. 
Accordingly, a three-tier grading system was proposed by 
the World Health Organization (WHO) in 2015, classi-
fying lung adenocarcinomas as grade 1 (lepidic-predom-
inant), grade 2 (papillary- or acinar-predominant), and 
grade 3 (solid- or micropapillary-predominant) [1, 2]. 
However, the Pathology Committee of the International 
Association for the Study of Lung Cancer (IASLC) pro-
posed a new grading system in 2020, which combines the 
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Abstract
Purpose We aimed to evaluate the efficiency of computed tomography (CT) radiomic features extracted from gross 
tumor volume (GTV) and peritumoral volumes (PTV) of 5, 10, and 15 mm to identify the tumor grades corresponding 
to the new histological grading system proposed in 2020 by the Pathology Committee of the International 
Association for the Study of Lung Cancer (IASLC).

Methods A total of 151 lung adenocarcinomas manifesting as pure ground-glass lung nodules (pGGNs) were 
included in this randomized multicenter retrospective study. Four radiomic models were constructed from GTV 
and GTV + 5/10/15-mm PTV, respectively, and compared. The diagnostic performance of the different models was 
evaluated using receiver operating characteristic curve analysis

Results The pGGNs were classified into grade 1 (117), 2 (34), and 3 (0), according to the IASLC grading system. In all 
four radiomic models, pGGNs of grade 2 had significantly higher radiomic scores than those of grade 1 (P < 0.05). The 
AUC of the GTV and GTV + 5/10/15-mm PTV were 0.869, 0.910, 0.951, and 0.872 in the training cohort and 0.700, 0.715, 
0.745, and 0.724 in the validation cohort, respectively.

Conclusions The radiomic features we extracted from the GTV and PTV of pGGNs could effectively be used to 
differentiate grade-1 and grade-2 tumors. In particular, the radiomic features from the PTV increased the efficiency of 
the diagnostic model, with GTV + 10 mm PTV exhibiting the highest efficacy.
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predominant subtype and high-grade components. This 
classification has been proven to have a higher prognostic 
performance than the previous system that based grading 
on the predominant subtypes alone [3].

Nearly 20% of lung adenocarcinomas identified with 
computed tomography (CT) lung cancer screenings pres-
ent as pure ground-glass nodules (pGGNs), homogenous 
hazy lesions with preserved vascular and bronchial com-
ponents and no solid components [4]. According to the 
2020 grading system, pGGNs are more likely to be classi-
fied as grade 1 after pathological examination, with a few 
lesions classified as grade 2 [5]. However, in some cases 
the conventional radiographic characteristics are not 
aligned with the pathological findings, and the latter are 
considered the “gold standard” for diagnosis and treat-
ment strategy.

Radiomic approach aims to analyze the tumor imag-
ing phenotypes quantitatively and noninvasively in rela-
tion to the pathological and clinical outcomes to establish 
models for the classification of pulmonary lesion images 
and prognosis estimation [6]. Inflammation, invasiveness, 
cell migration, and subtle changes in the microenviron-
ment are hallmarks of malignant tumors; therefore, these 
characteristics of the peritumoral parenchyma may pro-
vide useful information [7, 8]. Recent reports have indi-
cated that peritumoral radiomics increases the efficiency 
of the prediction and classification of aggressive biologi-
cal behavior [9–11]. However, its potential remains insuf-
ficiently explored, there is currently a dearth of literature 
systematically evaluating the radiomics model across 
multiscale peritumoral ranges for predicting IASLC 
grading system.

Here we therefore compared the efficacy to classify 
pGGNs of different radiomic models based on multi-
scale intra- and perinodular regions to that of the new 
IASLC grading system.

Materials and methods
Patient population
This study was based on a randomized multicenter ret-
rospective design and was approved by the relevant eth-
ics committee. The requirement of informed consent was 
waived due to the retrospective nature of this study.

