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Simple Summary: Here, we attempted to identify targets that could be used to overcome resistance
toward epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors in non-small cell lung
cancer (NSCLC). To accomplish this, we chose LPIN1 among the candidate targets that were identified
from a previously performed genome-wide RNAi screening assay and validated it as a key factor
regulating gefitinib resistance in EGFR-mutant NSCLC cells. We confirmed that LPIN1 depletion
increased gefitinib sensitivity in drug-resistant H1650 NSCLC cells, as well as patient-derived YL05
lung cancer cells. Moreover, we found that LPIN1 expression was induced following gefitinib
treatment, and activities of protein kinase C delta and nuclear factor kappa B, and lipid droplet
formation were induced in an LPIN1-dependent manner. Additionally, we validated that targeting
LPIN1 synergistically retarded tumor growth in an in vivo mouse xenograft model.

Abstract: Drug resistance limits the efficacy of targeted therapies, including tyrosine kinase inhibitors
(TKIs); however, a substantial portion of the drug resistance mechanisms remains unexplained.
In this study, we identified LPIN1 as a key factor that regulates gefitinib resistance in epidermal
growth factor receptor (EGFR)-mutant non-small cell lung cancer (NSCLC) cells. Unlike TKI-sensitive
HCC827 cells, gefitinib treatment induced LPIN1 expression and increased diacylglycerol concentra-
tion in TKI-resistant H1650 cells, followed by the activation of protein kinase C delta and nuclear
factor kappa B (NF-κB) in an LPIN1-dependent manner, resulting in cancer cell survival. Addition-
ally, LPIN1 increased the production of lipid droplets, which play an important role in TKI drug
resistance. All results were recapitulated in a patient-derived EGFR-mutant NSCLC cell line. In
in vivo tumorigenesis assay, we identified that both shRNA-mediated depletion and pharmaceutical
inhibition of LPIN1 clearly reduced tumor growth and confirmed that gefitinib treatment induced
LPIN1 expression and LPIN1-dependent NF-κB activation (an increase in p-IκBα level) in tumor
tissues. These results suggest an effective strategy of co-treating TKIs and LPIN1 inhibitors to prevent
TKI resistance in NSCLC patients.

Keywords: LPIN1; tyrosine kinase inhibitors; gefitinib; drug resistance; non-small cell lung cancer

1. Introduction

Lung cancer, a leading cause of cancer-induced death worldwide, is histologically
classified into two main subgroups: small cell lung carcinoma (SCLC) and non-small
cell lung carcinoma (NSCLC) [1,2]. Contrary to SCLC patients with rare mutations in
epidermal growth factor receptor (EGFR), about 10~30% of NSCLC patients may harbor
“activating mutations” in EGFR that causes constitutive activation of the EGFR pathway
and provides the benefit of abnormal tumor growth [3,4]. EGFR inhibitors have been
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developed for targeted therapies to treat NSCLC and are most effective in patients with
tumors that are highly dependent on EGFR signaling. However, only 5% of the patients
achieve dramatic initial responses (>90% tumor reduction) to treatment, and moreover,
most of them eventually become resistant to EGFR inhibitors [4–6]. The remaining patients,
comprising the majority of patients with NSCLC, respond partially or in a very limited
manner to TKI treatment, despite harboring activating EGFR mutations. The development
of drug resistance often limits durable clinical responses to therapy. Several mechanisms of
innate and acquired resistance have been discovered, including EGFR T790M mutation,
MET proto-oncogene amplification, phosphatase and tensin homolog (PTEN) deletion, and
a second mutation in the downstream pathway of EGFR [6–9]. However, it is still crucial to
identify the mechanisms of underlying resistance to EGFR-TKIs, particularly in patients
with innate resistance.

Highly proliferating cancer cells are often exposed to metabolic stress under limited
availability of oxygen and nutrients, which leads to alterations in cellular metabolism
for cell growth and survival [10–12]. Together with alteration in glucose and glutamine
metabolism, lipid metabolism is often dysregulated in cancer. Lipid metabolic repro-
gramming is an emerging mechanism in cancer cells for membrane biogenesis, energy
production, cell survival, and resistance to anti-cancer drugs [13–16]. Cancer cells undergo
de novo lipid synthesis (lipogenesis), resulting in the accumulation of neutral lipids such
as triglyceride (TG) stored in lipid droplets (LDs) [14,17]. Recent studies have revealed an
association between the LD content and drug resistance [18]. Gefitinib-resistant cell lines
express LDs more than TKI-sensitive cell lines do [19]. Increased LD accumulation and
fatty acid metabolism are associated with drug sensitivity in breast cancer cells [20]. LDs
suppress endoplasmic reticulum stress and apoptosis, which are essential for treatment of
lung cancer [18,21]. The protein kinase C (PKC) family, a group of serine-threonine kinases,
is intimately associated with lipid metabolism [22,23]. Diacylglycerol (DAG), a precursor
of TG synthesis, commonly activates conventional and novel PKC subfamily members,
which are involved in a variety of cellular functions, including survival and motility [24,25].
Inhibition of PKC expression or activity results in the inhibition of cancer cell proliferation
or cell death [26–28]. The EGFR-Y1173-phospholipase C gamma (PLCγ)-DAG axis induces
the activation of PKCδ, which is related to cancer cell proliferation, and a potent therapeutic
target in EGFR-mutant NSCLC cells [29]. However, the mechanism of the differential
response of lipid metabolic reprogramming to drugs in drug-sensitive and drug-resistant
cancer cells is not well understood.

