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Dendritic cells (DCs), a class of antigen-presenting cells, are widely present in tissues
and apparatuses of the body, and their ability to migrate is key for the initiation of
immune activation and tolerogenic immune responses. The importance of DCs migration
for their differentiation, phenotypic states, and immunologic functions has attracted
widespread attention. In this review, we discussed and compared the chemokines,
membrane molecules, and migration patterns of conventional DCs, plasmocytoid DCs,
and recently proposed DC subgroups. We also review the promoters and inhibitors that
affect DCs migration, including the hypoxia microenvironment, tumor microenvironment,
inflammatory factors, and pathogenic microorganisms. Further understanding of the
migration mechanisms and regulatory factors of DC subgroups provides new insights
for the treatment of diseases, such as infection, tumors, and vaccine preparation.

Keywords: dendritic cells, migration, conventional dendritic cells, plasmacytoid dendritic cells, chemokines,
adhesion molecules

INTRODUCTION

Dendritic cells (DCs) are professional antigen-presenting cells that link innate and adaptive
immune responses. In 1973, scientists isolated cells with unique dendritic processes from the
peripheral lymphoid organs of mice and named them “dendritic cells” (Steinman and Cohn, 1973).
Subsequently, Idoyaga and Steinman (2011) found that DCs participated in adaptive immune
response after continuous migration and activation. The function of DCs, whether in maintaining
immune tolerance or promoting immunity, require migration to a certain target destination.
Recent studying has brought new ideas into the development of different DC subsets in immune
responses. Herein, we reviewed the DC subsets that have been reported in recent years and
discussed the regulatory factors and molecular mechanisms involved in DC migration. Elucidating
the mechanisms underlying the migratory DCs would contribute to the development and function
of different DC subsets and their role in diseases.

DC SUBSETS
Dendritic cells are highly heterogeneous cells that have historically been categorized by phenotype,
function, or location. DCs are unique hematopoietic cells that originate from precursor cells, such
as monocytes and pre-DCs, in bone marrow (Naik et al., 2006; Liu et al., 2009; Liu and Nussenzweig,
2010). Precursor cells migrate to peripheral tissues and secondary lymphoid organs via blood
circulation and/or lymphatic vessels where they differentiate into myeloid DCs and lymphoid DCs
(Naik et al., 2007) (Figure 1). According to specific transcription factors and chemokines, these DCs
are further differentiated into three classic subsets: conventional DC1s (cDC1s), conventional DC2s
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(cDC2s), and plasmacytoid DCs (pDCs). According to their
states of maturity, DCs are divided into immature DCs (imDCs),
mature DC (mDCs), semi-mature DCs (smDCs), and tolerogenic
DCs (tol-DCs). Semi-mature DCs (smDCs), which are an
activation state between immature and mature DC cells, are
difficult to define (Lutz and Schuler, 2002). These classic DC
subsets play a critical role in regulating immune response and
immune tolerance.

cDC1s
Conventional DC1s widely exist in the blood and peripheral
tissues of human and mouse, but their expression is very low
in mouse blood. Mouse cDC1s have strong homogeneity in
expressing CD8 and/or CD103 (Edelson et al., 2010). Mouse
CD8+ cDC1s are identified as CD11chiCD45R−MHCII+
CD8α+DEC205+CD11bloSirpαlo and express C-type lectin
Clec9A (DNGR1), Nectin-like protein 2 (Necl2; also called
CADM1). Migratory CD103+ DCs in most non-lymphoid tissues
are defined as CD11c+MHCII+CD103+CD11bloCX3CR1−
F4/80−Sirpα− (McLellan et al., 2002; Bursch et al., 2007;
Huysamen et al., 2008; Ginhoux et al., 2009). Both resident
CD8a+ and migrating CD103+ cDCs express CD36, CD24, and
XCR1 and play a critical role in immunity against intracellular
pathogens, viruses, and cancer. In mouse blood, activated
cDC1s secrete interleukin (IL)-12p70 and induce the T
helper type 1 (Th1) response (Maldonado-Lopez et al., 1999;
Farrand et al., 2009). Human CD141+/BDCA-3+ Conventional
DC1s are primarily distributed in lymphoid tissues, express
C-type lectin receptor 9 (Clec9) and X-C motif chemokine
receptor 1 (XCR1), and contribute to antiviral immunity
(Silvin et al., 2017), whereas human thymus CD141+cDC1
produces high levels of IL-12 and induces the Th17 response
(Vandenabeele et al., 2001). A group of specific DC subgroup
Langerin+(CD207+)CD103+CD8+cDC1 was found in the
human spleen, and it was a key regulator of immune responses
toward blood-borne antigens in the steady-state and during
inflammation (Backer et al., 2019). In bacteria-infected human or
mouse skin, a subset of CD59+EpCAM+Ly6D+ cDC1 promotes
the infiltration of numerous neutrophils by producing the
vascular endothelial growth factor (VEGF)-α (Janela et al., 2019).
cDC1 contributes to antigen presentation, induces angiogenesis,
and promotes inflammation.