A total of 151 patients with pGGNs were recruited 
from three centers (Department of Radiology, Xiangtan 
Central Hospital, Xiangtan, Hunan, China, Department 
of Radiology, Affiliated Hospital of Guilin Medical Uni-
versity, Guilin, Guangxi, China, Department of Radiol-
ogy, Liuzhou People’s Hospital Affiliated to Guangxi 
Medical University, Liuzhou, China). All patients under-
went non-contrast chest CT examinations from January 
2016 to June 2022. The inclusion criteria were as follows: 
(1) lobectomy or sub-lobectomy for lung cancer based on 
the histological evidence of adenocarcinoma; (2) surgical 

resection performed within 2 weeks following the CT 
scan; (3) radiological diagnosis of pGGNs (< 3  cm); and 
(4) the slice thickness of the CT images ranged from 
0.625  mm to 1.250  mm. The exclusion criteria were as 
follows: (1) history of pulmonary surgery, chemoradio-
therapy, or another malignancy; (2) inadequate CT image 
quality, such motion artifacts, or lower signal-to-noise 
ratio; (3) the largest nodules smaller than 1.250 mm; and 
(4) missing or incomplete CT scans. For patients pre-
senting multiple pGGNs, only one nodule with a con-
clusive pathological diagnosis were included. The data 
from patients at centers 1 and 2 were used as the training 
cohort and those from patients at center 3 as the valida-
tion cohort (Fig. 1).

CT image acquisition
CT examinations were performed for all patients using a 
64- or 128-slice spiral CT scanner (either Revolution CT 
[GE Healthcare, Chicago, IL, USA] or MX16 CT [Philips 
Healthcare, Best, Netherlands] at center 1; uCT550 or 
uCT760 [Shanghai United Imaging Healthcare, Shang-
hai, China] at center 2; and VCT 610 [Philips Healthcare] 
at center 3). The protocol of the CT scans has been pre-
viously published [12]. The CT acquisition parameters 
were as follows: tube voltage: 120  kV, tube current: 200 
mAs, slice thickness: 5.0 mm, slice interval: 5.0 mm, pitch 
1.2, and thickness of reconstruction: 0.625–1.250  mm. 
The standard or lung reconstruction kernel was used to 
reconstruct images.

Radiological and histological evaluations
In accordance with the recommendations by the Fleis-
chner Society and previous studies [4, 13], the pGGNs 
were radiologically described as hazy opacities, allowing 
visualization of the typical pulmonary architecture. The 
features considered for the radiological model included 
the location, margin, lobulation, spiculation, vessel 
change, bubble-like sign, and pleural attachment, size, 
and CT density. The size refers to the longest diameter on 
the axial plane, according to the IASLC 8th TNM Lung 
Cancer Staging System [13]. The CT density was calcu-
lated as the mean of three measurements using a region-
of-interest (ROI) cursor [13]. All image features were 
determined by consensus between two chest radiologists 
with 5–15 years of experience. During this collaborative 
process, the window widths for the lung window were set 
within the range of 1500 to 2000 HU, with corresponding 
window levels varying from − 450 to -700 HU.

Two board-certified pathologists independently veri-
fied the diagnosis, and subtyped and graded the tumors. 
Comprehensive histological subtyping was performed 
on each tumor according to the IASLC grading system, 
recording the percentage of each histological compo-
nent in 5% increments [3]. Solid, micropapillary, and/or 
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complex glandular components were regarded as high-
grade patterns, and the tumors were classified into three 
grades: grade 1 (lepidic-predominant with < 20% high-
grade patterns); grade 2 (papillary- or acinar-predom-
inant with < 20% high-grade patterns); and grade 3 (any 
component with ≥ 20% high-grade patterns).

Nodule segmentation
In preparation for the radiomic analysis, all images were 
processed with ITK-SNAP software (version 3.6.0, http://
www.itksnap.org). The images were segmented by man-
ually drawing the region of interest (ROI) on each slice 
until the entire lesion was included. The segmentation 
process was performed by a junior trainee with 6 years 
of experience in thoracic imaging, followed by a senior 
radiologist with 16 years of expertise who reviewed 
and adjusted the segmentations. During this collabora-
tive process, the window widths for the lung window 
were set within the range of 1500 to 2000 HU, and the 

corresponding window levels varied from − 450 to -700 
HU. The primary tumor was defined as the gross tumor 
volume (GTV) region. To obtain the peritumoral vol-
ume (PTV), three additional regions were generated 
using a dilation operator with radial distances of 5, 10, 
and 15 mm from the original GTV, as reported in previ-
ous studies [9–11, 14]. The VOIs of GTV + 5/10/15 mm 
PTV indicate the entire regions including pGGN and the 
peripheral areas.