LPIN1 is a mammalian Mg2+-dependent phosphatidic acid phosphatase (PAP) enzyme
that converts phosphatidic acid (PA) to DAG, a precursor of triacylglycerol and phospho-
lipid [30]. Nuclear LPIN1 blocks nuclear translocation of sterol regulatory element-binding
protein 1 (SREBP1), thereby inhibiting the expression of lipid synthesis genes [31]. In
addition, LPIN1 acts as a transcriptional coactivator of peroxisome proliferator-activated
receptor alpha (PPARα) and PPARγ coactivator-1 alpha (PGC-1α), increasing fatty acid
oxidation capacity in the liver [32,33]. However, during mTORC1 activation, LPIN1 is
phosphorylated, and its nuclear localization is blocked, resulting in the DAG production
and promotion of lipid synthesis through nuclear SREBPs [31]. LPIN1 plays a critical
role in cancer progression, and its expression is increased in various cancer cells [34–36],
indicating its role in cell proliferation and tumor growth. However, the underlying cellular
mechanisms of LPIN1 in EGFR-TKI drug resistance remain unclear.

Previously, we found LPIN1 as a factor closely related to gefitinib resistance in EGFR-
activating mutant NSCLC cells [37]. Here, we identified that LPIN1 contributed to a
gefitinib-dependent increase in DAG production and induced resistance signals by acti-
vating the PKCδ–NF-κB pathway. We suggest that LPIN1 is a potential target to attenuate
resistance towards gefitinib in EGFR-mutant NSCLC and that co-targeting PLCs and LPINs,
which takes charge of cellular DAG production, might be an effective way to overcome
TKI resistance.
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2. Materials and Methods
2.1. Chemicals and Cell Culture

The following chemicals were suspended in dimethyl sulfoxide: gefitinib (Cayman
Chemical, Ann Arbor, MI, USA); LPIN inhibitor propranolol (Selleckchem, Houston, TX,
USA); PKCα, PKCβI, PKCβII, and PKCγ inhibitor GF109203X (S7208) (Selleckchem); PKCα,
PKCβ, PKCγ, and PKCδ inhibitor Go 6983 (S2911) (Selleckchem); phospholipase C (PLC)
inhibitor U73122 (Selleckchem); and etoposide (Sigma-Aldrich, Saint Louis, MO, USA).

Detailed information on the cell lines used is described in our previous publication [37].
HCC827, NCI-H1650, PC-9 and YL05 were maintained in Roswell Park Memorial Insti-
tute 1640 medium (RPMI, Welgene, Gyeongsan-si, Republic of Korea, #LM011-01), and
HEK293T was cultured in Dulbecco’s modified Eagle’s medium (DMEM, Welgene, #LM001-
05) supplemented with 10% fetal bovine serum (Thermo Fisher Scientific Inc, Grand Island,
NY, USA) and 1% penicillin-streptomycin (Thermo Fisher Scientific Inc, Waltham, MA,
USA). Cells were maintained in an incubator with 5% CO2 at 37 ◦C.

2.2. Plasmids, Small Interfering RNA, and Transfection of Nucleic Acids

The psPAX2, pMD2.G (Addgene, Waltertown, MA, USA, #12260, #12259) and a pool
of shRNAs targeting LPIN1 or a non-targeting pLKO (Sigma-Aldrich) (Supplementary
Table S1) were used for packaging of lentiviral particles. The AccuTarget™ Genome-
wide Predesigned siRNAs targeting LPIN1, PKCα, PKCδ, PKCζ, RICTOR and Negative
Control siRNA (Bioneer Inc., Daejeon, Korea) (Supplementary Table S1) were used for
transient gene-silencing. The transfections of plasmids or two-siRNA mixtures for each
gene were performed with Fugene® HD transfection reagent (Promega, Madison, WI,
USA) or Lipofectamine® RNAiMAX reagent (Thermo Fisher Scientific Inc., Carlsbad, CA,
USA), respectively.

2.3. Cell Viability Assay and Colony Forming Assay

Detailed methods are described in the previous publication [37]. Briefly, for cell
viability assay, cells on a 96-well plate were treated with vehicle or inhibitors for 5 days.
Then, cells were incubated in MTT solution for 1 h in a CO2 incubator. After removing the
solution, formazan crystals were dissolved in DMSO, and the absorbance was measured
at 570 nm using a Luminoskan microplate reader (Thermo Scientific, San Diego, CA,
USA). Cell viability was calculated as a percentage value compared to the absorbance of
untreated control cells. Data were obtained from three independent experiments, with each
performed in triplicate. For the colony forming assay, cells plated onto a 6-well plate were
treated with gefitinib or DMSO for 10 days and then stained with 0.5% crystal violet in
20% methanol for 20 min. Images were captured under a microscope using a DP Controller
software (Olympus, Tokyo, Japan, version 2.1).

2.4. Anchorage-Independent Soft-Agar Assay

For the base agar, 0.6% agar in complete medium was added to a 6-well plate and
solidified. For the top agar, 0.3% agar in complete medium containing cells was added on
top of the base agar. The cells plated in agar were incubated at 37 ◦C in a 5% CO2 incubator
for 2 weeks and treated with medium containing DMSO or gefitinib every 3 days. Colony
images were captured under a microscope using a DP Controller software (Olympus,
version 2.1).