The migration of cDC1 is primarily correlated with CXCR3
and CCR7 expression. CXCR3 expression is restricted to mice
pre-cDC1 and pDC lineages and is specifically expressed in pre-
cDC1 (Siglec-H−Ly6C−) but not pre-cDC2 (Siglec-H−Ly6C+).
Trafficking to periphery CCR7-CCL21α−/− interactions guides
the migration of pre-cDCs (Lin−CD11c+MHCII−Flt3+Sirpαlo),
which accumulate in the thymus, where they may be important
for T-cell tolerance (Cosway et al., 2018).

cDC2s
Conventional DC2s have high heterogeneity and play dual
roles of immune activation and regulation in the immune
response. In the blood, activated cDC2s secrete IL-1β, IL-6,
and IL-23 and induce the Th17 response (Persson et al., 2013).
In the mouse intestine and thymus, cDC2s can induce the

production of regulatory T cells (Treg) (Proietto et al., 2008;
Balan et al., 2019). Recently, human cDC2s have been divided
into two subsets: (1) CD1cloCLEC10A−CLEC4hi cDC2A
expresses a high level of amphiregulin (Areg) and matrix
metalloproteinase-9 (MMP-9) but low levels of IL-23, IL-6,
and tumor necrosis factor-α (TNF-α). This subset exhibits
anti-inflammatory effects. (2) CD1c+CLEC10A+CLEC4lo

cDC2B has pro-inflammatory effects with high expression levels
of IL-6 and TNF-α (Brown et al., 2019). The corresponding
two subgroups of cDC2s in mice are T-bet+ cDC2A and
T-bet− cDC2B (Brown et al., 2019), which are different from
the previously described cDC2 subsets. Notch2 targeting of
CD11c+CD11b+ CD103+ IRF4+ cDC2s was associated with
the induction of the Th17 cell response (Lewis et al., 2011),
whereas Kruppel-like factor 4 (Klf4)-dependent CD11c+
IRF4+ cDC2s promote Th2, but not Th17 (Tussiwand
et al., 2015). In addition, CD9 divided CD11b+cDC2s into
two subgroups in B16-F10 tumor-bearing mice, namely
CD9−(CD301−)/CD9+(CD301+)CD11b+cDC2s, which are
required for activating antitumor CD4+ Tconv (Binnewies
et al., 2019). Although cDC2s are divided into many subsets,
migratory cDC2s subsets typically require CCR7, whereas
extrathymic Sirpα+cDC2s enter the thymus primarily via CCR2
(Tomohisa et al., 2009).

pDCs
Plasmacytoid DCs were first discovered in human lymph nodes
(LNs). Human CD11c−CD123+CD303+ pDCs are equivalent
to mice PDCA-1+ pDCs. pDC differentiation depends on E2.2
and IRF7, and expresses the CD123/IL-3α chain, CD303 (BDCA-
2), CD304 (BDCA-4), and immunosuppressive molecule ILT2,
etc. (Dzionek et al., 2000; Swiecki et al., 2010; Mathan et al.,
2013). A new subgroup, AXL+AS DCs (SIGLEC1+, SIGLEC6+),
exists in human blood and expresses a similar marker as
that of pDCs (Villani et al., 2017). Although these subgroups
are incapable of proliferation, they can activate T cells and
play an antiviral role. Furthermore, pDCs can be converted
into cDCs. When transcription factor E2-2 is downregulated
or ID2, PU.1, and BATF3 are significantly upregulated, CC-
chemokine receptor 9 (CCR9)− pDCs in intestinal epithelial
cells (IECs) migrate to peripheral tissues (Chen et al., 2015).
Subsequently, they are transformed into CD11b+CD8+MHCII+
cDC-like cells under the stimulation of granulocyte-macrophage
colony-stimulating factors (GM-CSF) or soluble factors produced
by IEC (Schlitzer et al., 2011). This transformation leads to
an imbalance or abnormal distribution of pDC and cDC
subpopulations in the body, which induce autoimmune diseases
(Chen et al., 2015; Qian and Cao, 2018). CCR4, CCR6, CCR7,
CCR9, CCR10, and chemokine-like receptor 1/chemerin receptor
23 (CKLR1/ChemR23) are correlated with pDC migration
(Penna et al., 2001; Vermi et al., 2005; Wendland et al., 2007;
Sisirak et al., 2011).

tol-DCs
Tolerogenic DCs (tol-DCs) can be derived from monocytes
or pre-DCs. GM-CSF and TGF-β1 stimulated mouse liver-
derived pre-DCs into tol-DCs, which prolong the survival
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FIGURE 1 | The migration of DC subsets. (A) DC endogenous migration: The precursor DC (pre-DC) develops from hematopoietic stem cells and gradually
differentiates into pre-cDC and pDC. Then pDC and pre-cDC migrates from the bone marrow and enters blood circulation (in this case, DC is imDC and pre-cDC
differentiates into cDC). Under the mediation of chemokines and cytokines, imDC enters lymphatic vessels, and then reaches draining lymph nodes. In this process,
imDC relies upon chemokines (for example: CCR7/CCL19/CCL21, CCR8, CCR6, CCR9, CCR10, etc.) to migrate and transform into mDCs and induce T cells (Th1,
Th2, Th17, and Treg) to migrate into lymphoid tissues (such as: the spleen) or non-lymphoid tissues (such as: skin) to exert an immunity effect. (B) DC exogenous
migration: After the human body is injected with the DC vaccine, DCs loaded with specific antigens enter the blood circulation, and crawls along the blood vessel
wall to reach the lymphatic vessels, and then enters the draining lymph nodes to activate the adaptive immune response, by which it exerts anti-tumorigenic or
antiviral effect.