Feature extraction
The open-source Python package PyRadiomics v2.2.0 
(http://www.radiomics.io/pyradiomics.html) was used 
to extract the radiomic features [15]. To standardize the 
gray-level intensity ranges across different participants, 
we applied z-score normalization using the formula z 
= (x-µ)/σ, where x represents the pixel intensity value, 
µ is the mean, and σ is the standard deviation. Next, to 
minimize acquisition-related radiomics variability, voxel 

Fig. 1 Flow diagram of the study
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dimensions were standardized across the cohorts by 
using cubic interpolation to achieve an isotropic voxel 
resolution of 1 × 1 × 1  mm³. Specifically, we used fixed 
binarization with 10 levels of bin-width. We generated 
1222 radiomic features from each original CT scan, 
including first-order statistics, shape- and size-based and 
textural features, and filter features, such as sigma, log, 
and wavelets.

Feature selection and radiomic model
The stability and reproducibility of radiomic feature 
extraction were evaluated using Spearman’s rank cor-
relation coefficient or Pearson’s correlation coefficient 
to identify and eliminate redundant parameters. Corre-
lated features with correlation coefficients greater than 
0.9 were excluded. After selecting the final radiomics 
signature, we used the LASSO method with 10-fold 
cross-validation to identify the optimal parameter λ for 
controlling the number of selected features. This method 
was chosen for its excellent predictive value and ability to 
reduce overfitting by identifying a low-correlated subset 
of features [16]. Thereafter, radiomics scores (rad-scores) 
were calculated by a summation of selected features 
weighted by their coefficients for each patient (Fig.  2). 
The formulation for the Rad score is presented below: 
Rad score = β0 + β1F1 + β2F2 + β3F3+…+βnFn, where β0 
represents intercept, Fi(i = 1,2,.n) represents radiomics 
features, and βi represents the coefficient of Fi.

Statistical analysis
We used independent Student’s t-tests for normally dis-
tributed variables, Mann-Whitney tests for non-normally 
distributed variables, and Chi-square tests for categori-
cal variables to assess the differences between the train-
ing and validation cohorts. The radiological models were 
developed using both univariate and multivariate logis-
tic regression. In the multivariate logistic regression, we 
used a stepwise backward elimination procedure. For 
statistical significance, we considered P values less than 
0.05.

Receiver operating characteristic (ROC) curves were 
calculated to determine the diagnostic efficacy of the 
radiomic and radiological models, determining the AUC, 
sensitivity, and specificity. Figure 2 shows an illustration 
of the study design.

Statistical analyses were conducted using R software 
(version 3.6.3; R Core Team (2020). R: A language and 
environment for statistical computing. R Foundation for 
Statistical Computing, Vienna, Austria. https://www.r-
project.org/) and the R packages glmnet, rms, survival, 
reshape2, ggplot2, and plotROC.

Results
Demographic characteristics
A total of 151 persistent ground-glass nodules (pGGNs) 
were included in the study, comprising 117, 34, and 0 for 
grade 1, grade 2, and grade 3 lesions, respectively. These 

Fig. 2 Diagram depicting the study design
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pGGNs were divided into a training cohort (n = 87) and a 
validation cohort (n = 64) based on their center of origin.

The study population had a mean age of 55.2 ± 11.6 
years, and 29.8% (45/151) were male. The training cohort 
included 70 grade 1 and 17 grade 2 pGGNs, while the 
validation cohort comprised 47 grade 1 and 17 grade 2 
pGGNs. There were no significant differences in the 
clinical and radiographic parameters between the two 
cohorts (all p > 0.05), as detailed in Table 1.

Radiological model
In the training cohort, statistically significant differences 
emerged between pGGNs of grade 1 and 2 regarding size 
and spiculation (P = 0.031 and P = 0.025, respectively). 
These results are summarized in Table  2. Multivari-
ate logistic analyses revealed that size (odds ratio [OR]: 
1.11; P < 0.001) was the only radiographic characteristic 

independently associated with the IASLC grade for 
pGGNs.

Radiomic models based on GTV and PTV
We implemented four different prediction models based 
on GTV and GTV + 5/10/15 mm PTV to classify pGGNs.

