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Abstract

The influence of nanomaterials on the ecological environment is becoming an increasingly

hot research field, and many researchers are exploring the mechanisms of nanomaterial

toxicity on microorganisms. Herein, we studied the effect of two different sizes of nanosilver

(10 nm and 50 nm) on the soil nitrogen fixation by the model bacteria Azotobacter vinelandii.

Smaller size AgNPs correlated with higher toxicity, which was evident from reduced cell

numbers. Flow cytometry analysis further confirmed this finding, which was carried out with

the same concentration of 10 mg/L for 12 h, the apoptotic rates were20.23% and 3.14% for

10 nm and 50 nm AgNPs, respectively. Structural damage to cells were obvious under scan-

ning electron microscopy. Nitrogenase activity and gene expression assays revealed that

AgNPs could inhibit the nitrogen fixation of A. vinelandii. The presence of AgNPs caused

intracellular reactive oxygen species (ROS) production and electron spin resonance further

demonstrated that AgNPs generated hydroxyl radicals, and that AgNPs could cause oxida-

tive damage to bacteria. A combination of Ag content distribution assays and transmission

electron microscopy indicated that AgNPs were internalized in A. vinelandii cells. Overall,

this study suggested that the toxicity of AgNPs was size and concentration dependent, and

the mechanism of antibacterial effects was determined to involve damage to cell mem-

branes and production of reactive oxygen species leading to enzyme inactivation, gene

down-regulation and death by apoptosis.

Introduction

Nanosilver (AgNPs) is currently the most widely used and fastest growing class of nanomater-

ials. Due to its unique antibacterial properties, it is widely used in traditional industries and

emerging fields such as coatings, food, textiles, cosmetics, water purification, medical treat-

ment [1, 2]. Currently, there are more than 1,600 consumer goods containing nanomaterials,

4.2-fold higher than 380 goods containing AgNPs in 2010 (http://www.nanotechproject.org).
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The large-scale commercial application of AgNPs has created great economic benefits, but

there are also risks of AgNPs entering the environment through various channels [3]. The bio-

logical toxicity and impacts of AgNPs on the environment have been a major focus of recent

attention.

Previous studies have shown that the microbial toxicity of AgNPs can be caused by inhibi-

tion of cell growth, alteration of cell morphology and production of reactive oxygen species

(ROS). Beddow et al [4] investigated the effects of AgNPs on different bacteria, including three

nitrifying bacteria (Nitrosomonas europaea, Nitrosospira multiformis and Nitrosococcus ocean),

and Escherichia coli, Bacillus subtilis. They found that AgNPs caused significant inhibition to

nitrification potential rates (NPRs) in nitrifying bacteria, and adversely affect the growth of E.

coli and B. subtilis. Bryaskova et al [5] reported that AgNPs have a strong antimicrobial effect

against bacteria and fungi. AgNPs have extremely small diameter and large surface area, easily

enter into cells or bind to the bacterial surface [6]. Long et al [7] have detected the Ag elements

in E. coli cell membrane and cytoplasm as exposed to AgNPs, and found the cells were severely

damaged. Arnaout et al [3] determined that AgNPs cause damage to bacterial cell membranes,

leading to leakage of intracellular substances and induction of cell death. Numerous studies

have shown that the presence of AgNPs cause the generation of ROS, which can lead to apo-

ptosis, destroy cell membranes, interfere with intracellular antioxidant systems, and damage

intracellular components such as DNA [8–10]. Further researches have revealed that AgNPs

can enter cells by endocytosis or by other means after contact with bacteria [11], where it can

cause cell damage. In summary, after contact with the cells, the AgNPs are firstly adsorbed on

the cell surface and then enter into the cell. AgNPs pass through the inner membrane and pro-

duce ROS, which leads to arrest of DNA replication, inactivates proteins, and destroys cell

membranes. Subsequently the cellular components leak from the damaged cell membranes,

and this eventually leads to cell death [12, 13].