2.5. Western Blot Analysis

The total proteins were obtained by lysing cells in ice-cold radioimmunoprecipita-
tion assay (RIPA) buffer for 30 min on ice. After centrifugation at 10,000 rpm at 4 ◦C for
15 min, proteins in the supernatant were subjected to 10% or 8% sodium dodecyl sulfate-
polyacrylamide gels and then transferred to nitrocellulose membranes. The membranes
containing proteins were incubated at 4 ◦C for 16 h with primary antibodies against p-EGFR
(1:1000, Cell Signaling Technology, Danvers, MA, USA, #2236), EGFR (1:1000, Millipore,
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#06-847), LPIN1 (1:1000, Cell Signaling Technology, #5195), PARP (1:1000, Cell Signaling
Technology, #9542), caspase-3 (1:1000, Cell Signaling Technology, #9662), cleaved caspase-
3 (1:1000, Cell Signaling Technology, #9664), p-IkBα (1:1000, Cell Signaling Technology,
#2859), IkBα (1:1000, Cell Signaling Technology, #4812), β-actin (1:2000, Santa Cruz Biotech-
nology, sc-47778), and then with secondary HRP-conjugated anti-mouse (1:5000, Millipore,
Burlington, MA, USA, AP124P), or anti-rabbit antibodies (1:5000, Millipore, AP132P) for 1 h
at room temperature. The labeled proteins were detected using Chemiluminescent Reagent
(Pierce Biotechnology Inc., Rockford, IL, USA) and an LAS-4000 imaging system (Fujifilm
Inc., Stanford, CT, USA). The relative intensities of protein bands, compared with that of
the respective β-Actin signals, were determined using Multi Gauge software, version 3.0
(Fujifilm Inc.). Whole western blot figures were provided in the File S1.

2.6. Total RNA Isolation, RT-PCR, and Quantitative Real-Time PCR

Total RNA was isolated using Trizol reagent (Sigma-Aldrich, #T9424) according to the
manufacturer’s protocol. RT-CPR was conducted with 3 µg of total RNA using reverse
transcriptase (Thermo, Waltham, MA, USA, EP0442) by a VeritiPro™ Thermal Cycler
(Applied Biosystems, Waltham, MA, USA, #A48141). Quantitative real-time PCR (qRT
PCR) was performed using an SYBR Green Master Mix (Bio-Rad, Hercules, CA, USA,
#1708882) with a CFX Connect Real-Time PCR Detection System (Bio-rad, #1855201). All
data were obtained from three independent experiments, with each performed in triplicate.
ACTB was used as an internal control for the normalization of target gene mRNA levels.
Sequence information of the primers used is given in Supplementary Table S2.

2.7. NF-κB Luciferase Reporter Assay

NF-κB luciferase reporter assay has been described in detail in the previous publica-
tions from our group [37]. Briefly, cells were co-transfected with luciferase reporter (1 µg)
containing NF-κB response element and Renilla plasmid (0.25 µg). After 24 h, cells were
treated with DMSO or gefitinib for an additional 24 h. Luciferase activities were measured
using a Dual-Luciferase Reporter Assay System (Promega, Madison, WI, USA) and Lumi-
noskan Ascent luminometer (Thermo Scientific, Waltham, MA, USA). Data were obtained
from three independent experiments, with each performed in triplicate and normalized
with respect to Renilla luciferase activity.

2.8. PKC Kinase Activity Assay

Cellular PKC activities were measured using a PKC Kinase Activity Assay kit (Abcam,
Cambridge, MA, UK). Cells treated with gefitinib or DMSO for 72 h were lysed in ice-cold
RIPA buffer, sonicated, and centrifuged at 10,000 rpm at 4 ◦C for 15 min. The supernatant
was assayed for PKC activity. Briefly, proteins were added to an active PKC-capturing
antibody-coated 96-well plate and incubated at 30 ◦C for 90 min. The captured PKC
proteins were treated with phospho-specific substrate antibody, washed, and then incubated
with diluted anti-rabbit IgG-HRP-conjugated antibody at 25 ◦C for 30 min. The reacted
wells were washed and incubated with TMB substrate at 25 ◦C for 30 min and then
treated with stop solution. Absorbance was measured immediately at 450 nm using a
Luminoskan microplate reader (Thermo Scientific). Data were normalized with respect to
protein concentrations.

2.9. Measurement of PA and DAG

Cells (~1 × 107) were centrifuged at 1500× g for 10 min, washed twice with ice-cold
PBS, and resuspended in 1 mL of cold PBS. The suspended cells were homogenized in
1.5 mL methanol and mixed with 2.25 mL 1 M NaCl and 2.5 mL chloroform. The mixture
was then centrifuged, and the organic phase was dried using SpeedVac. PA and DAG were
detected using assay kits for DAG and PA according to the manufacturer’s instructions
(Cell Biolabs, San Diego, CA, USA). Data were normalized with respect to cell numbers.
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2.10. Apoptosis Assay Using Flow-Cytometry

Cells (5 × 104) seeded in 6-well plates were treated with the indicated concentrations
of gefitinib for 72 h, or etoposide (100 µM) for 2 h. The cells were trypsinized, collected by
centrifugation at 900× g at 4 ◦C for 2 min, and washed twice in PBS containing 2% FBS.
Apoptosis assay was performed using Annexin-V, Alexa Fluor® 647 conjugate (Thermo
Scientific, Carlsbad, CA, USA) according to the manufacturer’s protocol. In brief, collected
cells were resuspended in 500 µL of binding buffer (Thermo Scientific, Carlsbad, CA, USA)
containing 5 µL Annexin-V and propidium iodide (PI) (Sigma-Aldrich, Saint Louis, MO,
USA). Fluorescence intensities of each population of 10,000 cells were measured using a BD
FACSVerse system (BD Biosciences, San Jose, CA, USA).

2.11. Nile Red Staining

Cells seeded on Ibidi µ-slide 8 well (Ibidi, Martinsried, Germany) were washed with
PBS, fixed in 4% paraformaldehyde for 20 min at room temperature, washed twice with
PBS. Each well was incubated with 5 µg/mL Nile red (Sigma-Aldrich, St. Louis, MO, USA)
in PBS for 10 min and washed twice with PBS. Cells were visualized under a fluorescence
microscope (Nikon, Tokyo, Japan).