In the GTV model, 977 highly correlated features were 
eliminated, and 245 features were retained based on cor-
relation coefficients < 0.9, reduced to seven after LASSO 
regression analysis. The process was repeated in the other 
models, and finally seven, eight, 11, and five features were 
incorporated into the final GTV and GTV + 5/10/15-mm 
PTV models, respectively (Fig. 3).

In both the training and validation cohorts, the GTV 
rad-scores of grade-2 pGGNs were significantly higher 
than those of grade-1 pGGNs (P < 0.05, Fig.  4). Similar 
results were obtained for the GTV + PTV models; the 
rad-scores of grade-2 nodules were higher than those of 
grade-1 nodules in both cohorts (P < 0.05, Fig. 4).

Table 1 Baseline data between training and validation cohort
Variables Training 

cohort(N = 87)
Validation co-
hort (N = 64)

P-
value

Sex: 0.607
 Male 24 (27.6%) 21 (32.8%)
 Female 63 (72.4%) 43 (67.2%)
Age 53.5 (12.4) 57.0 (9.60) 0.050
Location: 0.370
 Right upper lobe 33 (37.9%) 19 (29.7%)
 Right lower lobe 11 (12.6%) 14 (21.9%)
 Right middle lung 7 (8.05%) 5 (7.81%)
 Left upper lung 31 (35.6%) 19 (29.7%)
 Left lower lobe 5 (5.75%) 7 (10.9%)
Label: 0.451
 Grade1 65 (74.7%) 52 (81.2%)
 Grade2 22 (25.3%) 12 (18.8%)
Margin: 0.564
 Smooth 42 (48.3%) 27 (42.2%)
 Irregular 45 (51.7%) 37 (57.8%)
Lobulation: 1.000
 Absence 76 (87.4%) 56 (87.5%)
 Presence 11 (12.6%) 8 (12.5%)
Spiculation: 0.981
 Absence 72 (82.8%) 52 (81.2%)
 Presence 15 (17.2%) 12 (18.8%)
Vessel change: 0.216
 Absence 78 (89.7%) 52 (81.2%)
 Presence 9 (10.3%) 12 (18.8%)
Bubble: 1.000
 Absence 83 (95.4%) 62 (96.9%)
 Presence 4 (4.60%) 2 (3.12%)
Pleural attachment: 0.532
 Absence 65 (74.7%) 44 (68.8%)
 Presence 22 (25.3%) 20 (31.2%)
Size(mm) 15 (12, 19) 14.5 (11, 18.8) 0.434
CT density (Hu) -735.9 (-952.4, 

-624.2)
-817.4 (-1052, 
-642.4)

0.184

Table 2 Patient demographics between pGGNs of grade 1 and 2
Variables Grade1(N = 65) Grade2(N = 22) P-value
Sex: 0.430
 Male 16 (24.6%) 8 (36.4%)
 Female 49 (75.4%) 14 (63.6%)
Age(years) 52.5 (13.1) 56.2 (9.66) 0.172
Location: 0.613
 Right upper lobe 22 (33.8%) 11 (50.0%)
 Right lower lobe 10 (15.4%) 1 (4.55%)
 Right middle lung 6 (9.23%) 1 (4.55%)
 Left upper lung 23 (35.4%) 8 (36.4%)
 Left lower lobe 4 (6.15%) 1 (4.55%)
Margin: 0.295
 Smooth 34 (52.3%) 8 (36.4%)
 Irregular 31 (47.7%) 14 (63.6%)
Lobulation: 1.000
 Absence 57 (87.7%) 19 (86.4%)
 Presence 8 (12.3%) 3 (13.6%)
Spiculation: 0.192
 Absence 56 (86.2%) 16 (72.7%)
 Presence 9 (13.8%) 6 (27.3%)
Vessel change: 0.222
 Absence 60 (92.3%) 18 (81.8%)
 Presence 5 (7.69%) 4 (18.2%)
Bubble: 0.264
 Absence 63 (96.9%) 20 (90.9%)
 Presence 2 (3.08%) 2 (9.09%)
Pleural attachment: 0.025
 Absence 53 (81.5%) 12 (54.5%)
 Presence 12 (18.5%) 10 (45.5%)
CT size(mm) 15.0 (4.81) 17.3 (4.09) 0.031
CT density (Hu) -798.09 (200) -784.22 (171) 0.755
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Performance and comparison
The ROC analysis showed that the radiological model 
had an AUC of 0.756, sensitivity of 45.5%, and specific-
ity of 92.2% in the training cohort, and an AUC of 0.665, 
sensitivity of 77.3%, and specificity of 53.1% in the valida-
tion cohort.