The toxicity of AgNPs is determined by many factors, including particle size, type of coating

material and morphological structure [14]. Numerous reports have demonstrated that the

cytotoxicity of AgNPs is size dependent. Gliga et al [15] proposed that as the size decreases, the

specific surface area of AgNPs increases, providing more contact sites for interaction with bac-

teria. Compared to larger AgNPs, smaller size AgNPs are more likely to cross the cell mem-

brane and enter into the cell, increasing the toxicity to bacteria [16, 17]. Studies have also

shown that smaller AgNPs has a larger specific surface area and more active sites, which can

produce more ROS and exert stronger antibacterial effects [18, 19].

Azotobactervinelandii (A. vinelandii) is a gram-negative bacterium belonging to the

genus Azotobacter, which is easy to grow and fixes nitrogen under aerobic conditions [20].

Soil Azotobacter are functional bacteria composed of a variety of bacteria capable of fixing

N2 in the environment, these including many kinds of nitrogen-fixing forms such as auto-

trophic nitrogen fixation, symbiotic nitrogen fixation and united nitrogen fixation. Because

this type of functional bacterium contains nitrogenase, it can assimilate N2 into its own

biomass and eventually release it into the soil as part of the soil nitrogen pool [21]. A. vine-
landii can fix nitrogen in the atmosphere, which is also important for studying soil nitrogen

cycling.

The aim of this study was to investigate (i) the role of AgNPs size on the growth inhibition

of A. vinelandii (ii) the mechanism of AgNPs toxicity on A. vinelandii, which was determined

by examining cell morphology and apoptosis, nitrogenase activity, gene expression, ROS and

▪OH production (iii) the possibility that the AgNPs are internalized in A. vinelandii cells.

These findings would provide an integrative understanding of nanoparticle-bacterial cell inter-

action and be of great significance for evaluation of the ecological risk of AgNPs.

Effect of silver nanoparticles on Azotobacter vinelandii
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Materials and methods

Materials and chemicals

AgNPs of two different sizes were used in this study: 10 nm nanosilver (nano-Ag 10, coated

with polyvinyl pyrrolidone (PVP)) was purchased from Nanjing Xianfeng Nanomaterial Tech-

nology Co. (Nanjing, China); 50 nm nanosilver (nano-Ag 50, without coating agent) was pur-

chased from Nanjing Empero Nanomaterials Co. (Nanjing, China). The purity of the AgNPs

were about 99%. The suspensions of AgNPs (1000 mg/L for both sizes) was stored in the dark

at 4˚C until use.

Annexin V-FITC and PI dye (Annexin V-FITC/PI Apoptosis Dual Stain Kit) was pur-

chased from BD Co. USA. DCFH-DA dye (Reactive Oxygen Species Assay Kit) was purchased

from Biyotime Co. China. RNA extraction (UNIQ-10 Column Trizol Total RNA Extraction

Kit), reverse transcription (Promega reverse transcription kit) and qPCR reagents (TransStrat

Top Green qPCR SuperMix Kit) were purchased from Sangon Biotech Co. Shanghai, Promega

Co. Shanghai and TransGen Biotech. Co. Beijing, respectively.

Characterization of two sizes of AgNPs

Transmission electron microscopy (TEM, H-7650, Hitachi, Japan) were used to determine the

primary sizes of the AgNPs at an accelerating voltage of 80kV. Dispersed aqueous solutions of

AgNPs were dropped onto a carbon-coated copper grid and dried at room temperature to

make TEM samples [22], and at least 5 photographs were taken forobserving. According to the

TEM images, the Nano Measure software was used to analyze the particle size of AgNPs to

obtain the size distribution. For further characterization of stability of AgNPs, the zeta poten-

tial and hydrodynamic size were determined; the AgNPs stock solutions were resuspended in

the test media to achieve the desired concentrations (2 mg/L and 10mg/L for nano-Ag 10 and

10mg/L and 100 mg/L for nano-Ag 50, respectively), Dynamic Light Scattering (DLS; Malvern

Instrument Zetasizer Nano-ZS90, USA) was used, and samples were incubated at 30˚C for 12

h under shaking (220 rpm). For the purpose of silver ion release, suspensions of AgNPs were

centrifuged using Amicon Ultra Centrifugal Filters (3 kDa; USA), and the filtrates were mea-

sured by inductively coupled plasma mass spectrometry (ICP-MS, 7500CX, Agilent. USA).

