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Poly(ADP-ribose)polymerase-1 (PARP1) is a DNA repair enzyme highly expressed in the
nuclei of mammalian cells, with a structure and function that have attracted interest since
its discovery. PARP inhibitors, moreover, can be used to induce synthetic lethality in cells
where the homologous recombination (HR) pathway is deficient. Several small molecule
PARP inhibitors have been approved by the FDA for multiple cancers bearing this
deficiency These PARP inhibitors also act as radiosensitizing agents by delaying single
strand break (SSB) repair and causing subsequent double strand break (DSB) generation,
a concept that has been leveraged in various preclinical models of combination therapy
with PARP inhibitors and ionizing radiation. Researchers have determined the efficacy of
various PARP inhibitors at sub-cytotoxic concentrations in radiosensitizing multiple human
cancer cell lines to ionizing radiation. Furthermore, several groups have begun evaluating
combination therapy strategies in mouse models of cancer, and a fluorescent imaging
agent that allows for subcellular imaging in real time has been developed from a PARP
inhibitor scaffold. Other PARP inhibitor scaffolds have been radiolabeled to create PET
imaging agents, some of which have also entered clinical trials. Most recently, these highly
targeted small molecules have been radiolabeled with therapeutic isotopes to create
radiotherapeutics and radiotheranostics in cancers whose primary interventions are
surgical resection and whole-body radiotherapy. In this review we discuss the utilization
of these small molecules in combination therapies and in scaffolds for imaging agents,
radiotherapeutics, and radiotheranostics. Development of these radiolabeled PARP
inhibitors has presented promising results for new interventions in the fight against
some of the most intractable cancers.

Keywords: PARP [poly(ADP-ribose) polymerase], radiotheranostic, molecular imaging, targeted radiotherapy
(TRT), combination therapy
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INTRODUCTION

Poly(ADP-ribose)polymerase-1 (PARP1) is a 116 kDa DNA
repair enzyme with nuclear concentrations ranging from 2 ×
105 to 1 × 106 enzymes/nucleus in eukaryotic cells (Ludwig et al.,
1988; Herceg and Wang, 2001). Within 30 seconds of the advent
of DNA damage, PARP PARylates itself, activating the enzyme
and leading to a 500-fold increase in its activity over basal levels
(Benjamin and Gill, 1980; Alvarez-Gonzalez and Althaus, 1989;
Haince et al., 2008; Hassa and Hottiger, 2008; Langelier et al.,
2012). Unsuccessful PARP1 mediated repair can result in cell
death through multiple pathways, including apoptosis
(Kaufmann et al., 1993), ATP depletion (Martin et al., 2000),
parthanatos (David et al., 2009), and mitotic catastrophe
(Schoonen and van Vugt, 2018).

Over the past decade, inhibitors of PARP have emerged as a
common monotherapy for certain subtypes of breast and ovarian
cancers (Tangutoori et al., 2015). Moreover, preclinical data has
demonstrated that PARP inhibition can increase radiosensitivity in
cancer cells (Wang et al., 2019). The efficacy of combination
therapies employing PARP inhibitors and external beam radiation
has been demonstrated in the clinic, and several phase I clinical trials
based on this approach have been completed at the time of writing
(NCT00770471, NCT00649207, NCT01264432, NCT01477489,
NCT01514201, NCT01657799), with results being available for
some of them (Russo et al., 2009; Tangutoori et al., 2015; Dréan
et al., 2016). The use of PARP inhibitors as scaffolds for
radiopharmaceuticals has also blossomed in recent years (Irwin
et al., 2014; Salinas et al., 2015; Carney et al., 2016; Carney et al., 2017;
Jannetti et al., 2018; Reilly et al., 2018; Makvandi et al., 2019;
Pirovano et al., 2019). To wit, several clinical trials of PARP-
inhibitor-based diagnostic imaging agents are currently in progress
or have been completed ([18F]FluorThanatrace (Michel et al., 2017),
PARPi-FL (Kossatz et al., 2019)), and [18F]PARPi (Schöder et al.,
2019)) and a number of therapeutic radiopharmaceuticals based on
PARP inhibitors have been employed in preclinical animal models
(Kossatz et al., 2016; Michel et al., 2017; Sander Effron et al., 2017).
MECHANISM OF PARP INHIBITION

DNA Binding
PARP1 is composed of six domains.Moving from theN-terminus to
the C-terminus, the enzyme contains three zinc fingers (Zn1, Zn2,
Zn3), one domain for auto-poly(ADP-ribose)ylation
(autoPARylation; AD) that contains a breast cancer 1 protein
(BRCT) motif on the c-terminus of the domain, one domain that
interactswithopenchromatin(WGR)(Altmeyeretal., 2009;Thomas
et al., 2019), and one domain associated with the enzyme’s catalytic
activity (CAT) comprised of a helical subdomain (HD) and a
conserved ADP-ribosyl transferase subdomain (ART). Zn1 and
Zn2 are homologous domains that recognize and bind DNA,
though it has been shown that the enzyme can bind DNAwith only
one of these two domains (Langelier et al., 2011) (Figure 1). Taken
together, the Zn fingers engage not specific sequences of DNA but
rather structural motifs such as blunt ends, single strand breaks
(SSBs), double strand breaks (DSBs), 3′ single-base overhangs, and
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long overhangs (D’Amours et al., 1999;D’Silva et al., 1999; Pion et al.,
2003). It is important tonote that in each of these cases, PARP1binds
to the irregular angle in the broken DNA strand, not the exposed
nucleotides (Lonskaya et al., 2005). Furthermore, each Zn finger
seems to play a particular role in a different aspect of the enzyme’s
function. For example, Zn1 is responsible for binding DSBs,
interacting with the catalytic domain, and activating PARP1. Zn2
seemstoberesponsible for therecognitionofSSBs. (Eustermannetal.,
2011). Zn3 has been shown to play a critical role in protein–protein
interactions during DNA-dependent autoPARylation by initiating
hydrolysis of theNAD+ substrate (Langelier et al., 2008; Venere et al.,
2014). Unlike Zn1 and Zn2, Zn3 is not required for DNA activation,
though it does mediate PARP1–chromatin interactions (Langelier
et al., 2010; Venere et al., 2014).