time of donors in organ transplantation (Bonham et al., 1996;
Khanna et al., 2000). These tol-DCs induce Treg cells to
exert immune tolerance by secreting large amounts of IL-10.
In addition, skin-settled CD141+CD14+ DC are derived from
colonized monocytes (Chu et al., 2012; Han et al., 2014), and
inhibit the CD4+ T-cell response by secreting IL-10 and IDO.
IDO+CD11b+ DC is a subset of tol-DCs (Park et al., 2012) and
induces immune tolerance. Tol-DCs are classified as induced
tolerogenic DCs (itDCs) and natural tolerogenic DCs (ntDCs).
ItDCs contribute to the maintenance of homeostasis under
potentially proinflammatory conditions. While under steady-
state conditions, ntDCs facilitate the establishment of tolerance.
These findings provide insights on a new framework for the

use of DC-mediated mechanisms of tolerance to treat diseases
(Iberg and Hawiger, 2020).

MECHANISM UNDERLYING DC
MIGRATION

Migration is the key process through which DCs exercise their
uptake, processing, and presentation, and it runs throughout
the entire process of DC differentiation and development. DC
migration affects its phenotype and maturity, thus resulting in the
different localization of different DC subgroups. DCs can directly
pass through the blood vessel wall and migrate from peripheral
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tissues to a specific location or can enter lymph vessels from the
bloodstream, from which they are passively transported to the
subcapsular sinus (SCS) of the LNs through lymph flow and enter
LNs to complete migration (Figure 1A).

Migration Kinetics of DCs
Differentiation and development of DCs occurs in four stages:
(1) DC precursors, (2) imDCs, (3) migration DCs, and (4) mDCs.
Previous studies have shown that only CD34+ DC precursor
cells express E-cadherin, which promotes DC migration and
maturity (Mackensen et al., 2000). During acute inflammation,
DC precursors quickly mobilize to non-lymphoid tissues. Most
DCs in the peripheral organs are imDCs, as immune response
sentinel, which can take up antigens more efficiently. With
exogenous antigens and inflammatory factor stimulation, imDCs
migrate from peripheral tissues to secondary lymphoid areas.
During this process, imDCs develop into mDCs, which present
antigens and induce the T-cell response in LNs (Caux et al., 2000).
Differentiation from imDCs to mDCs depends on migratory
DCs. This type of DC exists mainly in lymphatic tissues,
input lymphatic vessels, and peripheral blood. Through blood
and lymphatic circulation, migratory DCs enter the secondary
lymphatic organs from the input lymphatic vessels and drive
the DCs to mature.

The dynamic migration process of DCs has an important
guiding role in elucidating their homeostasis and pathology in
tissues. However, different DC subsets display distinct migration
kinetics during migration from skin to the draining LN (dLN).
After photoconversion, self-antigens that are present on CD103−
dermal DCs are rapidly transported from the skin to the dLN
and are responsible for the transport of invading pathogens
to the dLN. In contrast, CD103+ DCs reached a plateau on
day 3 after photoconversion and participated in antigen cross-
presentation (Tomura et al., 2014). Moreover, different DC
subsets survey different regions of the spleen to induce specific T
cell responses. For example, 33D1+ DC migrates to the periphery
of the T cell zone of the spleen to induce CD4+ T cell responses,
whereas XCR1+ DC migrates to the center of the T cell zone
in the white pulp of spleen to induce CD8+ T cell responses
(Calabro et al., 2016). In addition, the migration of localized skin
CD1c+/CD14+/CD141+ DC subgroups to the inflammation site
depends on CCR7/CXCL10 (Chu et al., 2012; Haniffa et al.,
2012, 2015). However, research on the migration of a certain
DC subgroup to a specific site in the tissues under steady-state
and inflammatory conditions remain insufficient. Furthermore,
whether independent DC subsets can selectively induce the T cell
response in other immune organs warrants further research.

Essence and Mechanism of Migration
The migration of DCs is a complex and dynamic cyclical
process. Cell migration occurs due to interaction between
chemokines and chemokine receptors. Under the guidance of
chemokines, DCs move to specific sites and exert corresponding
biological functions. In addition, adhesion factors, integrins,
semaphores, and cytoskeletal proteins play various roles in cell
migration. Furthermore, the migration of DCs is essential for
T cell responses.

Chemokines
Chemokines and chemokine receptors guide the positioning and
chemotaxis effects of DCs at different developmental stages.
Chemokines are a class of highly conserved small, secreted
proteins that regulate DC migration by identifying chemokine
receptors that bind to the DC surface. CCR7 plays an important
role in DC migration from peripheral tissues to draining LNs and
is a key factor that affects DC migration and function (Yanagihara
et al., 1998; Hirao et al., 2000; Randolph et al., 2004). CCR7
ligands CCL19 and CCL21, which are expressed in lymphoid
organs mainly, drive DC migration (Elke et al., 2004; Tiberio
et al., 2018). CCL21 forms the “CCL21 gradient” by binding to
heparan sulfates in the interstitium, thereby providing adhesion
for DC migration and guiding DC migration into LNs (Weber
et al., 2013). The discovery of chemokines and the chemokine–
chemokine receptor axes facilitates research to elucidate the
migration mechanism of DCs.