A. vinelandii culture

The A. vinelandii was a kind gift from Nanjing Institute of Soil Science, Chinese Academy of

Sciences. The A. vinelandii was grown in 1 L of nitrogen-free medium containing 0.5 g yeast,

20.0 g mannitol, 0.8 g K2HPO4, 0.2 g KH2PO4, 0.2 g MgSO4�7H2O, 0.1 g CaSO4�H2O, 1 ml

trace elements, containing 22 g/L ZnSO4�7H2O, 5 g/L MnCl2�4H2O, 5 g/L, FeSO4�7H2O, 1.6

g/L CoCl2�6H2O, 1.6 g/L CuSO4�5H2O, 7.5 g/L, Na2MoO4�2H2O and 60 g/L EDTA-Na2. The

culture temperature was maintained at approximately 30˚C and the pH remained around 7.2

throughout the experiment. After the bacteria were cultured to logarithmic phase (108 cells/

mL), they were collected for the subsequent studies.

Bacteria growth assays

The A. vinelandii suspensions were inoculated into solid medium containing two different

sizes of AgNPs (nano-Ag 10 and nano-Ag 50) at doses of 1, 2, 5, 10 mg/L, and 1, 10, 50, and

100 mg/L, respectively (Concentration selection came from pre-experiment optimization,

which is not shown in this study). At the same time, no AgNPs were added into the control

group medium. The bacterial suspension was spread evenly with a sterile inoculating loop.

Effect of silver nanoparticles on Azotobacter vinelandii
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After 30 minutes, the culture dishes were inverted in a 30˚C incubator and cultured for 48

hours. The cell numbers were recorded periodically.

SEM and TEM imaging

The A. vinelandii were inoculated into culture media containing different doses of AgNPs (2

and 10 mg/L for nano-Ag 10, 10 and 100 mg/L for nano-Ag 50) and incubated for 12 h; the

control consisted of A. vinelandii grown to log phase in culture media without AgNPs. The

cells were collected by centrifugation, and all samples were fixed using 2.5% glutaraldehyde,

followed by post-fixed in 1% OsO4 for 1 h and 3 washes with phosphate buffer saline (PBS, pH

7.2). Finally, samples were subject to gradient dehydration in 30%, 50%, 70%, 80%, 90%, 100%

ethanol solution (20 min each time) at room temperature. The processed samples were sec-

tioned, stained with specific dyes and observed under scanning electron microscope and trans-

mission electron microscope (SEM, S-4800, Hitachi, Japan; TEM, H-7650, Hitachi, Japan).

Flow cytometry (FCM) analysis

Suspensions of A. vinelandii were inoculated into media containing nano-Ag 10 (2 and 10 mg/

L), nano-Ag 50 (10 and 100 mg/L) and medium without AgNPs; cultures were incubated for

12 h. After cultivation, cells were double-labeled with dye and analyzed for apoptosis according

to the manufacturer’s protocol. Briefly, the cultured cells were collected by centrifugation and

washed with 4˚C PBS and centrifuged again. The supernatant was removed, and cells were

resuspended in 300 μL diluted Binding Buffer; 5 μL Annexin V-fluorescein isothiocyanate

(FITC) was added and samples were incubated in the dark for 15 min. Propidium iodide (PI)

dye was added 5 min before the test and 200 μL of Binding Buffer was added. Finally, the apo-

ptosis rate was measured by FACSCalibur flow cytometry (BD Co. USA).

Nitrogenase activity and gene express studies

Suspensions of A. vinelandii were inoculated into media containing nano-Ag10 (2 and 10 mg/

L), nano-Ag50 (10 and 100 mg/L) and into medium without AgNPs; cultures were incubated

for 12 h at 30˚C. The nitrogenase activity of A. vinelandii was determined using the acetylene

reduction method [23]. Different A. vinelandii treatments were introduced into a 15 ml test

tube at the same inoculum volume, a 1/10th volume of air was drawn, and an equal volume of

10% acetylene gas was immediately injected, Tubes were sealed with a rubber plug and cul-

tured for another hour. From the test tube, 0.5 mL of gas was injected into a gas chromato-

graph (7890B, Agilent. USA) to determine the amount of acetylene reduction. The nitrogenase

activity of A. vinelandii was calculated based on the amount of C2H4 produced / 108 cells.