2.12. In Vivo Evaluation of Anticancer Activity in an H1650 Xenograft Model

H1650/shLPIN1 and H1650/pLKO cells (5 × 106) resuspended in 100 µL of PBS
were mixed with 100 µL of matrigel (Corning Inc., New York City, NY, USA, #354248)
and subcutaneously injected into the right rear flank of 5-week-old female BALB/c nude
mice (SLC Inc., Hamamatsu, Shizuoka, Japan). The H1650/shLPIN1 or H1650/pLKO
group was randomly stratified into two or four subgroups, respectively, and treatments
(gefitinib and/or LPIN inhibitor) were initiated when all mice had a mean tumor size of
approximately 200 mm3. Each subgroup was administered 200 µL DMSO (10%, 20 µL
DMSO + 180 µL PBS containing 5% tween 80) or gefitinib (30 mg/kg) and/or propranolol
(10 mg/kg) intraperitoneally every 3 days for 6 weeks (n = 5/group). The body weight and
tumor size of each mouse were measured in two dimensions using a caliper twice a week.
Tumor size was calculated using the equation (w2 *l)/2, where l and w represent the largest
and smallest dimensions in each measurement. On day 3 after the last inhibitor treatment,
tumor tissues were excised and snap-frozen in liquid nitrogen for protein analysis.

2.13. Statistical Analysis

All the statistical data are represented as the mean ± standard deviation (SD) or
standard error of the mean (SEM). The p-values for determining statistical significance were
calculated using an unpaired two-tailed Student’s t-test or two-way ANOVA. Symbols
used were: *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001; and NS, not significant.

3. Results
3.1. LPIN1 Depletion Increases Gefitinib Sensitivity by Enhancing Apoptosis in TKI-Resistant
NSCLC Cells

From the previous genome-wide RNAi screening of TKI-resistant NSCLC H1650
cells [37], we selected LPIN1 as a factor closely related to gefitinib resistance. To study
the effect of LPIN1 on gefitinib resistance in EGFR-activating mutant NSCLC cells, we
determined the IC50 values of gefitinib in TKI-resistant H1650 cells stably transduced with
LPIN1-specific or control shRNA and found that LPIN1-depleted H1650 cells exhibited
an IC50 value approximately 5-fold lower than that of the control cells (Figure 1A). A
similar effect was also observed in LPIN1-specific siRNA-treated H1650 cells, showing
approximately 7.5-fold lower IC50 value than that of the control siRNA-transfected H1650
cells (Figure 1B). In contrast, LPIN1-specific siRNA-treated TKI-sensitive HCC827 and PC-9
cells did not alter, or very slightly altered, the IC50 value (Supplementary Figure S1). In
addition, colony formation (Figure 1C) and anchorage-independent growth (Figure 1D)
were strikingly reduced in LPIN1-depleted H1650 cells by treatment of gefitinib, contrary
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to no further reduction in anchorage-independent growth of LPIN1-depleted TKI-sensitive
HCC827 cells by treatment of gefitinib (Figure 1D). These results demonstrate that LPIN1
depletion increases sensitivity to gefitinib in H1650 cells.
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Figure 1. LPIN1 depletion increases gefitinib sensitivity by enhancing apoptosis in TKI-resistant
NSCLC cells. (A) H1650 cells stably transduced with a lentiviral vector carrying shLPIN1
(H1650/shLPIN1) or shControl (H1650/pLKO) were treated with gefitinib or DMSO for 120 h.
The gefitinib sensitivity of each cell line was determined using varying gefitinib concentrations.
(B) H1650 cells were transfected with siRNAs for LPIN1 and then treated with gefitinib or DMSO for
120 h. The gefitinib sensitivity of each cell line was determined using varying gefitinib concentrations.
(C) H1650 cells were infected with shLPIN1- or pLKO-harboring lentivirus and treated with gefitinib
(10 µM) or DMSO for 10 days. Cell growth was measured by a colony formation assay after 0.5%
crystal violet staining. (D) H1650 and HCC827 cells were infected with shLPIN1- or pLKO-harboring
lentivirus and treated with gefitinib (10 µM in H1650 or 1 nM in HCC827 cells) or DMSO for 14 days.
Cell growth was measured by an anchorage-independent growth assay in soft agar. (E) H1650 cells
were transfected with siRNAs for LPIN1; treated with gefitinib (5 µM) or DMSO for 72 h; harvested;
stained with Annexin-V, Alexa Fluor® 647 conjugate, and PI; and analyzed via flow cytometry. Etopo-
side (100 µM) was used as the positive control for inducing apoptosis. (F) Levels of proteins including
cleaved PARP and caspase-3 were analyzed via western blotting. β-Actin was used as a loading
control. Values are the means ± SD of three independent experiments. Statistical significance was
determined by Student’s t-test (*, p < 0.05 and NS, not significant).
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To determine whether these results were due to cell death, gefitinib-resistant H1650
cells transiently transfected with siLPIN1 or control siRNA (siNC) were double-stained with
Alexa Fluor® 647-conjugated Annexin-V and PI and subjected to flow cytometry analysis.
LPIN1 knockdown increased apoptosis (early and late apoptosis) in gefitinib-treated H1650
cells (Figure 1E). In addition, we identified a further increase in the levels of cleaved-PARP
and -caspase 3 in LPIN1-depleted cells upon gefitinib treatment (Figure 1F). These results
demonstrate that LPIN1 induces gefitinib resistance by blocking drug-induced apoptosis in
H1650 cells.