The efficacy of the GTV and GTV + PTV models in the 
training and validation cohorts were analyzed and com-
pared (Table  3; Fig.  5). In training cohort, the AUCs of 
the GTV and GTV + 5/10/15-mm PTV were 0.869, 0.910, 
0.951, and 0.872, respectively. The AUCs in validation 
cohort were, in that order, 0.700, 0.715, 0.745, and 0.724.

Notably, the GTV + 10  mm PTV radiomics model 
exhibited the highest efficacy compared to both the other 
scale radiomics models and the radiological model.

Discussion
In this study, radiomics models based on intratumoral 
and peritumoral pGGNs were constructed according 
to the 2020 IASLC staging system. Four radiomic mod-
els were constructed using different VOIs: the GTV 
and the GTV expanded by 5  mm, 10  mm, and 15  mm 

(GTV + 5/10/15  mm PTV). These models, along with a 
radiological model, were evaluated for their ability to dif-
ferentiate grade 1 and grade 2 of pGGNs. Specially, the 
GTV + 10 mm PTV radiomics model exhibited the high-
est efficacy compared to the other radiomic models and 
the radiological model.

The new IASLC grading system has been proposed 
to improve prognostic prediction for lung cancer. The 
present study shows that different grades of pGGN lung 
adenocarcinomas can also be distinguished based on 
radiomic features. Although pGGNs were previously 
perceived as an “indolent” type of lung adenocarcinoma, 
some radiographic features, such as lobulation, spicula-
tion, pleural invasion, and bubble-like sign, are associ-
ated with tumor invasion [17–19]. In the present study, 
only the CT size was independently associated with the 
IASLC grade of pGGNs of lung adenocarcinoma, consis-
tent with the results of an earlier study by Fu et al. [13]. It 
is not surprising that larger nodules are more likely to be 
malignant; nonetheless, further investigations should be 
conducted.

Fig. 3 Lollipop diagrams representing the final radiomics features for the four models
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Compared to basic CT characteristics, radiomic fea-
tures can objectively and quantitatively determine intra-
tumoral differences more effectively [6]. However, the 
assessment of these features is subject to intra- and 
interobserver variability, depending on the experience 
and expertise of the radiologists [19]. All four radiomic 
models in this study were more efficient than the radio-
logical model (Table  3). Since the peritumoral radiomic 
features may represent malignancy hallmarks such as 
tumor cell migration, inflammatory infiltration, and 

subtle changes in microscopical level, they serve as a 
complement to the conventional intratumoral ones [7, 
8]. Wang et al. incorporated radiomic features from 
GTV and PTV to preoperatively predict the presence 
of lymph node metastasis in T1 peripheral lung adeno-
carcinomas [9]. This resulted in an AUC of 0.843, which 
was higher than that of GTV or PTV features alone 
(AUCs of 0.829 and 0.825, respectively). Calheiros et al. 
observed improvements in solid lung nodule classifica-
tion by incorporating peritumoral radiomic features [10]. 
A similar study showed comparable results when GTV 
and PTV features were combined; the predictions were 
further improved compared to the Ki-67 labeling index 
level in early-stage lung adenocarcinomas [11]. However, 
it remains to be determined whether a radiomic analy-
sis based on the peritumoral parenchyma can effectively 
reflect the variations in the tumor and microscopical 
level between different IASLC grades of pGNNs.