In this study, the reverse transcription-quantitative polymerase chain reaction (RT-qPCR)

technique was used to analyze whether AgNPs were genotoxic to A.vinelandii. After the 12 h

as per previous culture technique, the cells were collected by centrifugation. Approximately

108 cells were placed in a 1.5 mL microcentrifuge tube without RNase. Lysozyme solution

(100 μL) was added, and samples were digest at room temperature for 10 min, followed by cen-

trifugation at 12,000×g for 2 min at 4˚C. The supernatant was carefully removed and placed

into a fresh RNase-free 1.5 mL microcentrifuge tube. Bacterial total RNA was extracted

according to the UNIQ-10 Column Trizol Total RNA Extraction Kit procedure. Afterwards,

total RNA samples were combined with the random primer in RNase free dH2O, heated shock

at 70˚C for 3min, and immediately placed on ice for 5min. The first strand cDNA was obtained

by adding dNTP Mixture, RNase Inhibitor, M-MLV buffer, followed by incubated in a 42˚C

water bath for 1 h. Primers designed for this study were nifH-F (5'-ATCACCGCCATCAACTT
CCT-3') and nifH-R (5'-GATTTCCTGGGCCTTGTTCTC-3'). Quantitative PCR was

Effect of silver nanoparticles on Azotobacter vinelandii
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performed using a LightCycler 96 PCR system (Roche) in 20 μL of reaction mixture composed

of cDNA (2 μL), SYBR Green Master Mix (10 μL), 0.5 μL of each primer, and RNase Free

dH2O under following condition: 10 min at 95˚C, followed by 40 cycles of 30 s at 95˚C, 35 s at

61˚C. The results of the experiment were calculated using the 2-ΔΔCt method. Nitrogenase

activity and gene expression is shown as fold change.

Reactive oxygen species (ROS) detection and ESR analysis

The presence of AgNPs stimulates production of reactive oxygen species (ROS), which leads to

oxidative stress in bacteria. DCFH2-DA (2,7-dichlorofluorescein diacetate) can detect ROS, and

is able to freely pass through cell membranes to react with intracellular ROS and produce the

fluorescent compound dichlorofluorescein (DCF). The level of ROS is determined by detection

of DCF fluorescence [24]. In this research, the A. vinelandii suspensions were separately inocu-

lated into the above AgNPs treatment medium and cells were collected at 0, 2, 4, 6, 12 h, respec-

tively and washed 3 times with PBS buffer. DCFH2-DA and nanosilver-free fresh medium were

added at a volume ratio of 1:2000 and incubated at 30˚C for 30 min. After the incubation, the

samples were collected by centrifugation, washed again with PBS and resuspended, and the

ROS production in A. vinelandii cells was measured by Flow Cytometry (BD Co., USA).

All electron spin resonance (ESR) were carried out using a JOEL ESR spectrometer (JES-FA

200, Japan) at room temperature. The acetate buffer solution system pH at 3.6 contained 0.5

mM H2O2, 50 mM DMPO, different doses of AgNPs and the control contained no AgNPs. A

spin trap, DMPO was used to determine that AgNPs can facilitate the generation of hydroxyl

radicals (•OH) in the presence of H2O2. The machine settings are as follows: Field modulation

of 1G, microwave power of 20mM and scan range of 100G. The final concentration of each

treatment was specified in the figure section.