Single and Double Strand DNA Repair
The complete mechanisms of poly(ADP-ribosyl)ation by the PARP
family of enzymes and its role in DNA repair and regulation
warrants further investigation (Alemasova and Lavrik, 2019). One
proposed hypothesis is the homodimerization of PARP1 after
recruitment to the side of DNA damage to begin autoPARylation
and the repair process (Bauer et al., 1986; Bauer et al., 1990;
Mendoza-Alvarez and Alvarez-Gonzalez, 1993; Mendoza-Alvarez
and Alvarez-Gonzalez, 1999; Mendoza-Alvarez and Alvarez-
Gonzalez, 2004). PARP1 has been shown to dimerize in its active
form in solutionwhich, greatly increased its specific activity (pmol of
product/min per pmol of enzyme) (Bauer et al., 1990). PARP1
dimerization was also confirmed by dynamic light scattering
(Vasil’eva et al., 2019). The rate of automodification is a function
of PARP concentration consistent with second order kinetics. The
rate kinetics suggest a dimerized model in which two PARP1
enzymes initialize PARylation, each with an active NAD+ binding
site (Mendoza-Alvarez and Alvarez-Gonzalez, 1993; Mendoza-
Alvarez and Alvarez-Gonzalez, 1999; Mendoza-Alvarez and
Alvarez-Gonzalez, 2004). Interestingly, an earlier study supports a
model where optimal enzyme activity and PAR chain formation
occur in a PARP1:DNA binding stoichiometry of 2:1 where one
PARP1 enzyme is catalytically active and the other PARP1 acts as a
receptor for PARylation (Panzeter and Althaus, 1994). This model is
supported by the crystal structure of the Zn1 and Zn2 domains from
separate PAPR1 enzymes in a dimer, complexing damaged DNA
(Ali et al., 2012). Another study found the 5′-recessed structure of
DNA will recruit PARP1 in a 2:1 PARP1:DNA stoichiometry (Pion
et al., 2003). Once dimerized, PARylation and autoPARylation are
initiated. AutoPARylation takes place on glutamate and lysine
residues found in the AD (Altmeyer et al., 2009; Venere et al.,
2014). This domain is also the site of protein–protein interactions
(WGR) with the downstream protein targets of PARP1 (Venere
et al., 2014). However, in the absence of an AD domain, PARP1 can
still PARylate other proteins (Altmeyer et al., 2009).

There are several proteins which can be modified with
potentially large, negatively charged PAR chains, which have been
found to be between 1 and 200 units long (Hakmé et al., 2008). It
has been suggested that as the length of the PAR chain increases the
affinity of PARP1 for DNA decreases, mostly due to its highly
negative charge, allowing PARP1 to release the DNA and leave
space for other DNA repair proteins to bind (Ogata et al., 1980;
March 2020 | Volume 11 | Article 170
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Poirier et al., 1982; Tulin and Spradling, 2003; Timinszky et al.,
2009). The PAR chain can be hydrolyzed to shorter PAR chains,
mono(ADP-ribose) by ADP-ribose hydrolase (ARH3) or PAR
glycohydrolase (PARG) (Oka et al., 2006; Min and Wang, 2009).
When ARH3 or PARG cleaves the first ADP-ribose in a PAR chain
from PARP it reestablishes the enzyme’s ability to recognize and
bind DNA damage, essentially “resetting” the PARP (Rouleau
et al., 2010).

The most direct use of the PAR chain is as energy in the form
of ATP when the cell is experiencing decreased levels of ATP
(Petermann, 2003; Walker et al., 2006). It is known that DNA
damage leads to rapid depletion of ATP reserves in the cell (Sims
et al., 1983). This lends to the hypothesis that one role of PARP is
to provide ATP from NAD+ for the ligation step in the BER
pathway, which is favored in times of ATP depletion
(Petermann, 2003; Walker et al., 2006).

The PAR chain has been reported to have the potential to
recruit an array of different proteins (Rouleau et al., 2010). When
interacting with acceptor proteins, the PAR chains can modulate
localization, function, and structure (Kraus, 2008; Krishnakumar
and Kraus, 2010). Aside from autoPARylation, target proteins
for PARylation by PARP1 include other DNA repair proteins,
transcription factors, histones, and chromatin modulators
(D’Amours et al., 1999; Hassa and Hottiger, 2008). One of the
PARylation targets during DNA damage repair is H1, whose
targeting results in the relaxation of the chromatin super
Frontiers in Pharmacology | www.frontiersin.org 3
structure and recruitment of repair proteins such as XRCC1
(El-Khamisy, 2003; Okano et al., 2003). XRCC1 binds directly to
the PAR chain, whereas other repair proteins interact with
mediating proteins that in turn bind PAR (Rouleau et al., 2010).