(1) The CCR7-CCL21/CCL19 axis: The CCR7-CCL19/CCL21
chemokine axis is vital for the regulation of adaptive
immunity and tolerance by affecting mDC migration
from the peripheral tissue to lymphatic vessels and
LNs (Forster et al., 2008). Depending on this axis,
human skin CD141+CD1c−XCR1+ cDC1 (Igyártó
et al., 2011)/CD1a+CD1c+cDC2 (Kitajima and Ziegler,
2013) migrates from the dermis to skin-draining LNs
(Tamoutounour et al., 2013) or intestinal CD103+
CD11b−XCR1+ SIRPα−CD141+DNGR1+cDC1 (Olga
et al., 2009)/ CD103+ CD11b+ XCR1− SIRPα+

CD141−DNGR−cDC2 (Persson et al., 2013) migrate
from the lamina propria to mesenteric LNs (Farache
et al., 2013). CCR7-CCL19/CCL21 promote the migration
of corneal mDCs to intraocular lymphatic vessels and
mediate the CD4+ T cell immune response (Wang et al.,
2019). Migrations of Newcastle disease virus-like particles
(NDV-VLP)-treated DCs to draining LNs or the spleen rely
upon the CCR7-CCL19/CCL21 axis, thus leading to CD4+
T cell activation (Qu et al., 2005). CCR7-CCL19/CCL21-
dependent DC migration is involved in the coordination
of the activation of specific Tregs, which is beneficial for
maintaining peripheral tolerance (Leventhal et al., 2016).
This provides new insights for further understanding
the role of the CCR7-CCL19/CCL21 axis in maintaining
a balance between the adaptive immune response and
immune tolerance. Inflammatory factors CCRL1 (called
ACKR4) (Ulvmar et al., 2014), transcription factor PU.1
(Yashiro et al., 2019), and IL-18-driven human helper NK
cells (Wong et al., 2014) participated in the regulation
of DC migration, which may contribute to adaptive
immune responses that are associated with infection,
cancer, or vaccination.

(2) The leukotriene B4 (LTB4)-BLT1 axis: This axis is critical
for regulating DC transport and inducing an adaptive
immune response (Del Prete et al., 2006). DCs can be
stimulated by LTB4 in vitro and upregulate the expression
of CCR7 and CCL19 while promoting chemokines
CCL19 and CCL21 to induce DC migration to LNs
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(Del Prete et al., 2006). This indicates that LTB4 plays an
important role in regulating DC migration and inducing
adaptive immune responses.

(3) The CXCR4-CXCL12 axis: This axis relies on CCR7 to
promote the migration of DCs from peripheral organs
to LNs and participate in the migration of DCs across
lymphatic endothelial cells and lymphatic vessels, as
well as the migration of epidermal DCs to the dermis
(Kabashima et al., 2007; Villablanca and Mora, 2008). Thus,
CXCR4-CXCL12 is a key axis for DC migration during
skin inflammation.

(4) The CCR8-CCL21/CCL8 axis: CCR8 and its ligand
CCL21/CCL8 promote DC homing toward LNs (Sokol
et al., 2018). In addition, CCR8 and CCL21 coordinate
the promotion of CCR7-mediated CD301b+ DC migration
from the SCS to LNs and induce Th2 effects. Th2
immunization specifically induces CCL8 expression by
CD169+SIGN-R1+ macrophages. CCL8, and CCL21
synergistically promote CD301b+ DC migration (Sokol
et al., 2018). These factors may contribute to adaptive
immune deviation and cancer cell metastasis associated
with DC migration.

Some chemotactic signals can directly activate DC migration
or promote the production of chemokines (CXCL12, CXCL14,
CCL19, CCL3, etc.), thereby causing secondary recruitment
of cells (Majumdar et al., 2014; Tiberio et al., 2018). New
paradigms have emerged in the establishment and maintenance
of gradients during directed cell migration. Such chemotactic
signals include bacterial components, lipid mediators, signaling
proteins, and proinflammatory cytokines. For example, cathelin-
related antimicrobial peptide (CRAMP), platelet-activating factor
(PAF), Activin A, serum amyloid A (SAA), and leukotriene B4
(LTB4). The formylpeptide receptor (Fpr2) expressed on the
surface of DCs and CRAMP is jointly involved in the activation
and aggregation of DCs involved in allergic airway inflammation
(Chen et al., 2014). SAA can directly induce the migration
of imDCs via the secondary release of CXCL12 and CXCL14
(Gouwy et al., 2015). Furthermore, the chemokine signals induce
faster migration of DCs.

Adhesion Molecules and Proteins
The acquisition of DC migration capacity also depends on the
change of its adhesion state. During inflammation, ICAM-1,
ICAM-2, Mac-1 (αMβ2), and LFA-1 (αLβ2) play crucial roles
in regulating DC migration. The expression of intracellular
chemokine CXCR3 promote Mac-1 and LFA-1 binding to their
ligand ICAM-1/2, thereby targeting cell adhesion (Springer,
1994). L/E/P-selectin on activated endothelial cells is required for
the DC migration process and is involved in the DC homing of
lymphoid and peripheral tissues (Tedder et al., 1995; Pendl et al.,
2002; Lekakis et al., 2010).

Tetraspanins are expressed on the surface of DCs and control
DC migration by coordinating the expression and aggregation of
cytokines, selectins, integrins, or other cell–cell proteins on the
DC surface (Charrin et al., 2009). P-selectin-independent rolling
decreases in the absence of tetraspanin CD63 (Doyle et al., 2011).