Intracellular and membrane Ag contents

The cells were incubated in test media containing nano-Ag 10 (2 and 10 mg/L), nano-Ag 50

(10 and 100 mg/L) for 12 h. Equivalent amounts of bacteria from each sample were lysed via

intermittent sonication by an Ultrasonic Cell Crusher (XO-900D, Nanjing) for 1 min, followed

by centrifugation at 30,000×g for 30 min. After centrifugation, the supernatant was collected

and digested with 2 ml of the mixture (65% HNO3: 30% H2O2, 1:1) as a cell membrane frac-

tion of A. vinelandii, and the precipitate containing the cytoplasmic portion was treated in the

same manner. ICP-MS (7500CX, Agilent. USA) was then used to measure the Ag content [7].

Statistical analysis

SPSS19.0 software was used for the differential analysis of the experimental data with the Stu-

dent’s t-test. There was a significant difference when the P< 0.05.

Results and discussion

Characterization of two different sizes of AgNPs

The characterization results of the sizes and properties of supplied nanoparticles are presented

in Fig 1. As shown in the TEM image (Fig 1a and 1c), the shapes of AgNPs in this study was

relatively uniform, and both were approximately spherical. Under the same magnification, the

size of nano-Ag 10 was obviously smaller than nano-Ag 50, and had a better dispersibility. In

addition, nano-Ag 50 agglomerated more than nano-Ag10 due to the absence of stabilizer in

the solution [25]. The size distribution of two different AgNPs from TEM images was deter-

mined and average sizes were about 10.48±0.94 and 48.08±3.44 nm for nano-Ag 10 and nano-

Effect of silver nanoparticles on Azotobacter vinelandii
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Ag 50, respectively, these values were similar to those specified by the manufacturer. Since the

characterization between two used concentrations of the two sizes of AgNPs was not signifi-

cantly different, the highest concentrations data were representative. The Z-average hydrody-

namic diameter was 162.9±3.5 nm with polydispersity index (PDI) 0.4±0.02 for nano-Ag 10

and 750.7±65.8 nm with PDI 0.91±0.11 for nano-Ag 50 as monitored by DLS. The surface

charges of the both AgNPs were highly negative as indicated by zeta potential values:

-22.5±0.11 mV for nano-Ag 10 and -18.1±0.15 mV for nano-Ag 50, respectively (Table 1).

Fig 1. The characterization of different sizes of silver nanoparticles by TEM. TEM images of (a) nano-Ag 10 and (c)

nano-Ag 50. Frequency of size distribution for (b) nano-Ag 10 and (d) nano-Ag 50; scale bar: 100nm.

https://doi.org/10.1371/journal.pone.0209020.g001

Table 1. Characterization of AgNPs.

Nano-Ag 10 Nano-Ag 50

Zeta potential (mV) -22.50±0.11 -18.10±0.15

Polydispersity index (PDI) 0.40±0.02 0.91±0.11

Hydrodynamic diameter (nm) 162.9±3.5 750.7±65.8

Ag released (%) 0.12 0.013

The physicochemical parameters of two sizes of AgNPs were measured using zetasizer after resuspension in test

medium for 12h, and the polydisperity index (PDI) was obtained through determining the hydrodynamic diameter.

All results were replicated 3 times.

https://doi.org/10.1371/journal.pone.0209020.t001

Effect of silver nanoparticles on Azotobacter vinelandii
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As for dissolution, the nano-Ag 10 at the highest working concentration of 10 mg/L was found

to contain 0.12% Ag ions, and the nano-Ag 50 at a dose of 100 mg/L contained less than 0.02%

release (shown in Table 1), indicating that smaller AgNPs release more Ag in biological

medium. The amount of Ag+ from both AgNPs were less than 0.5%, which may be due to the

agglomeration reduce the surface-to-volume ratio of AgNPs [15]. Because of this, extremely

low Ag+ release in our research would not be considered in toxicity mechanism of AgNPs. In

sum, these results indicated that nano-Ag 10 in tested medium showed a moderate stability

and agglomeration while the nano-Ag 50 was less stable.

AgNPs had a large specific surface area and high surface potential, thus, they tended to

agglomeration, which was affected by various environmental factors such as the coating agent,

the type of ions in the solution, the ionic strength, pH [26]. Studies have shown that PVP as a

coating material is non-toxic [27], which enhance the dispersability of AgNPs. Several reports

have demonstrated that the reduction in toxicity may be attributed to a decrease in release of

silver ions and a reduction in surface area when AgNPs form agglomerates [6, 28]. Thus, the

characterization of AgNPs may provide a possible reason for differences in antibacterial

actions of the two sizes.