Necessary, additional interactions between DNA repair proteins
occur through a BRCA1 carboxy-terminal (BRCT) repeat motif
found in many other proteins involved in DNA damage repair
(Kameshita et al., 1984). This domain, containing a conserved ADP
binding sequence comprised of 20 amino acids, has been identified
and found to overlapwith domains inmany proteins associatedwith
DNA binding, nuclear localization, nuclear export, protein
degradation, and protein–protein interaction (Pleschke et al.,
2000). Two enzymes essential to HR, ataxia telangiectasia-mutated
(ATM) andmitotic recombination 11 (MRE11) are signaled through
PAR as well (Haince et al., 2008; Sugimura et al., 2008).

Synthetic Lethality
Exploiting synthetic lethality—a relationship between two
cellular mechanisms wherein the functional loss of one is
survivable but the loss of both is lethal—was proposed as a
treatment for cancer almost a quarter of a century ago (Hartwell
et al., 1997). This strategy was validated during the phase I trial of
the PARP1/2 inhibitor olaparib, when the majority of patients
with BRCA1/2 mutations saw a benefit from PARPi intervention
(Fong et al., 2009). In 2014, olaparib received FDA approval for
treatment of advanced ovarian cancer (Kim et al., 2015).
FIGURE 1 | Schematic representation and crystal structure of PARP1 domains and subdomains. (A) Schematic representation of human PARP-1 domains and
subdomains. A BRCA C-terminus (BRCT) fold is located within the region of PARP-1 that is primarily targeted for automodification. The catalytic domain is
composed of an alphahelical subdomain (HD) and an ADP-ribosyl transferase subdomain (ART). (B) Crystal structure of the PARP-1/DNA structure. Zn1, Zn3, and
WGR-CAT are shown as surfaces. The arrow indicates the location of the PARP-1 automodification region near the catalytic active site. From Langelier et al., 2012.
Reprinted with permission from AAAS. [PDB code 4DQY, (Langelier et al., 2012)].
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When the homologous recombination (HR) pathway is
compromised, inhibition of the remaining PARP-dependent BER
pathway can be lethal to cells, although the exact mechanism is not
entirely understood (Helleday, 2011). Presently, the model for
PARPi-mediated synthetic lethality is that an inhibitor will bind a
DNA-bound PARP enzyme, preventing it fromPARylating proteins
or dissociating from the DNA. These lesions, caused by trapped
PARPs, accumulate and prevent DNA repair and replication,
causing cytotoxicity (Murai et al., 2012; Murai et al., 2014;
Pommier et al., 2016). Likely, the HR pathway fails in BRCA-
deficient cells due to loss of function of BRCA1/2, causing the cells
to rely upon BER to repair damaged DNA (Ström et al., 2011). The
BRCA1 and BRCA2 genes code for the eponymous tumor-
suppressing proteins essential to the HR repair pathway (Roy
et al., 2011). Loss of function of one of these genes via mutation is
associated with a high risk of breast and ovarian cancer (Miki et al.,
1994;Wooster et al., 1995). These types of BRCA1/2negative cancers
are naturally sensitive to PARP inhibitors (Bryant et al., 2005; Farmer
et al., 2005; Liu et al., 2008; Rottenberg et al., 2008; Fong et al., 2009;
Evers et al., 2010).

While synthetic lethality via PARP inhibitors is frequently
associated with BRCA1/2 mutations in the literature, many genes
play crucial roles in various stages of the HR repair pathway
(Cejka, 2015; Hoa et al., 2015). An example of how PARP
inhibitors can be lethal to HR-deficient cells is their effect on
XRCC1-deficient cells. An increased amount of SSBs were
detected when XRCC1-deficient cells were treated with a PARP
inhibitor (Ström et al., 2011). Certain tumors arising from
hereditary cancers that share an HR-deficient phenotype, not
just BRCA deficiency, are sometimes described by the term
“BRCAness.” This includes any mutation that would affect
replication fork stability, or any genes involved in the HR
pathway, for example ATM, ATR, FANC, or PALB2 (Turner
et al., 2004; McCabe et al., 2006; Lord and Ashworth, 2016).
There is evidence of BRCAness and PARP inhibitors inducing
synthetic lethality in cancers that are known to have HR-
deficient pathways, such as high-grade serous ovarian cancer
(HGS-OVCa), advanced prostate cancer, and pancreatic cancers
(Bell et al., 2011; Carnevale and Ashworth, 2015; Mateo et al.,
2015; Waddell et al., 2015; Lord and Ashworth, 2016).

The first evidence of PARP inhibition inducing lethality
appeared in the 1970s when NAD+ analogs were used to bind
PARP1 in combination with a genotoxic agent (Brightwell et al.,
1975; Terada et al., 1979; Purnell and Whish, 1980). At the time
of writing, four therapeutic PARP inhibitors have been approved
by the FDA (olaparib, rucaparib, niraparib, and talazoparib) and
four more are in various stages of clinical trials (veliparib, E7016,
CEP-9722, BGB-290; NCT01827384, NCT01605162,
NCT01345357, NCT03150810, respectively).