Tetraspanin CD53 stabilizes L-selectin surface expression and
promotes lymphocyte recirculation (Demaria et al., 2020), which
indicates that tetraspanin pairs with its partner protein of selectin
in co-participation in DC migration.

Rho-associated protein kinases (ROCKs) affect the migration
of DCs to draining LNs by mediating the activation of actin
nuclear contraction (Nitschké et al., 2012), rapid reconstruction
of F-actin throughout DC migration, cell polarity formation,
and interaction between cell proteins (Tang and Gerlach,
2017). The actin-related protein 2/3 (Arp2/3) complex mediated
F-actin formation of pseudopodia at the front end of this
movement and boosted the CCR7-CCL19/CCL21 response
axis to induce chemotactic migration of mDCs (Leithner
et al., 2016). Under the regulation of the Rho-GTPase
signaling pathway, Arp2/3-mediated actin nucleation weakened
at the front end of the migration movement (Suraneni
et al., 2015), whereas morphogenetic formin-protein-mediated
actin nucleation increased at the end of the migration
movement (Vargas et al., 2016), which resulted in the rapid
migration of mDCs. Calcium ions maintain cell polarity and
stabilize the actin cytoskeleton. DC migration requires the
participation of a variety of adhesion factors or proteins, which
provides a more comprehensive explanation of the mechanism
underlying DC migration.

Migration Patterns of Different Cell
Subsets
Migrating cDCs and pDCs recruited from the blood to LNs
can promote peripheral Treg cells to induce immune tolerance,
thereby linking migrating DCs as potential markers for the
treatment of autoimmune diseases (Bonasio et al., 2006; Hadeiba
et al., 2012). The development of cDCs and pDCs depends on the
expression of CCR6/7 but relies upon CCR1/4/8 or CCR2/9/10,
respectively (Figure 2).

Although cDCs usually upregulate the expression of CCR7
to induce migration, during inflammation, IRF4−/−CD11b+
cDCs could not upregulate CCR7 expression to induce migration
to inflamed skin (Bajana et al., 2012; Plantinga et al., 2013).
When Staphylococcus epidermidis infects skin tissue, dermal
CD103+ cDC1s carry bacterial antigens that migrate to skin
LNs, promote IL-17 secretion, and induce the recruitment of
CD8+ T cells to the skin to resist pathogen infection (Farache
et al., 2013). The chemotactic receptor Epstein–Barr virus-
induced 2 (EBI2) can guide the migration of CD11b+ cDC2
to the LNs and spleen by up-regulating CCR7, CXCR5, and
CXCL13 and inducing CD4+ T-cell effects (Gatto et al., 2011;
Leon et al., 2012; Gatto et al., 2013). pDCs usually enter LNs
through high endothelial veins and assist other DC subsets in
performing antigen presentation functions. Upon viral infection,
pDCs were directed toward two different sites in the LN, they
either migrated to infected macrophages residing in the SCS
area in a CXCR3-dependent manner or to CD8+ T cell priming
sites in a CCR5-dependent manner. This may be essential to
induce antiviral immunity (Brewitz et al., 2017). Moreover, CCR9
mediates pDC migration to the intestine (Wendland et al., 2007).
CKLR1/ChemR23 mediates pDC migration to LNs or inflamed
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FIGURE 2 | Chemokines of pDC and cDC. Migratory pDC and cDC depends on the expression of CCR7 and CCR6. More specifically, the migration of cDC
depends on the expression of CCR8, whereas the migration of pDC depends on the expressions of CCR9 and CCR10. The current study found that the migration of
mouse cDC depends on CCR1 and CCR4. The migration of human cDC is dependent on CCR2 and CCR5. At the same time, the expressions of CCR2 and CCR5
are also involved in mediating the migration of mouse pDC.

skin (Zabel et al., 2005; Albanesi et al., 2009). pDCs also depend
on CCR6, CCR7, and CCR10 to complete homing from the blood
to inflamed skin (Sisirak et al., 2011). pDCs and cDCs express
different chemokine and chemokine receptors which lead them
to have different migrate route and functions (Table 1). However,
the specific mechanism needs to be further studied.

During inflammation, the migration of imDCs mainly
depends on the mediation of E/P-selectin (Pendl et al., 2002).
Endothelial selectins are involved in the rolling, extravasation,
and migration of imDC in the vascular endothelium. The
ChemR23 ligand chemerin can increase the migration of imDCs
to endothelial cells with the participation of CCL7 (Gouwy
et al., 2013). imDCs and mDCs may have the opposite reactivity
to the same chemokine. For example, imDCs have weak
reactivity to CC-chemokine-MIP-1b and CXC-chemokine-SDF-
1a, but the reverse occurs when imDCs are mature (Lore
et al., 1998). In addition, the Rho-mDia1-dependent actin
pool is involved in the forward movement of imDCs and the
migration of mDCs to lymphatic vessels (Vargas et al., 2016).
The migration patterns of different subgroups affect the progress
of immune regulation, but the migration mechanism of each
subgroup is unclear.

REGULATORY FACTORS AFFECTING DC
MIGRATION

The Hypoxic Microenvironment
A sufficient oxygen environment is required to maintain the
normal development and metabolism of cells. Hypoxia can
downregulate the expression of CCR7 and DC surface adenosine
receptor A2b, whereas the cyclic AMP/protein kinase A signaling
pathway reduces the inhibition of MMP-9/TIMP gene secretion
during hypoxia by acting on the A2b receptor (Qu et al.,
2005). The downregulation of CCR7 and the change in MMP-
9/TIMP gene expression are the main factors that inhibit
DC migration, which cause an imbalance in the Th1/Th2
immune response.