Effect of AgNPs on the growth of A. vinelandii
Cultures of A. vinelandii were treated for 48 hours with 2, 5, 10 mg/L of nano-Ag 10 and 10,

50, 100 mg/L of nano-Ag 50, respectively (Fig 2). As shown in the Fig 2b, nano-Ag 50 below 50

mg/L did not produce significant toxicity to cells relative to the control, whereas a treatment of

nano-Ag 10 at 5 mg/L resulted in marked inhibition; this suggested that the bactericidal effect

of AgNPs may be related to dose and particle size.

Numerous studies have indicated that NPs exhibit strong biotoxicity. Yu et al [22] studied

the toxicity of four widely used NPs (TiO2, SiO2, Ag and CdTe/CdS) to Chlamydomonas rein-
hardtii and found different cytotoxicity effects. Reyes et al [29] revealed that growth rate of

A. vinelandii biofilms was significantly reduced as exposed to CuNPs. Similarly, Gambino et al

[30] explored the toxicity of AgNPs (10 nm) on soil bacteria A. vinelandii and Bacillus subtilis
(B. subtilis). The authors found that the 0.1 mg/L of AgNPs significantly inhibited growth of

Fig 2. Effect of two different sizes of AgNPs on the growth of A. vinelandii. (a) nano-Ag 10 and (b) nano-Ag 50. The bacteria were cultured

for 48 h in media with and without AgNPs.

https://doi.org/10.1371/journal.pone.0209020.g002
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A.vinelandii; however, the growth rate of B. subtilis showed a significant decline only when the

concentration of AgNPs reached 100 mg/L. It seems that increased AgNPs concentration serve

as an effective form of antibacterial action [30]. Our results also provide conclusive evidence

for the toxicity of AgNPs is dose-dependent. In addition to concentration, size is also an

important parameter for evaluating the biotoxicity of nanomaterials [31]. Previous investiga-

tions demonstrated that smaller sizes of AgNPs had higher toxicities [32, 33]. Because smaller

AgNPs have higher surface areas and particle numbers per unit mass, the contact area with

organisms is expanded and more silver ions are released. Moreover, smaller AgNPs have been

shown to penetrate the cell membrane more easily [16, 34]. The present study indicates that

the tested AgNPs exert antibacterial activities in both size and concentration dependent

manners.

Effect of AgNPs on cell morphology of A. vinelandii
The changes in cell morphology were observed observed with 10 mg/L of nano-Ag10 and 100

mg/L of nano-Ag 50 (Fig 3), which were also the concentrations where an effect on cell growth

was noticed. Cells exposed to AgNPs differed significantly from the control. The SEM results

showed that there were small holes on the surface of the AgNPs-treated cells, indicating that

the bacterial cell surface was damaged after 12 h interaction with AgNPs. Additional TEM

observations confirmed this finding, as the figures indicated that the cell membrane edges of

A. vinelandii were rough and fuzzy and there were substances leak inside the cells. These

might due to the attachment of AgNPs to the cell membrane surface, disrupting the cell mem-

brane and cell wall. Part of AgNPs may even reach the cytoplasm and intereact with the intra-

cellular components, caused leakage of the contents.

The main components of the cell membrane are proteins and lipids, and AgNPs can inter-

act with proteins to form complexes with substances containing oxygen, phosphorus, sulfur or

nitrogen atoms [35, 36]. Studies have shown that the reaction of AgNPs with sulfur-containing

Fig 3. The effect of AgNPs on the cell morphology of A. vinelandii observed by SEM (upper) and TEM (lower). (a) SEM and (b)

TEM images of a control group in which no AgNPs are added; (c) SEM and (d) TEM images of nano-Ag 10 at a concentration of 10

mg/L; (e) SEM and (f) TEM images of nano-Ag 50 at a concentration of 100 mg/L. All treatment groups were exposed for 12 h.