In the present study, we investigated whether high-
throughput radiomic signatures captured from the 
intra- and peritumoral regions could significantly differ-
entiate pGGNs of grade 1 and grade 2; the highest num-
ber of significant radiomic signatures emerged in the 

Table 3 Performance of four Radiomic models
Radiomic models AUC Sensitivity Specificity
Training cohort
GTV 0.869 86.40% 75.40%
GTV + 5mmPTV 0.910 77.30% 89.20%
GTV + 10mmPTV 0.951 90.90% 93.80%
GTV + 15mmPTV 0.872 72.70% 92.30%
Validation cohort
GTV 0.700 83.30% 59.60%
GTV + 5mmPTV 0.715 100.00% 40.40%
GTV + 10mmPTV 0.745 75.00% 73.10%
GTV + 15mmPTV 0.724 100.00% 46.20%
Abbreviation: GTV, gross tumor volume; PTV, peritumoral volumes

Fig. 4 Violin plots showing rad-scores between grade 1 and grade 2 across four models
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GTV + 10-mm PTV model. These results indicate that 
the peritumoral parenchymal tissues within 10  mm of 
the tumor contain critical information that could reflect 
the differences between grade-1 and grade-2 pGNNs. In 
contrast, Wu et al. found that 5-mm PTV radiomic fea-
tures were insufficient to provide an increased benefit in 
distinguishing invasive adenocarcinoma from adenocar-
cinoma in situ/microinvasive adenocarcinoma compared 
to 2-mm PTV features [20].

This study has some limitations. First, CT protocols 
and images varied between and within centers due to the 
retrospective nature of the study. Second, the GTV and 
PTV regions were manually delineated, based on visual 
inspection of CT images, and thus interobserver vari-
ability may limit its clinical value. Third, the number of 
lesions examined was limited and confirmation through 
larger studies is required.

In conclusion, the radiomic features extracted from the 
GTV and PTV regions of pGGN images can effectively 
differentiate grade 1 and grade 2 pGGNs, specifically 
when considering a PTV of 10 mm. This radiomics model 
has significant potential in aiding physicians to formu-
late comprehensive treatment strategies for patients with 
pGGNs.

Abbreviations
CT  Computed tomography
AUC  Area under the curve
GTV  Gross tumor volume
IASLC  International Association for the Study of Lung Cancer
ICC  Inter- and intra-class correlation coefficient
LASSO  Least absolute shrinkage and selection operator
pGGN  Pure ground-glass nodule
PTV  Peritumoral volume
ROC  Receiver operating characteristic
ROI  Region of interest

Author contributions
1.Guarantor of integrity of the entire study: Ying Zeng, Xiao Zhou, Wei Zhang. 
2. Study concepts and design: Ying Zeng, Xiao Zhou, Tianzhi Zhou, Haibo 
Liu, Yingjun zhou, Shanyue Lin, Wei Zhang. 3. Literature research: Ying Zeng, 

Xiao Zhou, Tianzhi Zhou, Haibo Liu, Yingjun zhou, Shanyue Lin, Wei Zhang. 4. 
Clinical studies: Ying Zeng, Xiao Zhou, Tianzhi Zhou, Haibo Liu, Yingjun zhou, 
Shanyue Lin, Wei Zhang. 5. Experimental studies / data analysis: Ying Zeng, 
Xiao Zhou, Tianzhi Zhou, Haibo Liu, Yingjun zhou, Shanyue Lin, Wei Zhang. 
6. Statistical analysis: Ying Zeng, Xiao Zhou, Tianzhi Zhou, Haibo Liu, Yingjun 
zhou, Shanyue Lin, Wei Zhang. 7.Manuscript preparation: Ying Zeng, Xiao 
Zhou, Wei Zhang. 8. Manuscript editing: Ying Zeng, Xiao Zhou, Wei Zhang.

Funding
No funding.

Declarations

Ethical approval
The ethics declaration in our manuscript in accordance with the Declaration 
of Helsinki.

Consent to participate
This is a retrospective study, Consent to Participate declaration: not applicable.

Approval committee or the internal review board
This is a retrospective study, so approval from the ethics committee was 
waived.

Competing interests
The authors declare no competing interests.

Received: 14 November 2023 / Accepted: 13 August 2024

References
1. Travis WD, Brambilla E, Burke AP, Marx A, Nicholson AG. Introduction to 

the 2015 World Health Organization Classification of Tumors of the lung, 
Pleura, Thymus, and heart. J Thorac Oncol. 2015;10(9):1240–2. https://doi.
org/10.1097/JTO.0000000000000663.

2. Murakami S, Ito H, Tsubokawa N, Mimae T, Sasada S, Yoshiya T, et al. Prog-
nostic value of the new IASLC/ATS/ERS classification of clinical stage IA lung 
adenocarcinoma. Lung Cancer. 2015;90(2):199–204. https://doi.org/10.1016/j.
lungcan.2015.06.022.