Tumor Microenvironment
Elucidating the migration processes of DCs in the tumor
microenvironment (TME) can explain how DC-derived cancer
vaccines will effectively work in the human body, thus leading
to the development of effective vaccines. However, knowledge of
the exogenous migration pathway of DC is limited. When tumors
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TABLE 1 | Migration routes, chemokines/chemokines receptor, and functions of cDC and pDC subsets.

DC subsets Migration routes Chemokines/
chemokines
receptor

Immunological functions References

cDC1s Dermis: human
CD14+CD1a−HLA-DR+cDC1
(mouse CD11b+CD64+)

Spontaneously migrate
from skin explants
cultured ex vivo.

CXCL13 Antigen presentation and
activation of naive T cells;
production of IL-10, IL-6,
MCP-1.

Klechevsky et al. (2008);
Chu et al. (2012)

Dermis: human
CD141+CD1c−XCR1+cDC1
(mouse
CD103+CD207+/CD8+XCR1+)

From the dermis to the
skin draining lymph
nodes via afferent
lymphatics.

CCR7 Cross-presentation
self-antigen; induction of
CD8+ effector T cells or
Th1 cells; production of
TNF-α.

den Haan and Bevan
(2002); Crozat et al. (2010),
Igyártó et al. (2011);
Tamoutounour et al. (2013)

Intestine: human/mouse
CD103+CD11b− CD8α+

XCR1+SIRPα−cDC1

From Lamina propria to
mesenteric lymph nodes
via afferent lymphatics.

CCR7 Cross-presentation
self-antigen; induction of
CD8+ effector T/Th1/Treg
cell responses.

Laffont et al. (2010);
Cerovic et al. (2015),
Esterházy et al. (2016)

Lung: human/mouse
CD103+CD11b−CD207+

XCR1+ cDC1

From lung interstitium to
mediastinal lymph nodes
via afferent lymphatics.

CCR7, CCR2 Cross-presentation
self-antigen; induction of
CD8+ effector T cells;
airway tolerance.

del Rio et al. (2007);
GeurtsvanKessel et al.
(2008), Rose et al. (2010);
Fossum et al. (2015),
Sharma et al. (2020)

cDC2s CD11b+cDC2 Migrate to the lymph
nodes and spleen
dependent on EBI2.

CCR7; CXCR5,
CXCL13

Cross-presentation
self-antigen; induction of
CD4+ T/Th2 cell
responses.

Rose et al. (2010); Gatto
et al. (2011), Leon et al.
(2012); Gatto et al. (2013)

Skin: human CD1a+CD14−

HLA-DR+cDC2 (mouse
CD11b+CD207−XCR1−)

From the dermis to the
skin draining lymph
nodes via afferent
lymphatics.

CCR7 Antigen presentation and
activation of naive T cells or
Th2 cell; production of
IL-15, IL-8.

Klechevsky et al. (2008);
Kitajima and Ziegler (2013),
Tamoutounour et al. (2013)

Intestine: human/mouse
CD103+CD11b+XCR1−

SIRPα+cDC2

From lamina propria to
mesenteric lymph nodes
via afferent lymphatics.

CCR7;
CCR9/CCL25

Induction of Th1/Th17 cells;
induction of Treg cells;
production of
pro-inflammatory cytokines
IL-6, IL-23 and so on.

Farache et al. (2013); Gao
et al. (2021)

Lung: human/mouse
CD103−CD11b+ cDC2

From lung interstitium to
mediastinal lymph nodes
via afferent lymphatics.

CCR7; CCR1,
CCR5

Induction of inflammatory
response; induction of
protective mucosal immune
responses; expression of
IL-18, IL-1, or IL-1R.

Lukens et al. (2009); Pang
et al. (2013), Sharma et al.
(2020)

pDCs Skin: human
CD11c−CD123+BDCA-2+

BDCA-4+pDCs (mouse B220+

PDCA1+ LY6C+)

Migrate into inflamed
epithelia of mucosae or
skin.

CCR6, CCR10 Cross-presentation
self-antigen, induction of
CD4+ effector T cells;
production of IFN-γ.

Sisirak et al. (2011)

Intestine: human CD11c−

CD123+BDCA-2+BDCA-
4+pDCs (mouse CD11cmid

B220+PDCA1+ LY6C+)

Homing to the small
intestine via high
endothelial venules.

CCR9, CCR7 Imbalance of Th1/Th2
effects; production of
TNF-α.

Wendland et al. (2007)

Viral infection sites: pDCs Migrate into the
subcapsular sinus area or
CD8+ T cell priming site.

CXCR3; CCR5 Induction of CD8+ effector
T cells; antiviral immunity.