3.2. LPIN1 Promotes PKCδ Activation by Increasing DAG Production upon Gefitinib Treatment in
TKI-Resistant Cell

LPIN1 can potentially affect the cellular levels of PA and DAG, the substrate and
product of LPIN1, respectively. We determined the cellular levels of PA and DAG in
gefitinib-sensitive HCC827 and gefitinib-resistant H1650 cells. Interestingly, unlike gefitinib-
sensitive HCC827 cells, cellular DAG levels did not decrease in gefitinib-resistant H1650
cells, and some even increased following gefitinib treatment (Supplementary Figure S2).
Cellular PA levels were not significantly changed in both EGFR-mutant NSCLC cells
(Supplementary Figure S3). Consistent with this, the expression of LPIN1 mRNA and
protein changed accordingly with the changes in DAG levels; both mRNA and protein
expression levels were reduced in HCC827 cells but induced in H1650 cells following
gefitinib treatment (Figure 2A). The gefitinib-mediated LPIN1 reduction was validated in
the other TKI-sensitive PC-9 cells (Supplementary Figure S4). This suggests that LPIN1
mainly regulates differential changes in cellular DAG levels following gefitinib treatment
in both cell lines. Additionally, we found that LPIN1 knockdown clearly decreased both
the basal and gefitinib treatment-induced DAG contents and increased PA contents in
gefitinib-resistant H1650 NSCLC cells (Figures 2B and S5). Therefore, the gefitinib-induced
LPIN1 triggers the accumulation of intracellular DAG in gefitinib-resistant H1650 cells.
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Figure 2. LPIN1 promotes PKCδ activation by increasing DAG production upon gefitinib treatment in
TKI-resistant cells. (A) The effect of gefitinib treatment on LPIN1 expression was measured. The mRNA
and protein levels in the HCC827 and H1650 cells treated or untreated with gefitinib were determined via
qRT-PCR or western blotting, respectively. (B,C) HCC827 and H1650 cells were siLPIN1 transfected with
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or siControl (siNC). (B) DAG levels or (C) total PKC activity was determined after gefitinib (5 µM)
or DMSO treatment for 24 h. (D) H1650 cells were pretreated with PKCα, PCKβ, PKCδ, or PKCγ

inhibitors (GF109203X (20 µM S7208) or Go 6983 (20 µM S2911)) or LPIN inhibitor (50 µM propranolol)
for 2 h, treated with 5 µM gefitinib, and subjected to PKC activity and cell counting assays. (E) H1650
cells were transfected with siRNAs for LPIN1, PKCα, PKCδ and PKCζ individually or as a mixture,
treated with gefitinib (5 µM) or DMSO for 72 h, and subjected to PKC activity and cell counting assays.
Values are the mean ± SD of three independent experiments. Statistical significance was determined
by (A,D,E) Student’s t-test or (B,C) two-way ANOVA (*, p < 0.05; **, p < 0.01; ***, p < 0.001; and NS,
not significant).

Knowing that DAG induces PKC activation, we compared the relationship between
LPIN1 expression and PKC activation in gefitinib-sensitive and gefitinib-resistant lung
cancer cells. Consistent with the result showing a higher content of DAG in H1650 than in
HCC827 cells (Figure 2B), the basal level of PKC activity was higher in the gefitinib-resistant
H1650 cells. Upon gefitinib treatment, PKC activity increased only in H1650 cells, similar to
the increase in DAG levels, and LPIN1 depletion abrogated the induction of PKC activation
(Figure 2C). This implies that LPIN1 is a key factor responsible for altered PKC activation
in gefitinib-resistant cancer cells.

To assess the potential association between altered PKC activation and gefitinib resis-
tance, we examined the relationship between PKC activity and cell viability using phar-
macological and RNAi approaches. Although treatment with PKC inhibitors suppressed
basal PKC activity, only the PKC inhibitor Go 6983 completely aborted the induction
of PKC activation following gefitinib treatment (Figure 2D, upper panel). At the same
time, the sensitivity of H1650 cells to gefitinib remarkably increased when gefitinib was
co-treated with Go 6983 (Figure 2D, lower panel), suggesting that PKCδ is responsible for
gefitinib-dependent PKC activation and drug resistance in H1650 cells. The LPIN inhibitor
propranolol treatment also aborted the induction of PKC activation and significantly in-
creased gefitinib sensitivity in H1650 cells following gefitinib treatment (Figure 2D). These
results demonstrate that LPIN1 is responsible for drug resistance in H1650 cells by mod-
ulating PKC activation, particularly PKCδ. To further determine the involvement of the
PKCδ subtype, we performed RNAi experiments using subtype-specific siRNAs against
PKC (Supplementary Figure S6) and found that only siRNA of PKCδ significantly blocked
gefitinib-mediated PKC activation and inhibited cell growth, similar to the effects exerted
by siLPIN1 (Figure 2E). Therefore, LPIN1 promotes DAG production and induces PKCδ

activation, which is essential for gefitinib resistance in NSCLC cells.

3.3. Activated NF-κB Signaling and LD Formation through LPIN1-Mediated Activation of PKCδ
Are Responsible for Gefitinib Resistance in H1650 Cells

To validate the PKCδ-mediated function of LPIN1 in gefitinib resistance, we investi-
gated two downstream effects of PKC function, NF-κB signaling and lipogenesis [22,23,29],
which play important roles in tumorigenesis and drug resistance by providing pro-survival
signals to cancer cells [26–29]. First, we examined whether NF-κB signaling is associated
with LPIN1-dependent gefitinib resistance in H1650 cells. Gefitinib-treated TKI-sensitive
HCC827 cells showed decreased LPIN1 expression and NF-κB activity (Figure 3A). How-
ever, gefitinib treatment increased LPIN1 expression and NF-κB activity, and LPIN1 de-
pletion reduced gefitinib-induced NF-κB activity and p-IκBα levels in TKI-resistant H1650
cells (Figure 3A). To further validate the association between NF-κB activation and LPIN1-
induced PKC activity, we examined p-IκBα levels using pharmacological and RNAi ap-
proaches. Although treatment with PKC inhibitors suppressed basal p-IκBα levels, the
PKC inhibitor Go 6983, but not the PKC inhibitor GF109203X, prevented p-IκBα level
induction following gefitinib treatment (Figure 3B), suggesting that PKCδ is responsible for
gefitinib-dependent NF-κB activation in H1650 cells. Propranolol treatment also aborted
the induction of p-IκBα levels in H1650 cells following gefitinib treatment (Figure 3B). In
addition, we performed RNAi experiments using subtype-specific siRNAs against PKC