https://doi.org/10.1371/journal.pone.0209020.g003
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membrane proteins may lead to inactivation of membrane-bound enzymes and proteins [14,

35]. AgNPs can also interfere with the respiratory chain and reduce energy production when

attacking the membrane [13]. Several investigations have reported that AgNPs could attack

unsaturated fatty acids on cell membranes and change the membrane fluidity which can hin-

der membrane function by destroying membrane permeability and integrity [13, 37]. Thus,

researchers have indicated that cells treated with AgNPs are deformed. Michels et al [38]. stud-

ied the inhibition of two different nanomaterials (silver and magnetite) on ammonia-oxidizing

bacteria and found that the nanomaterials would continue to adsorb on the surface of the bac-

terial cell membrane until the surface morphology was completely destroyed. This finding was

supported by Giao et al [39]. AgNPs caused severe aberration to the cell morphology of ammo-

nia-oxidizing bacteria and could cause bacterial death by damaging the cell membrane. Li

et al’s study found that the AgNPs treated E. coli cells were deformed, with pits and voids on

the surface, and some cells also showed a large leakage [37].

In our previous studies, many small pits were found in the cell wall of bacteria which may

have been caused by penetration of AgNPs [40]. After passing through the cell wall, AgNPs

can accumulate on the surface of the cell membrane, disrupt the cell membrane structureand

alter its permeability. AgNPs can also enter into the cell, causing the DNA to become concen-

trated and stressed, and DNA accumulates in combination with the cytoplasm of the damaged

bacteria; this eventually results in leakage of cellular components, leading to bacterial death

[18, 41]. In summary, the direct destruction of cell wall and cell membrane by AgNPs may be

an important antibacterial mechanism, which needs further study.

Effect of AgNPs on cell apoptosis of A. vinelandii
Annexin V is a Ca+-dependent protein that binds phosphatidylserine (PS) with high affinity

outside the cell membrane to label cells during early-stage apoptosis. PI is a nucleic acid dye

that can pass through the membrane of cells in late-stage apoptosis and necrosis to stain the

nucleus [34]. After exposured to AgNPs for 12 h, the apoptosis ratios were observed. The apo-

ptosis rate was slightly elevated for A.vinelandii treated with nano-Ag10 at 2 mg/L (Fig 4a), rel-

ative to the control group (3.35% and 2.58%, respectively). The apoptosis rate was 20.23%

when when A. vinelandii were exposed to 10 mg/L of nano-Ag 10 (Fig 4b). However, the apo-

ptosis rate of cell treated with the same concentration of nano-Ag 50 treatment was 3.14% (Fig

4c). Only the concentration was increased to 100 m/L did the apoptosis rate reach 21.06% (Fig

4d). This result is consistent with those of the bacterial growth assays, which indicated that the

toxicity of AgNPs to A. vinelandii significantly increased with decreasing nominal particle size.

Apoptosis is a genetically regulated and orderly death caused by certain physiological or

pathological stimulation of cells [42]. A wide variety of compounds, from antibacterial organ-

ics to nanoparticles, have been shown to cause bacterial apoptosis [43–45], and our previous

research also explored the apoptosis of Nitrosomonas europaea under AgNPs exposure [40].

Apoptosis may be present in most bacteria but activated differentially depending on the stimu-

lus [43]. ROS are considered to be a major mechanism of apoptosis in nanoparticles treat-

ments, and DNA damage is a common apoptotic mark [43, 46]. Piao et al [47] reported that

the destruction of mitochondrial transmembrane potential is one of the earliest events in the

process of apoptosis. Zapór et al [48] confirmed the finding that AgNPs can cause an increase

in ROS production to induce mitochondria-mediated apoptosis. Furthermore, AgNPs will

cause autophagy function disorder by generating ROS; excessive autophagy can also lead to

apoptosis [9]. The apoptotic features in bacteria and eukaryotic cells have been found in high

similarity [43], but further research is needed to characterize how ROS induce apoptosis in

bacterial cells.
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Effect of AgNPs on nitrogenase activity and nifH expression of A.