3. Moreira AL, Ocampo PSS, Xia Y, Zhong H, Russell PA, Minami Y, et al. A 
Grading System for Invasive Pulmonary Adenocarcinoma: a proposal from 
the International Association for the Study of Lung Cancer Pathology Com-
mittee. J Thorac Oncol. 2020;15(10):1599–610. https://doi.org/10.1016/j.
jtho.2020.06.001.

Fig. 5 Receiver operating characteristic curves demonstrating diagnostic efficiency for the four models

 

https://doi.org/10.1097/JTO.0000000000000663
https://doi.org/10.1097/JTO.0000000000000663
https://doi.org/10.1016/j.lungcan.2015.06.022
https://doi.org/10.1016/j.lungcan.2015.06.022
https://doi.org/10.1016/j.jtho.2020.06.001
https://doi.org/10.1016/j.jtho.2020.06.001


Page 9 of 9Zeng et al. Journal of Cardiothoracic Surgery          (2024) 19:505 

4. Sun Y, Li C, Jin L, Gao P, Zhao W, Ma W, et al. Radiomics for lung adenocar-
cinoma manifesting as pure ground-glass nodules: invasive prediction. Eur 
Radiol. 2020;30(7):3650–9. https://doi.org/10.1007/s00330-020-06776-y.

5. Fujikawa R, Muraoka Y, Kashima J, Yoshida Y, Ito K, Watanabe H, et al. 
Clinicopathologic and genotypic features of Lung Adenocarcinoma 
characterized by the International Association for the study of Lung Cancer 
Grading System. J Thorac Oncol. 2022;17(5):700–7. https://doi.org/10.1016/j.
jtho.2022.02.005.

6. Hassani C, Varghese BA, Nieva J, Duddalwar V. Radiomics in Pulmonary 
Lesion Imaging. AJR Am J Roentgenol. 2019;212(3):497–504. https://doi.
org/10.2214/AJR.18.20623.

7. Mittal V, El Rayes T, Narula N, McGraw TE, Altorki NK, Barcellos-Hoff MH. The 
Microenvironment of Lung Cancer and therapeutic implications. Adv Exp 
Med Biol. 2016;890:75–110. https://doi.org/10.1007/978-3-319-24932-2_5.

8. Altorki NK, Markowitz GJ, Gao D, Port JL, Saxena A, Stiles B, et al. The lung 
microenvironment: an important regulator of tumour growth and metastasis. 
Nat Rev Cancer. 2019;19(1):9–31. https://doi.org/10.1038/s41568-018-0081-9.

9. Wang X, Zhao X, Li Q, Xia W, Peng Z, Zhang R, et al. Can peritumoral radiomics 
increase the efficiency of the prediction for lymph node metastasis in clinical 
stage T1 lung adenocarcinoma on CT? Eur Radiol. 2019;29(11):6049–58. 
https://doi.org/10.1007/s00330-019-06084-0.

10. Calheiros JLL, de Amorim LBV, de Lima LL, de Lima Filho AF, Ferreira Júnior 
JR, de Oliveira MC. The effects of Perinodular features on solid lung nodule 
classification. J Digit Imaging. 2021;34(4):798–810. https://doi.org/10.1007/
s10278-021-00453-2.

11. Zhu M, Yang Z, Zhao W, Wang M, Shi W, Cheng Z, et al. Predicting Ki-67 label-
ing index level in early-stage lung adenocarcinomas manifesting as ground-
glass opacity nodules using intra-nodular and peri-nodular radiomic features. 
Cancer Med. 2022;11(21):3982–92. https://doi.org/10.1002/cam4.4719.

12. Zuo Z, Li Y, Peng K, Li X, Tan Q, Mo Y, et al. CT texture analysis-based nomo-
gram for the preoperative prediction of visceral pleural invasion in cT1N0M0 
lung adenocarcinoma: an external validation cohort study. Clin Radiol. 
2022;77(3):e215–21. https://doi.org/10.1016/j.crad.2021.11.008.