Increased Genomic Instability After
PARP Inhibition
Originally, the mechanism proposed for PARP-inhibitor-
mediated synthetic lethality was the accumulation of DSBs
produced when a replication fork failed after encountering an
inhibited PARP bound to an SSB (Farmer et al., 2005). There is
evidence that cells undergoing PARP inhibition contain no
Frontiers in Pharmacology | www.frontiersin.org 4
significant increase in SSBs (Gottipati et al., 2010; Ström et al.,
2011). PARP knockout cells and PARP knockdown cells contain
no higher level of SSBs than wildtype cells (Fisher et al., 2007).
These findings suggest alternate explanation of PARP inhibitor-
mediated synthetic lethality.

PARP more directly affects the genome through PARylating
histones and other nuclear proteins to unwind the chromatin
structure (De Murcia et al., 1986; Althaus et al., 1994). An
increased level of biomarkers of genomic instability, such as
DNA strand breaks, gene amplification, DNA recombination,
and SCE were found in cells with decreased PARP activity after
treatment with DNA-damaging agents. These findings were
made using PARP inhibitors, PARP knockout models, and
asRNA models (Küpper et al., 1990; Waldman and Waldman,
1991; Ding and Smulson, 1994; Schreiber et al., 1995).

These results lead to the hypothesis that when HR and BER
pathways are inaccessible to cells, they rely on non-homologous
end joining (NHEJ). HR and BER are conservative DNA repair
methods, maintaining the original DNA sequence that was
damaged. When HR is not an option for the cell, it has to rely
on BER and NHEJ. NHEJ is a non-conservative repair pathway
because it will excise the damaged DNA, leading to genomic
instability (Moynahan et al., 2001; Tutt et al., 2001). It has been
shown that NHEJ is promoted in cells with defective HR
pathways after treatment of PARP inhibitors. Also, resistance
to PARP inhibitors is acquired when the NHEJ pathway is
inhibited (Patel et al., 2011). These findings indicate that
PARP-inhibitor-induced lethality can also be attributed to
genomic instability as a result of the NHEJ pathway in non-
irradiated situations.

PARP Trapping
PARP trapping is the formation of a PARP–DNA complex through
inhibition of DNA-bound PARP. PARP–DNA complexes were
detected in cell lines treated with olaparib and rucaparib (Murai
et al., 2012; Murai et al., 2014). PARP inhibitors prevent PARP from
synthesizing PAR chains by competitively binding PARP’s natural
substrate, NAD+.

Interestingly, inhibiting PARP is more cytotoxic than the
absence of PARP itself (Thomas et al., 2018). One hypothesis for
this effect might be due to replication fork stalling and
subsequent collapse, a mechanism shared with topoisomerase I
(TOP1) and TOP1 inhibitors. Further evidence of PARP
trapping and collapsing replication forks is PARP1’s role in
restarting stalled replication forks, a task prevented by PARP
inhibitors (Yang et al., 2004; Bryant et al., 2009). This mechanism
sheds some light on the lethality of PARP inhibitors in cells with
and without BRCA mutations (Strumberg et al., 2000).

The efficacy of PARP trapping was shown to be independent of
the half-maximal inhibitory concentration (IC50) of the PARP
inhibitors (Murai et al., 2012; Murai et al., 2014). Of the FDA-
approved PARP inhibitors, veliparib is the least effective at PARP
trapping, irrespective of the fact that its IC50 value is lower than that
of niraparib (2 nM and 3.2 nM, respectively). Olaparib has a
significantly more favorable IC50 than rucaparib (5 nM and
1.4 nM for olaparib and rucaparib, respectively), and they exhibit
equal efficacy as PARP trapping agents. Talazoparib has the more
March 2020 | Volume 11 | Article 170
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favorable IC50 and functions as the best PARP trapping agent (Murai
et al., 2012). Talazoparib’s ability to trap PARP is likely due to its
bulky structure and rigidly which contributes to a slow rate of
dissociation (Shen et al., 2013; Murai et al., 2014; Pommier et al.,
2016). Recent combination trials have demonstrated new indications
of PARP inhibitors in combination with other therapeutics,
extending their use beyond cancers with BRCAness. One such
example includes a combination therapy of rucaparib and
temozolomide in metastatic melanoma, a cancer not typically
associated with BRCA1/2 mutations (Plummer et al., 2013).

PARP Inhibition as a Radiosensitizer
While PARP inhibition in cancers with “BRCAness” can induce
synthetic lethality, PARPi in other cell lines can radiosensitize them.
The PARPi 3-aminobenzamide was able to radiosensitize two breast
cancer cell lines, MDA-MB-231 and MDA-MB-436, one with and
one without BRCA mutation, respectively (Zhao et al., 2019). The
mechanism of PARPi induced radiosensitivity is most likely a DNA
replication-dependent model in which replication forks collapse
during delayed SSB repair, as demonstrated by Dungey et al. in
which a replication-dependent increase in ɣH2AX foci in G2 cells
was observed after treatment with olaparib and fractionated ionizing
radiation (IR) in the T98G model of glioblastoma (Dungey et al.,
2008). Noel et al. showed HeLa cells were radiosensitized by the
PARPi 4-amino-1,8-naphthalimide during S phase. Irradiation of
these cells produced an increase of DSBs hours after irradiation
(Noel et al., 2006). Evidence supporting a cell-cycle dependent effect
was provided earlier by Chalmers et al. when hamster fibroblast cell
lines V79-379A and CHO-K1 and human glioma cell line T98G
treated with PARPis were the most radiosensitive during periods of
rapid growth. Once cells had been arrested in G1 phase,
radiosensitivity was lost (Chalmers et al., 2004).
PRECLINICAL MODELS OF
COMBINATION THERAPIES