Cancers 2022, 14, 2222 9 of 16

and found that only siRNA of PKCδ significantly blocked gefitinib-mediated induction
of p-IκBα levels, similar to the effects exerted by siLPIN1 (Figure 3C). This result demon-
strates that LPIN1 regulates the activation of NF-κB signaling through activation of PKCδ

in gefitinib-treated H1650 cells.
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Figure 3. NF-κB signaling and LD formation are activated in an LPIN1-dependent manner in gefitinib-
resistant H1650 cells. (A) H1650/siLPIN1, H1650/siNC, HCC827/siLPIN1, or HCC827/siNC cells
transfected with NF-κB luciferase reporter plasmid were treated with gefitinib (5 µM) or DMSO for
24 h and then harvested to determine NF-κB activity (upper panel) and p-IκBα expression levels
(lower panel). (B) H1650 cells were pretreated with PKCα, β, or γ inhibitors (GF109203X (20 µM,
S7208) or Go 6983 (20 µM, S2911)) or LPIN inhibitor (50 µM propranolol) for 2 h, treated with 5 µM
gefitinib, and subjected to western blot analysis to determine p-IκBα expression levels. (C) H1650
cells were transfected with siRNAs for LPIN1, PKCα, PKCδ and PKCζ individually, treated with
gefitinib (5 µM) or DMSO for 24 h, and subjected to western blot analysis to determine p-IκBα
expression levels. (D) H1650 cells were transfected with siRNAs for LPIN1 and then treated with
gefitinib (5 µM) or DMSO for 24 h. qRT-PCR was performed to determine the mRNA expression of the
indicated genes. (E,F) H1650 cells were transfected with siRNAs for LPIN1 and treated with gefitinib
(5 µM) or DMSO for 24 h. The cells were subjected to € flow cytometry to determine lipid droplet
production or (F) Nile red staining to visualize lipid droplets under a fluorescence microscope. Oleic
acid (10 µM) was used as the positive control of lipid droplet production. Values are the mean ± SD
of three independent experiments. Statistical significance was determined by (A,D) Student’s t-test €
(E) two-way ANOVA (*, p < 0.05; **, p < 0.01; ***, p < 0.001; and NS, not significant).
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Next, we investigated the expression of genes involved in lipid synthesis as targets
of the PKC signaling pathway. Consistent with PKC activation, expression of lipogenic
genes, including SREBFs, ATP citrate lyase (ACLY), and fatty acid synthase (FASN), was
significantly increased by gefitinib treatment in gefitinib-resistant H1650 cells, and the
up-regulated expression was remarkably inhibited by LPIN1 depletion (Figure 3D). LD
formation was significantly increased following gefitinib treatment in gefitinib-resistant
H1650 cells in a LPIN1 expression-dependent manner (Figure 3E,F). These results demon-
strate that LPIN1 is a major regulator of gefitinib-induced survival signaling that involves
PKC activation-mediated NF-κB activation and LD formation in TKI-resistant H1650 cells.

3.4. Gefitinib Resistance Is Highly Dependent on DAG Content in H1650 Cells

Cellular DAG is produced by LPIN1, which dephosphorylates PA in de novo syn-
thesis of lipids, and by PLC, which cleaves phosphatidylinositol 4,5-bisphosphate (PIP2)
to generate DAG and inositol 1,4,5-triphosphate (IP3) [38]. DAG, which is generated by
PLCγ docked in EGFR, induces survival signaling in TKI-resistant cancer cells by activating
PKCδ [29]. Therefore, to compare the effects of LPIN1 and PLCγ on gefitinib sensitivity, we
treated H1650 cells with PLCγ inhibitor U73122 or LPIN1-specific siRNA. Gefitinib sensitiv-
ity of H1650 cells increased more with LPIN1 knockdown (approximately 5-fold) than PLCγ

inhibition (approximately 2.5-fold), and their co-treatment synergistically increased the sen-
sitivity by more than 20-fold (Figure 4A). We validated these results through a clonogenic
assay that showed a slightly stronger effect of LPIN1 knockdown than PLCγ inhibition
and a synergetic effect of their co-treatment (Figure 4B). In addition, we found that LPIN1
knockdown clearly inhibited both the basal and gefitinib treatment-induced activities of
PKC, while the PLCγ inhibitor U73122 only marginally inhibited the PKC activities, in
H1650 cells (Figure 4C). Moreover, LPIN1 inhibition more clearly reduced gefitinib-induced
p-IκBα expression than PLCγ inhibition did (Figure 4D). Therefore, LPIN1-mediated DAG
production is important to acquire gefitinib resistance in H1650 cells, and blocking LPIN1
and PLC simultaneously may be effective in treating drug-resistant cancers.
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Figure 4. Gefitinib resistance is highly dependent on the total amount of DAG in H1650 cells. (A) H1650
cells were transfected with siRNAs for LPIN1 and treated with a PLCγ inhibitor (5 µM) or a vehicle
in combination with varying gefitinib concentrations. The gefitinib sensitivity of each cell line was
determined using varying gefitinib concentrations. (B) H1650 cells were transfected with siRNAs for
LPIN1 and treated with the PLCγ inhibitor (5 µM) or vehicle in combination with gefitinib (5 µM) or
DMSO for 96 h; cell growth was measured using 0.5% crystal violet staining. (C) H1650 cells were
transfected with siRNAs for LPIN1, treated with PLCγ inhibitor (5 µM) or vehicle in combination with
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gefitinib (5 µM) or DMSO for 72 h, and harvested to detect their PKC activity. (D) H1650 cells were
treated with propranolol (50 µM), PLCγ inhibitor (5 µM) or vehicle in combination with gefitinib
(5 µM) or DMSO for 24 h and harvested to determine p-IκBα expression levels. Values are the
mean ± SD of three independent experiments. Statistical significance was determined by (B) two-
way ANOVA or (C) Student’s t-test (**, p < 0.01; ***, p < 0.001; ****, p < 0.0001; and NS, not significant).