13. Fu F, Zhang Y, Wang S, Li Y, Wang Z, Hu H, et al. Computed tomography den-
sity is not associated with pathological tumor invasion for pure ground-glass 

nodules. J Thorac Cardiovasc Surg. 2021;162(2):451–e4593. https://doi.
org/10.1016/j.jtcvs.2020.04.169.

14. Wu S, Zhang N, Wu Z, Ren J, EL. Can Peritumoral Radiomics improve the 
prediction of malignancy of solid pulmonary nodule smaller than 2 cm? Acad 
Radiol. 2022;29:S47–52. https://doi.org/10.1016/j.acra.2020.10.029.

15. van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, et 
al. Computational Radiomics System to Decode the Radiographic pheno-
type. Cancer Res. 2017;77(21):e104–7. https://doi.org/10.1158/0008-5472.
CAN-17-0339.

16. Whybra P, Zwanenburg A, Andrearczyk V, Schaer R, Apte AP, Ayotte A, et al. 
The image Biomarker Standardization Initiative: standardized Convolutional 
filters for reproducible Radiomics and enhanced clinical insights. Radiology. 
2024;310(2):e231319. https://doi.org/10.1148/radiol.231319.

17. Nelson DB, Godoy MCB, Benveniste MF, Shewale JB, Spicer JD, Mitchell KG, et 
al. Clinicoradiographic predictors of Aggressive Biology in Lung Cancer with 
Ground Glass Components. Ann Thorac Surg. 2018;106(1):235–41. https://doi.
org/10.1016/j.athoracsur.2018.02.020.

18. Antonoff MB. The search for reliable markers of ground glass opacity 
prognosis: the truth remains largely unknown. J Thorac Cardiovasc Surg. 
2018;156(2):814–5. https://doi.org/10.1016/j.jtcvs.2018.03.020.

19. van Riel SJ, Ciompi F, Winkler Wille MM, Dirksen A, Lam S, Scholten ET, et 
al. Malignancy risk estimation of pulmonary nodules in screening CTs: 
comparison between a computer model and human observers. PLoS ONE. 
2017;12(11):e0185032. https://doi.org/10.1371/journal.pone.0185032.

20. Wu L, Gao C, Ye J, Tao J, Wang N, Pang P, et al. The value of various peritumoral 
radiomic features in differentiating the invasiveness of adenocarcinoma 
manifesting as ground-glass nodules. Eur Radiol. 2021;31(12):9030–7. https://
doi.org/10.1007/s00330-021-07948-0.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

https://doi.org/10.1007/s00330-020-06776-y
https://doi.org/10.1016/j.jtho.2022.02.005
https://doi.org/10.1016/j.jtho.2022.02.005
https://doi.org/10.2214/AJR.18.20623
https://doi.org/10.2214/AJR.18.20623
https://doi.org/10.1007/978-3-319-24932-2_5
https://doi.org/10.1038/s41568-018-0081-9
https://doi.org/10.1007/s00330-019-06084-0
https://doi.org/10.1007/s10278-021-00453-2
https://doi.org/10.1007/s10278-021-00453-2
https://doi.org/10.1002/cam4.4719
https://doi.org/10.1016/j.crad.2021.11.008
https://doi.org/10.1016/j.jtcvs.2020.04.169
https://doi.org/10.1016/j.jtcvs.2020.04.169
https://doi.org/10.1016/j.acra.2020.10.029
https://doi.org/10.1158/0008-5472.CAN-17-0339
https://doi.org/10.1158/0008-5472.CAN-17-0339
https://doi.org/10.1148/radiol.231319
https://doi.org/10.1016/j.athoracsur.2018.02.020
https://doi.org/10.1016/j.athoracsur.2018.02.020
https://doi.org/10.1016/j.jtcvs.2018.03.020
https://doi.org/10.1371/journal.pone.0185032
https://doi.org/10.1007/s00330-021-07948-0
https://doi.org/10.1007/s00330-021-07948-0

	Peritumoral radiomics increases the efficiency of classification of pure ground-glass lung nodules: a multicenter study
	Abstract
	Introduction
	Materials and methods
	Patient population
	CT image acquisition
	Radiological and histological evaluations
	Nodule segmentation
	Feature extraction
	Feature selection and radiomic model
	Statistical analysis

	Results
	Demographic characteristics
	Radiological model
	Radiomic models based on GTV and PTV
	Performance and comparison

	Discussion
	References