In Vitro—Clonogenic Assays
TheMarples group out ofWayne State University has demonstrated
that radiosensitivity can be increased through PARP inhibition in
human glioma cell lines U373-MG and T98G. Clonogenicity was
evaluated with increasing concentrations of PARP inhibitors (1–
3 mM) that were found to be non-toxic in the absence of radiation. A
3 mMconcentration of PARP inhibitor, the highest concentration of
inhibitor that was non-toxic in the absence of IR, was then used in
conjunction with low levels (0.05–0.3 Gy) of ionizing radiation (IR)
to induce toxicity (Chalmers et al., 2004). Treatment with a small
molecule PARP inhibitor, AG14361, followed by 8 Gy IR reduced
survivability in colorectal cancer cell lines (LoVo) by 73% (Calabrese
et al., 2004). Non-small cell lung cancer (NSCLC) cell lines A549 and
Calu-6 were each treated with 1 mM and 5 mM of olaparib before
being exposed to 0, 2, 4, and 6 Gy to find dose-dependent
sensitization of both cell lines. For A549 and Calu-6 the Survival
Enhancement Ratios (SER) values at 1 mMwere found to be 1.3 and
1.5, respectively. These values increased to 1.6 mM and 1.8 at 5 mM
Frontiers in Pharmacology | www.frontiersin.org 5
(Senra et al., 2011). Veliparib was shown to have a limit on
radiosensitization with concentrations above 2.5 mM no longer
increasing radiosensitivity in a NSCLC cell line, H1299. Survival
fractions were decreased when IR was supplemented by
pretreatment of 2.5 mM veliparib. This effect was also observed in
human prostate cancer cell lines (DU145 and 22Rv1) (Liu et al.,
2008). The PARP inhibitor E7016 was able to increase
radiosensitivity across multiple cancer cell lines as well. A dose
enhance factor ≥1.4 was calculated for glioblastoma (U251) and
pancreatic (MiaPaCa), and prostate cancer (DU145) cell lines when
treated with E7016 prior to IR. Surviving fractions in all three cell
lines were reduced to 0.1 in clonogenic assays (Russo et al., 2009).
Veliparib demonstrated no effect on colony formation in PC-3
prostate cancer cells when incubated in 10 mM veliparib. The same
treatment, followed by 2 Gy IR, reduced colony formation to 47%
(Barreto-Andrade et al., 2011). 22Rv1 prostate cancer cells had
PARylation reduced by 97–100% after incubation with the PARP
inhibitor olaparib. The radiosensitization enhancement ratio was
found to be ≥1.2 when combined with IR compared to PARP
inhibitor alone. This result was found in acutely hypoxic, chronically
hypoxic, and normoxic conditions (Gani et al., 2015). These works
establish the efficacy of a variety of PARP inhibitors as
radiosensitizers for multiple human cancer cell lines at low mM
concentrations, often below cytotoxic concentrations of the PARP
inhibitors themselves.

In Vivo—Tumor Growth Delay and Survival
Combination therapy is a more efficacious approach to treating
H460 models of non-small cell lung cancer. A tumor growth delay
assay using a five-fold increase in tumor volume as an endpoint saw
a 1-day or 7-day delay using the PARP inhibitor veliparib or
external beam radiation alone, respectively. When these therapies
were combined, the five-fold increase in tumor volume was delayed
by 13.5 days (Albert et al., 2007). A subcutaneous LoVo xenograft
model of colorectal cancer exhibited tumor growth delay of 19 days
with a fractionated regimen of IR that was increased to 37 days
when combined with a low dose of AG14361, which did not delay
tumor growth when administered alone (Calabrese et al., 2004).
Tumor growth was significantly impeded in a dose-dependent trend
of GPI-15427 and 2 Gy in mouse models of JHU006 and JHU012
HNSCC (Khan et al., 2009). A dose response dependency of
veliparib was demonstrated in a human colon cancer mouse
xenograft model, HCT116, when administered through a
subcutaneously implanted osmotic pump in conjunction with IR
compared to IR alone (Donawho et al., 2007). Calu-6 mouse
xenograft models received a daily 50 mg/kg dose of olaparib for 5
days, 5 days of 2 Gy IR daily, or both therapies. The combination
therapy cohort experienced a significant delay of 10 days to reach
the endpoint compared to either monotherapy or control cohort
(Senra et al., 2011).