3.5. Patient-Derived EGFR-Mutant NSCLC Cells Show LPIN1-Dependent Gefitinib Resistance
through Induction of PKCδ Signaling

The involvement of LPIN1 in gefitinib resistance was further validated using lung
cancer patient-derived cells (PDCs) YL05 [37]. Consistent with the results of H1650 cells,
LPIN1 depletion significantly sensitized YL05 cells to gefitinib treatment (Figure 5A).
Both anchorage-dependent (clonogenic assay) and anchorage-independent (soft-agar as-
say) growth of PDCs treated with gefitinib were remarkably decreased when LPIN1 was
knocked down (Figure 5B,C). In addition, gefitinib treatment in YL05 PDCs increased DAG
production, followed by subsequent activation of PKC (Figure 5D–H), NF-κB, and LD
formation (Figure 5D–H). Furthermore, LPIN1 silencing aborted gefitinib-dependent induc-
tion of DAG production, PKC activation, NF-κB activation, and LD formation in YL05 PDC
cells (Figure 5D–H). These results suggest the clinical relevance of the LPIN1/DAG/PKCδ

axis in inducing TKI resistance in lung cancer cells.
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Figure 5. Patient-derived EGFR mutant NSCLC cells show LPIN1-dependent gefitinib resistance via
PKCδ signaling induction. (A) Gefitinib-resistant lung cancer PDCs (YL05) were transfected with
LPIN1- or NC-siRNA and treated with gefitinib (5 µM) or DMSO for (A) 120 h. Cell growth was
measured by an MTT assay. (B,C) Gefitinib-resistant lung cancer PDCs were infected with shLPIN1- or
pLKO-harboring lentivirus and treated with gefitinib (5 µM) or DMSO for (B) 10 days, and (C) 14 days.
Cell growth was measured by (B) a colony formation assay after 0.5% crystal violet staining, or (C) an
anchorage-independent growth assay in soft agar. were transfected with siLPIN1 (D,E) YL05 cells or
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siNC and treated with gefitinib (5 µM) or DMSO (D) for 24 h and harvested to determine the
amount of diacylglycerol, (E) for 72 h and harvested to detect PKC activity. (F) YL05/siLPIN1 or
YL05/siNC cells transfected with an NF-κB luciferase reporter plasmid were treated with gefitinib
(5 µM) or DMSO for 24 h and harvested to determine their NF-κB activity and p-IκBα expression
level. (G,H) LPIN1-depleted YL05 cells by (G) siRNA or (H) shRNA were treated with gefitinib
(5 µM) or DMSO for 24 h. The cells were subjected to (G) flow cytometry to determine lipid droplet
production or (H) Nile red staining to visualize lipid droplets with a fluorescence microscope. Values
are the mean ± SD of three independent experiments. Statistical significance was determined by
(D–F) Student’s t-test or (G) two-way ANOVA (*, p < 0.05; **, p < 0.01; and NS, not significant).

3.6. Loss of LPIN1 Expression Sensitizes EGFR-Mutant NSCLC Cells to Gefitinib In Vivo

Finally, we examined whether in vitro suppression of gefitinib resistance by LPIN1
depletion could be recapitulated in vivo using H1650 cells xenografted into nude mice.
H1650-derived tumors expressing shLPIN1 or pLKO were treated twice a week with an
intraperitoneal injection of gefitinib (30 mg/kg) and/or the LPIN1 inhibitor, propranolol
(10 mg/kg), or vehicle. Consistent with in vitro results, LPIN1 knockdown or inhibitor
treatment rarely affected tumor growth compared with the control group (Figure 6A,B).
However, gefitinib treatment combined with LPIN1 depletion or inhibition, significantly
inhibited tumor growth compared to treatment with gefitinib alone. Western blot analysis
of resected tumors confirmed that LPIN1 expression and NF-κB activity (IκBα phosphoryla-
tion) were clearly increased by gefitinib treatment, and an increased IκBα phosphorylation
was effectively suppressed by gefitinib treatment combined with LPIN1 depletion or inhi-
bition (Figure 6C). These in vivo data further support the roles of gefitinib-induced LPIN1
expression and NF-κB activation in cell survival (Figure 6D) and the importance of LPIN1
as a potential target to prevent gefitinib resistance in EGFR-mutant NSCLC.
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with 30 mg/kg gefitinib or/and 10 mg/kg LPIN inhibitor, propranolol or vehicle twice a week
(n = 5/group), and tumor growth was monitored for 6 weeks. (A) Tumors resected from each group
at the end of experiments and profiles of tumor growth during 6 weeks of gefitinib treatment. (B) For
each treatment group, data are presented as the mean tumor volume (mm3) ± SEM. (C) The protein
expression levels in the resected tumors were analyzed via western blotting. β-Actin was used as
a loading control. (D) Schematic diagram of LPIN1-mediated gefitinib resistance. (red, ↑: increase
of expression, amount or activity; blue, ↓: decrease of expression, amount or activity) Statistical
significance was determined by Student’s t-test (**, p < 0.01).