Brewitz et al. (2017)

occur, increased secretion of TGF-β, VEGF, and LXR ligands
and anti-inflammatory factors may recruit DC precursors and
convert them into tol-DCs, thereby inhibiting DC maturation
and migration to LNs (Soudja et al., 2011). Likely, TGF-β
may be involved in DC migration under phosphatidylinositol
3-kinase/Akt activation (Bakin et al., 2000) and increase cell
tolerance (Lee et al., 1998). This confirms that the TME can
inhibit DC migration. The occurrence of ectopic LNs in tumors
can also induce DC migration via CCL21 (Chen et al., 2002;

Di Caro et al., 2014). NK cells promote cDC1 accumulation
in incipient tumors by producing CCL5 and XCL1/2 (Bottcher
et al., 2018). Immunoregulatory factor PEG2 can downregulate
the expression of chemokines CCL5, XCL1, XCR1, and CCR5
on cDC1 to inhibit DC accumulation and CD8+ T cell
action in the TME (Bottcher et al., 2018). Regulating the
expression of chemokines and/or chemokine receptors may
interfere with the accumulation of DC in tumors or tumor-
draining LNs.
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A nano-vaccine containing M-COSA/OVA/pDNA can
promote the expression of MHC-I and cytokines (such as
IFN-γ) after injection into the human body, enhance antigen
presentation as an immune adjuvant, induce DC migration to
LNs, and activate CD8+ T-cell effects to inhibit tumor growth
(Xiqin et al., 2018). The key to effective DC vaccines involves
the migration of DC-carrying antigens to T-cell-rich LN regions.
The use of magnetic resonance imaging, fluorescent labeling, and
other technical methods to track the migration route of DC in
the body enables DC vaccines to target their effects on cancer (de
Chickera et al., 2011). In-depth understanding of DC migration
routes are conducive to the preparation of targeted DC vaccines.

Inflammation Cytokines
Inflammatory cytokines promote DC migration through
paracrine or autocrine signaling and induce the expression of
CCR7 and its ligand CCL19/CCL21 in DCs, thereby promoting
DC migration (MartIn-Fontecha et al., 2003; Del Prete et al.,
2006). The TNF-α, IL-6, and IL-1β families are involved in
DC migration to inflammation sites that are under mediation
by CCR7, and this process may be related to the Toll-like
receptor/transcription factor nuclear factor-κB (TLR/NF-κB)
pathway, which can modulate the Th1/Th17 polarization effect
(Cumberbatch et al., 2002; Gianello et al., 2019). In addition,
CX3CL1 and CXCL12 may participate in DC migration in the
inflammatory environment and promote DC migration through
the vascular endothelium to lymphatic vessels (Johnson and
Jackson, 2013). In the non-inflammatory environment, the

atypical Iκβ-dependent pathway activated by NF-κB appears to
regulate CCR7 and co-stimulatory molecule expression (Baratin
et al., 2015). At the same time, TLR ligands can enhance DCs
to express CCR7 and CCL19 and promote DC migration from
peripheral tissues to draining LNs (González et al., 2014). Thus,
the inflammatory environment or inflammatory signals (TGF-α,
IL-1β, IL-6, and IL-12) promote DC maturation and migration
depending on CCR7 expression.

Pathogenic Microbes
Invasion by pathogenic microbes affects the migration and
location of DC subgroups. In the gut, CD103+CD11b+ cDC2 in
the intestinal lamina propria of Salmonella infection upregulate
CCR7 and migrate to the IEC layer, which helps epithelial DCs
acquire bacterial infections (Farache et al., 2013). A substantial
number of CCR2-dependent LY6Chi monocytes that secrete
proinflammatory factors and accumulate in the intestine may
transform into inf-DCs and then migrate to mesenteric LNs
and induce T-cell effects (Zigmond et al., 2012). However, acute
intestinal bacterial infection may cause a substantial number
of migrating DCs to converge in the adipose tissue area of
mesenteric LNs, thereby preventing transfer to mesenteric LNs
(Fonseca et al., 2015).

Respiratory syncytial virus (RSA) infection promoted
CD11b+ DCs to carry allergens to mediastinal LNs by
CCR2/CCL2 and CCR7, which induced Th2 cell immunity
and caused allergic asthma (Plantinga et al., 2013). During
RSV infection, the G protein receptor EOS1 caused the lung

TABLE 2 | Factors affecting DCs migration.

Influence factors Chemokines/
chemokines
receptor

Migration route Immunological
functions

References

Inhibition Tumor
microenvironment

TGF-β, VEGF, LXR
ligands,
anti-inflammatory
factors or PGE2

CCR7-
CCL19/CCL21;
CCR5 and
XCR1/XCL1

Inhibiting DCs to
migrate from the tumor
environment to the T
cell cortex in
tumor-draining lymph
nodes.

Inhibition of CD8+ T-cell
response.

Soudja et al. (2011);
Bottcher et al. (2018)

Hypoxia CCR7-
CCL19/CCL21
and adenosine
receptor A2b

Inhibiting DCs to
migrate toward draining
lymph nodes (dLNs).

Imbalance of Th1/Th2
immune response.

Qu et al. (2005),
Liu et al. (2019)

Others lnc-Dpf3 gene CCR7 Inhibiting late-stage of
DCs migration toward
dLNs.

Inhibition of
inflammation
responses.

Liu et al. (2019)

Promotion Inflammatory cytokines TNF-α, IL-6, and IL-1β

family
CCR7-
CCL19/CCL21;
CX3CL1 and
CXCL12

Promoting DCs to
migrate from peripheral
tissues to dLNs.

Regulation the
Th1/Th17 response.

Cumberbatch et al.
(2002); Johnson and
Jackson (2013),
Gianello et al. (2019)

Laser or Radiation
By up-regulate IL-12 or
MHC-I, CD80

CCR7 Promoting DCs to
migrate toward dLNs.