Mouse models of HCT116 colorectal cancer receiving twice
daily orally administered doses of 12.5 mg/kg of veliparib in
conjunction with 2 Gy fractions of IR displayed significant tumor
growth delay compared to control groups of IR alone (Shelton
et al., 2013). Olaparib was also tested as a radiosensitizer in
March 2020 | Volume 11 | Article 170
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subcutaneous mouse models of glioblastoma-initiating cells.
Daily treatment of olaparib over 7 days was administered
concurrently with 3 Gy of IR every other day for three total
doses to find greater tumor growth delay than vehicle, IR alone,
or IR with vehicle (Venere et al., 2014). The effect of fractionated
RT after sensitization by olaparib was evaluated in a 22Rv1
human prostate cancer mouse model. One cohort received a
single 8 Gy dose on the third day of three consecutive daily doses
of intraperitoneally administered PARP inhibitor. A second
cohort was treated with seven consecutive days of olaparib,
with 5 × 2 Gy doses every other day starting 3 days after the
initial PARP inhibitor injection. The group receiving
fractionated doses displaying a non-significant delay in tumor
growth compared to the vehicle + fractionated IR control group
(Gani et al., 2015). The above data suggests that a combination
therapy between PARP inhibitors and RT is more effective
in vitro and in vivo than either therapy alone and is
summarized in Table 1.
COMBINATION THERAPY CLINICAL
TRIALS

Ionizing Radiation With Chemotherapy
and PARPis
There are currently several completed clinical trials exploring the
efficacy of combining PARP inhibitors, radiotherapy and
chemotherapy, none of which have available results. In a phase I
study of patients with phase II or III rectal cancer, patients were
given 825 mg/m2 capecitabine twice daily and 1.8 Gy fractions daily
for a total of 50.4 Gy over approximately 6 weeks in conjunction
with escalating doses (20–400 mg) of veliparib orally twice daily.
Maximum tolerated dose was not reached, and the study found 400
Frontiers in Pharmacology | www.frontiersin.org 6
mg twice daily to be the appropriate dose of veliparib for the phase
II study (NCT01589419, Czito et al., 2017). Two other phase I
studies evaluating the combination of veliparib and temozolomide
against diffuse pontine glioma and glioblastoma have also
concluded, but results have not yet been posted (NCT01514201,
NCT00770471). The PARADIGM-2 study is two parallel phase I
studies in which one arm evaluated dose escalation of olaparib (50–
150 mg/daily) is combined with 60 Gy in 30 fractions over 3 weeks
of radiotherapy followed by four additional weeks of olaparib. The
second arm included the same regimen with concomitant
temozolomide at 75 mg/m2 daily throughout radiotherapy and
again after the 4 weeks of olaparib (Fulton et al., 2018). One study
aims to find the MTD of b 25–200 mg of olaparib twice daily
beginning 3 days prior to the first dose of cetuximab. The initial
400 mg/m² dose of cetuximab will precede the start of radiation by
5–7 days. 69.3 Gy of radiation therapy will be administered in 33
fractions over 6.5 weeks (NCT01758731).

Ionizing Radiation With PARPis
The first clinical trial exploring combination therapy between
PARP inhibitors and ionizing radiation to publish results
combines veliparib and whole brain radiation therapy (WBRT)
in adult patients with brain metastases from non-small cell lung
cancer (NCT00649207). Patients were age >18 years with
Karnofsky performance status (KPS) scores ≥70. One arm
received WBRT administered daily in 2.5 Gy fractions over 15
sessions for 37.5 Gy total. A second arm was treated with 150 mg
of veliparib twice daily with concurrent daily fractions of 3.0 Gy
fractions over 2 weeks for 30 Gy.

All three arms of the study received a 30 Gy fractionated dose of
10 × 3 Gy doses, excluding weekends and holidays. The variable was
the quantity of drug received twice daily: placebo, 50 mg veliparib,
or 200 mg veliparib. The primary outcome was survival up to
TABLE 1 | Preclinical combination therapies with PARP inhibitors and ionizing radiation.

PARPi Disease Cell line Assay Publication

AG14361 Colorectal LoVo Clonogenic Calabrese et al., 2004
Tumor growth delay

E7016 Glioblastoma U251 Clonogenic Russo et al., 2009
Pancreatic MiaPaCa
Prostate DU145

GPI-15427 HNSCC JHU006 Tumor growth delay Khan et al., 2009
Olaparib NSCLC A549 Clonogenic Senra et al., 2011

Calu-6 Tumor growth delay
Glioblastoma GIC Tumor growth delay Venere et al., 2014
Prostate 22Rv1 Tumor growth delay Gani et al., 2015

Clonogenic
PJ34 Glioblastoma U373-MG Clonogenic Chalmers et al., 2004

T98G
Veliparib NSCLC H460 Tumor growth delay Albert et al., 2007

JHU012
Colon HCT116 Tumor growth delay Donawho et al., 2007
NSCLC H1299 Clonogenic Liu et al., 2008
Prostate DU145

22Rv1
Prostate PC-3 Clonogenic Barreto-Andrade et al., 2011

Tumor growth delay
Colon HCT116 Tumor growth delay Shelton et al., 2013
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36 months. While the patient tumor population was homogenous,
88–90% of patients in this trial had Graded Prognosis Assessment
scores ≤2.5, amounting to an unfavorable prognosis, and the
primary outcome was not met (Chabot et al., 2017). It is worth
noting that even when a combination therapy significantly prolongs
survival in patient populations with favorable prognoses (GPA 2.5–
4), it falls short of significance in populations with unfavorable
prognoses (Aoyama et al., 2015). This study progressed to phase II
(NCT01657799), where no benefit was found in combining WBRT
with veliparib compared to WBRT and a placebo (Chabot
et al., 2017).
NEW FRONTIERS—PARPI DIAGNOSTICS
AND RADIOTHERAPIES