4. Discussion

In this study, we propose LPIN1 as a factor regulating gefitinib resistance in EGFR-
mutant lung cancer cells, which upon depletion, results in synthetic lethality with gefitinib
treatment. Altered lipid metabolism in cancer modulates drug resistance. The activation
of glucosylceramide synthase, which converts ceramide to glucosylceramide, stimulates
cell growth and DNA synthesis to drive cancer cell resistance to chemotherapy [39]. Up-
regulation of lipogenesis and associated LD accumulation elicits a cytoprotective response
to oxidative stress by decreasing reactive oxygen species-mediated toxicity, thereby in-
creasing cancer cell survival [40]. In addition, gefitinib treatment induces the production
of LDs in drug-resistant cancer cells but reduces it in drug-sensitive cancer cells [19].
LPINs are lipogenic genes that produce DAG, an important precursor for neutral lipid
triglycerides deposited in LDs. However, nuclear LPIN1, whose localization is changed in
a phosphorylation-dependent manner [41], inhibits cellular lipogenesis by sequestering
SREBPs from the nucleus [31]. mTORC1 phosphorylates and blocks the nuclear localization
of LPIN1, allowing the nuclear localization of SREBPs and, consequently, inducing lipogenic
genes [31]. Therefore, it is presumed that mTORC1 is activated in drug-resistant cells and
phosphorylates LPIN1, resulting in cytosolic LPIN1-dependent LD formation. mTORC1
has been reported to become activated following gefitinib treatment in TKI-resistant cells
and promote resistance to chemotherapy and targeted cancer drugs [42,43]. We observed
that LPIN1 depletion mitigated gefitinib-induced LD production in drug-resistant cancer
cells. In addition, interestingly, lipogenic genes, including SREBFs, ACLY and FASN, were
reduced by LPIN1 knockdown, suggesting that LPIN1 is not a passive lipogenic gene
but a driver gene that actively induces alterations in lipid metabolism in TKI-resistant
cancer cells.

Unlike TKI-sensitive HCC827 cells, the intracellular level of LPIN1 was transcrip-
tionally induced by gefitinib treatment in TKI-resistant H1650 and patient-derived TKI-
resistant lung cancer cells. The expression of lipogenic genes, including LPIN1, is induced
by mTORC2, probably through PPARγ [44,45]. In addition, mTORC2 is activated in drug-
resistant cancer cells through an undefined mechanism [46,47]. We also found that the effect
of gefitinib treatment on LPIN1 expression completely disappeared when the rapamycin-
insensitive companion of the mammalian target of rapamycin (RICTOR) was knocked
down by transfection with siRICTOR (Supplementary Figure S7). These results suggest a
possible mechanism for LPIN1 induction in TKI-resistant lung cancer cells mediated by
mTORC2. Although the mechanisms of simultaneous activation of mTORC1 and mTORC2
in TKI-resistant cells remain to be elucidated, gefitinib-induced LPIN1 expression may
mediate activation of PKCs, an upstream signal of SREBPs [22], by increasing DAG produc-
tion in TKI-resistant cells, and this transfers the cells into a lipogenic state, consequently
inducing LD formation.

PKC is activated by DAG in two ways: acute activation by DAG produced by PLC in
the cell membrane and long-term activation by DAG produced by LPIN in cytosolic vesicle
membrane [48]. The importance of DAG-mediated PKC activation in gefitinib resistance
of cancer cells has recently been reported [29]. According to this study, PLCγ is docked
to Y1173 of EGFR, which is still phosphorylated by gefitinib treatment, and cleaves PIP2
to produce IP3 and DAG. DAG induces the activation of PKCδ and cancer cell survival.
Our results also demonstrated that cancer cells acquire resistance to gefitinib by increasing
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DAG, which is produced by LPIN1. Furthermore, concomitant inhibition of both LPIN1
and PLCγ to further block DAG production dramatically increased the gefitinib sensitivity
of the resistant cells. Therefore, the total amount of DAG is crucial for cancer progression
in gefitinib-resistant cells.

Together with the observations in the mouse xenograft model, our results suggest
that LPIN1 targeting is a good strategy for treating gefitinib-resistant NSCLC, which
coincidently modulates survival factors, including PKC-NF-kB pathway signaling and
altered lipid metabolism, such as LD formation. Multiple resistance mechanisms drive
drug resistance to EGFR-TKIs, and these can frequently co-occur in patients, suggesting
that it can be extremely difficult to completely overcome all resistance mechanisms in
patients [4–9]. Therefore, defining novel mechanisms or targets that regulate resistance
will increase the potential of cancer treatment. In this regard, the therapeutic potential of
targeting LPIN1 in EGFR-mutant NSCLC requires further investigation.

5. Conclusions

In this study, we investigated whether LPIN1 could regulate gefitinib resistance in
EGFR-mutant NSCLC cells. We defined the molecular mechanisms underlying the LPIN1-
mediated activation of PKCδ pathway signaling. Our results demonstrated that gefitinib
treatment induced LPIN1 expression and increased DAG concentration in TKI-resistant
H1650 cells. It also activated PKCδ-NF-κB pathway signaling and LD formation in an
LPIN1-dependent manner, resulting in cancer cell survival. Conversely, LPIN1 depletion
and pharmaceutical inhibition clearly attenuated in vitro and in vivo resistance to gefitinib
in EGFR-mutant NSCLC. These results were recapitulated in a patient-derived EGFR-
mutant NSCLC cell line. Therefore, LPIN1 is a potential factor regulating gefitinib resistance
in EGFR-activating mutant NSCLC cells. Moreover, co-treatment with TKIs and LPIN1
inhibitors represents a promising therapeutic approach to overcoming TKI resistance in
NSCLC patients.
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