Damage the collagen
fibers and cell matrix.

Chen et al. (2012),
Yu et al. (2018)

Vaccines
(M-COSA/OVA/pDNA
vaccine/NDV-VLPs
vaccine)

By up-regulateTNF-α,
IFN-γ, IL-6, IL-12p70 or
MHC-I, IFN-γ

CCR7-
CCL19/CCL21

Promoting DCs to
migrate toward dLNs or
spleen.

Activation of CD4+/8+

T response.
Qu et al. (2005); Xiqin
et al. (2018)
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CD103+CD11b+ DC subgroup to migrate to mediastinal LNs
(Lukens et al., 2009), thereby up-regulating the expressions
of IL-18, IL-1, and IL-1R, which promoted respiratory DC
migration and increased the inflammatory response (Pang
et al., 2013). NDV-VLPs, an emerging virus vaccine (Qu et al.,
2005), up-regulates MHC-II, co-stimulatory molecules, and
proinflammatory cytokines TNF-α, IFN-γ, IL-6, and IL-12p70
through the TLR4/NF-κB pathway, thereby effectively activating
DC maturity. In addition, NDV-VLPs induce the expression of
CCR7 on DCs and cooperate with CCL19/CCL21 to mediate the
migration of DCs to draining LNs or the spleen to activate CD4+
T-cell response. These discoveries provides new insight toward
the development of similar VLP vaccines.

Notably, the coronavirus disease 2019 (COVID-19) infection
also produces a large number of chemokines (CCL2, CCL3,
CCL5, CXCL8, CXCL9, CXCL10, etc.), that might promote DCs
and/or T cell infiltration into infected sites, thereby causing
cytokine storms that destroy lung function and cause a systemic
inflammatory response that leads to organ failure (Huang et al.,
2020; Rivellese and Prediletto, 2020; Xu et al., 2020). Recently,
it was found that inflammatory disease-inflammatory type 2
cDCs (inf-cDC2s) (Bosteels et al., 2020), which are structurally
similar to DCs but have the combined functional advantages
of monocytes, macrophages, and cDC functionality, exert an
anti-inflammatory effect in COVID-19 patients.

Others
Proteomic and transcriptome analyses confirmed that the
lnc-Dpf3 gene can negatively inhibit CCR7-mediated HIF-1α

activation and glycolysis gene LDHA expression, ultimately
negatively regulating CCR7-mediated DC migration and
inflammation (Liu et al., 2019). This study shows that deletion
of lnc-Dpf3 gene can enhance CCR7-mediated activation of
HIF-1α and DC migration and provides direction for research
on the expression or role of non-coding long-chain RNAs in DC
migration and inflammatory diseases.

In addition, laser irradiation or radiation may damage collagen
fibers and the cell matrix of cells, thus causing collagen fibers to
become disordered or broken, which affects the local recruitment
of DC and promotes the migration of DCs to LNs (Chen et al.,
2012; Yu et al., 2018). Laser-irradiated DCs may be accompanied
by an increase in MHC-I and CD80 (Chen et al., 2012). It
was established that, depending on the ATM/NF-κB signaling
pathway, low-dose radiation may increase CCR7-mediated DC
migration and is accompanied by an increased secretion of
IL-12. Whether external infection factors or internal genetic
factors affect DC migration by regulating the expression of
chemotactic or adhesion factors in DCs (Table 2), further study
of the mechanisms regulating the migration of DCs will elucidate
important factors underlying the pathogenesis and immune
status of disease.

CONCLUSION AND OUTLOOK

The essence of DC migration involves chemokines, adhesion
factors, integrins, and contributing biological activities. Different

migration modes eventually lead to differences in the DC
phenotype, location, and function. DC migration has a guiding
role in the development and functions of DC-tumor or DC-
virus vaccines, which are injected and migrated through blood
vessels or lymphatic vessels, and eventually to the site of infection
or tumor to play a role in antiviral or anti-tumorigenic effects
(Figure 1B). Further studies are needed to determine whether
the DC-tumor vaccine can effectively reach the local tumor to
induce an anti-tumorigenic effect and whether DC-virus vaccine
can effectively reach the infected site and elicit antiviral response.
The development of transcriptomes, proteomics, and other
technologies will provide technical support for more precise
expression and regulation of DC migration to achieve a more
effective treatment.

Migration from non-lymphoid to lymphoid tissue is
a key feature of DCs that regulates immune response.
Chemokine/chemokine receptors, integrins, protein receptors,
and transcription factors, promote DC migration and specific
intra-organ localization. In tumor tissues, removing inhibitory
factors on DC migration may activate immunity and anti-
tumorgenicity. However, inhibiting DC migration may be related
to the inhibition of excessive activation in autoimmune diseases.
Targeting CCR7 or other key mediators of DC trafficking may
represent more suitable approaches for targeting DCs in diseases.
Research on the migration and function of specific DC subgroups
in diseases requires further study.

At present, research on genomes that affect DC migration and
the migration modes of pDC, cDC, and other DC subgroups are
unclear, and there is still a question about how to precisely target
the direction of DC migration to make DC vaccines effective
in antitumor and antiviral therapies. For the development
and clinical application of an effective DC antiviral vaccine
for COVID-19, which has rapidly spread around the world
since December 2019, an in-depth exploration of changes in
DC migration during the immune response to infection by
pathogenic microorganisms is key, but greater elucidation is
urgently needed.
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