PARPi-FL
PARPi-FL was first reported in 2012 by the Weissleder Lab at
Massachusetts General Hospital in human pancreatic cancer cells
(Reiner et al., 2012). It can be used for real-time visualization of
intracellular kinetics of PARP inhibitors (Thurber et al., 2013). It was
later shown to be a viable imaging agent in vivo in a mouse model of
glioblastoma (Irwin et al., 2014). Composed of a BODIPY-FL dye
conjugated to an olaparib scaffold, it retains a similar
pharmacokinetic profile, including the low IC50 value of 12.2 nM
compared to the 5.0 nMvalue of olaparib (Menear et al., 2008). It can
also be blocked by pretreatment with olaparib. PARPi-FL uptake in
tumors is rapid, with statistically significantly increased tumor-to-
muscle and tumor-to-brain ratios of ≥10 in a mouse model of
glioblastoma. Uptake of PARPi-FL was correlated to PARP1
expression, and increased after irradiation (Irwin et al., 2014;
Kossatz et al., 2016). Retention persists for hours, with <50%
metabolites present in the blood at peak uptake in tumors (Irwin
et al., 2014). PARPi-FL has been used for real-timemeasurements of
drug–target interaction in vitro and in vivo (Dubach et al., 2014;
Dubach et al., 2017). The translational potential of PARPi-FL was
highlighted when high tumor-to-organ ratios were observed in an
orthotopic model of oral squamous cell carcinoma using clinical
imaging instruments (Kossatz et al., 2016; Carney et al., 2017), and
early clinical outcomes have been reported [NCT03085147 and
(Kossatz et al., 2019)].

PARPi-Derived PET Tracers
The first radiolabeled PARP inhibitor for PET imaging was
designed to monitor tissue necrosis. The Mach Group at
Washington University labeled the small molecule PARP1
inhibitor PJ34 with carbon-11 and had good yields with increased
uptake in target tissue in a rat model of Type I diabetes (Tu et al.,
2005). The first reported fluorine-18-labeled PARP inhibitor was
[18F]FE-LS-75 from the Roesch Group at Johannes Gutenberg-
University, which showed high yields up to 80% (Riss et al., 2009)
but did not report in vitro/vivo experiments. The first fluorinated
PARP-targeted small molecule based on a later FDA-approved
PARP inhibitor was 18F-BO (Keliher et al., 2011). Uptake was
shown to correlate to PARP1 expression in breast cancer mouse
models. A dose of olaparib prior to injection with 18F-BO was able
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to reduce uptake in vivo. Favorable uptake was also observed in
pancreatic and ovarian cancer models (Reiner et al., 2012) (Figures
2A, B). 18F-PARPi-FL was developed as a dual modality PET/
fluorescent imaging agent (Keliher et al., 2014). PARP1-specific
uptake was demonstrated in glioblastoma xenografts. Both
modalities showed similar tumor-to-brain uptake ratios (PET, 9:1;
fluorescence, 7:1) as determined by autoradiography and
fluorescence microscopy (Carlucci et al., 2015). 18F-PARPi is an
olaparib-based PET imaging agent that exhibits high specificity for
PARP1 in mouse models of orthotopic glioblastoma, diffuse
intrinsic pontine glioma, and small-cell lung cancer (Carney et al.,
2016; Kossatz et al., 2017; Carney et al., 2018) (Figures 2C, D). 18F-
PARPi has potential to non-invasively monitor disease progression
and is currently in phase I clinical trials [(Schöder et al., 2019),
NCT03631017]. Wilson et al. has published the synthesis and
in vivo biodistribution of a fluorine-18 isotopologue of olaparib.
Pre-irradiation of the cells and tumors was shown to increase uptake
of the compound in several pancreatic cancer cell lines (Wilson
et al., 2019). 18F-FluorThanatrace (18F-FTT) is a rucaparib-based
PET imaging agent first published in a human breast cancer mode
(Zhou et al., 2014) (Figure 2E). It was the first PARP-targeted PET
imaging agent to be tested in the clinic and is currently involved in
several phase I clinical trials, evaluating uptake in different cancers
(Michel et al., 2017; Makvandi et al., 2018).

PARPi Radiotherapeutics
Several PARP inhibitors have also been labeled with therapeutic
isotopes (Salinas et al., 2015; Jannetti et al., 2018; Reilly et al., 2018;
Makvandi et al., 2019; Pirovano et al., 2019). The pharmacokinetic
profiles of several iodinated PARP inhibitors based on olaparib were
explored in human glioblastoma models in vitro and in vivo.
Various length linkers were evaluated using an olaparib scaffold
and a small library of iodobenzoic acids. The compounds with the
best pharmacokinetics were radioiodinated and evaluated in culture
and orthotopic mouse models of human glioblastoma for PARP1
specificity (Salinas et al., 2015). The rucaparib scaffold was also
leveraged in the design and synthesis of alpha- and auger-emitting
radiotherapeutics using copper-catalyzed halogenation of boronic
esters (Reilly et al., 2018; Makvandi et al., 2019). The efficacy of
PARP-targeted radiotherapeutics was first published in
subcutaneous mouse models of glioblastoma, and later in
orthotopic models of human glioblastoma (Jannetti et al., 2018;
Pirovano et al., 2019). Intratumoral injections were implemented to
mimic Convection Enhanced Delivery (CED). A reporter cell line
transduced from U87 cells was designed to respond to p53
activation, as well as cellular density. This allowed imaging of cell
death following treatment with the iodinated PARP inhibitor.
Therapeutic efficacy was evaluated in a tumor growth delay
experiment that found a fractionated dose of the drug could
significantly delay the endpoint of the study (Figure 3A). Use of
a CED-mimicking subcutaneous implant allowed approximately 9
Gy to be delivered to a brain-tumor-bearing mouse compared to 1
Gy in a healthy mouse (Jannetti et al., 2018) (Figures 3B, C). These
results were leveraged in the synthesis and validation of an Auger-
electron emitting isotopologue. Uptake of the drug can be decreased
by pretreatment with olaparib and proved lethal to cells at
concentrations lower than that of olaparib (EC50 = 69 nm). The
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FIGURE 2 | In vivo PET/CT Imaging. (A) Correlation of 18F-BO uptake and PARP expression in two ovarian and two pancreatic tumor types as determined by
immunoblotting. (B) Coronal and axial PET/CT scans of a subcutaneous A2780 tumor-bearing mouse (Reiner et al., 2012). (C) Sagittal PET/CT images of orthotopic
U251 MG tumor-bearing mice 2 h post-injection of 18F-PARPi. (D) PET/CT 2 h post-injection 18F-PARPi after 30 m pre-injection of 500-fold excess olaparib (Carney
et al., 2016). (E) MicroPET images of MDA-MB-231 tumors in mice tumor at 60 min after 18F-FTT injection before and after treatment with olaparib (ip 50 mg/kg 20
min pretreatment; Zhou et al., 2014). Reprinted by permission from Springer Nature: Springer Molecular Imaging and Biology (Carney et al., 2016) (Non-invasive PET
imaging of PARP1 expression in glioblastoma models, Carney, B, G Carlucci, B Salinas, V Di Gialleonardo, S Kossatz, A Vansteene, VA Longo, A Bolaender, G
Chiosis, KR Keshari, WA Weber, and T Reiner), copyright (2016).

Jannetti et al. PARP Inhibitors and Radiation Therapy
FIGURE 3 | PARP targeted radiotherapies. Radiolabeled PARP inhibitors in mouse models of cancer. (A) Survival plot and table of treatment groups with median
survival of subcutaneous U87-p53 tumor-bearing mice. P = 0.0001. (B) SPECT/CT of orthotopic U87-p53 tumors during osmotic pump treatment of [131I]PARPi at
72 hours. (C) Calculated absorbed dose to brain* during treatment. *Brain and tumor have been considered together as a single organ in organ level dose
calculation. (Jannetti et al., 2018). (D) Dosimetry of the subcutaneous pump model showing CT, phantom, and Monte Carlo simulation of dose accumulation in the
tumor. (E) Kaplan–Meier survival study of pump implanted mice shows an improvement of survival of 123I-MAPi treated mice (n = 8) when compared to control (n =
8). *P < 0.05 (Pirovano et al., 2019). (F) Tumor growth and Kaplan–Meier curves for IMR-05 tumor-bearing mice (F) treated with single dose of 555 or 1,110 kBq of
[211At]MM4 (control vs. 555 kBq and 1,110 kBq mixed linear model p < 0.0001; control vs. 555 and 1,110 kBq survival Mantel–Cox test p < 0.0001, 555 vs. 1,110
kBq not significant, (G) and single high dose of 1,480 kBq vs. a fractionated dose of 370 kBq twice weekly for a cumulative dose of 1,480 kBq (control vs.
fractionated mixed linear model p < 0.0001, fractionated vs. high dose not significant; survival Mantel–Cox test high dose vs. control p < 0.0001, fractionated vs.
control p < 0.03 (Makvandi et al., 2019).
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radiotheranostic proved efficacious in prolonging survival of treated
mice, and intratumoral administration of the drug in mice bearing
human brain tumor significantly increased survival compared to
vehicle alone (p = 0.0094). Application of CED-mimicking implants
replicated this effect in the same model (p = 0.0361, Pirovano et al.,
2019) (Figures 3D, E). High radiochemical yields (≥89%) were
reported for halogenation of both olaparib and rucaparib scaffolds
with astatine-211 and iodine-125 (Reilly et al., 2018). Antitumor
effects were observed using an astatinated PARP inhibitor in a
mouse model of neuroblastoma. Favorable uptake was observed in
the tumor after 2 h. A single dose of the alpha-emitting drug was
able to significantly delay tumor growth and prolong survival
against a control group (Makvandi et al., 2019) (Figures 3F, G).
SUMMARY AND OUTLOOK

Since its discovery we have elucidated the multiple roles PARP1
plays in the cell. PARP inhibitors have given rise to promising
new cancer therapies and treatment strategies. We have recently
witnessed PARPis receive approval as monotherapies for several
cancers, and are waiting on the next generation of these small
Frontiers in Pharmacology | www.frontiersin.org 10
molecules. Many research groups are already evaluating the
potential of PARPis as radiosensitizing agents in preclinical
models of combination therapies. PARPis are currently being
applied in the clinic as radiosensitizing agents in addition to
clinical trials using combination PARPis with chemotherapies
and radiation. A handful of these small molecules have been
labeled to create a new class of diagnostic and radiotherapeutic
agents, several of which are currently in clinical trials. The broad
versatility and applications of these PARPis are providing the
research community with a new set of tools for diagnosis, patient
stratification, and therapy in some of the most lethal cancers.
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