vinelandii
The assay result showed that the nitrogenase activity and expression of the nitrogenase gene

nifH were significantly inhibited (Fig 5) after exposure of A.vinelandii to two sizes and differ-

ent doses of AgNPs for 12 h; the effect of nano-Ag 10 treatment was more obvious. These

results were well corresponded with the observations of a reduced effect in apoptosis rates

from nano-Ag 50 exposure, nano-Ag 10 has a stronger destructive effect on cells. Our research

suggested that AgNPs not only induced cytotoxicity, but also caused genotoxicity and

impaired nitrogen fixation in A.vinelandii cells.

All kinds of nitrogen-fixing organisms are able to fix the molecules of ammonia in the air at

room temperature and atmospheric pressure and transform them into combined nitrogen

which can be used by organisms; these include symbiotic rhizobia, autogenous, combined

nitrogen-fixing bacteria, cyanobacteria, and photosynthetic nitrogen-fixing bacteria. Nitrogen

fixation is accomplished by a catalytic protein-nitrogenase enzyme [49]. It has been found that

all nitrogen-fixing microorganisms contain the ferritin-encoding nifH gene, and the phyloge-

netic tree of the nifH gene is highly consistent with that of 16s RNA [50]. The nifH gene is one

of the key areas for scientists to study biological nitrogen fixation. Molecular biology analysis

based on the nifH gene provided a more sensitive and accurate analytical method for the nitro-

gen fixation than traditional culture.

Fig 4. Effect of AgNPs on cell apoptosis of A. vinelandii. (a) nano-Ag 10 at a concentration of 2 mg/L; (b) nano-Ag 10 at a

concentration of 10 mg/L; (c) nano- Ag50 at a concentration of 10 mg/L; (d) nano-Ag 50 at a concentration of 100 mg/L; (e) no AgNPs

added. All treatments were exposed for 12 h.

https://doi.org/10.1371/journal.pone.0209020.g004
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An important feature of nitrogenase is their high sensitivity to oxygen. The result of gene

assay showed that AgNPs inhibited the expression of nifH gene, thereby decreasing the activity

of nitrogenase. Moreover, exposure of bacteria to AgNPs increased ROS level in bacteria, also

affected the activity of nitrogenase. Abd-Alla et al found there was a significant reduction in

nitrogenase activity of faba bean Rhizobium leguminosarum exposed to AgNPs, and they sug-

gested that presence of AgNPs decreasd the viability of the rhizobial cell [51]. Zarate-Cruz

examined the physiological response of Azolla filiculoides to the presence two sizes of ZnO

NPs (26.7±1 nm and 238±30.7 nm), and found the nitrogenase activity of Azolla filiculoides
decreased under treatment with all the ZnO NPs concentrations regardless of particle size

[52].

Reactive oxygen species (ROS) generation and free radicals induced by

AgNPs

The reactive oxygen species (ROS) are a type of oxygen-containing highly reactive molecules,

including hydroxyl radicals (�OH), superoxide anions (�O2
-), singlet oxygen (1O2), and hydro-

gen peroxide (H2O2) [53]. The generation of ROS is one of the mechanisms by which nanoma-

terials exert their toxicity. Electron spin resonance spectroscopy is the standard method for

quantification of ROS [54]. As shown in Fig 6. Both nano-Ag 10 and nano-Ag 50 (Fig 6a) sig-

nificantly increased ROS production in A. vinelandii cells in dose-dependent. It is observed

that the amount of ROS produced is higher for nano-Ag 10 than nano-Ag 50. Obviously, the

ROS production at 4 h appeared to be greater compared to 6 h which is higher than control.

And the reduction of ROS probably due to the ROS generation triggered the antioxidant sys-

tem in the bacteria cells which decreased ROS levels subsequently [55]. Results for ESR spectra

obtained for solutions containing DMPO spin trap without or with AgNPs are shown in Fig

6b. The ESR spectra of the two sizes of AgNPs are consistent with changes in ROS levels. The

observation rationalized that nano-Ag 10 has higher antimicrobial activity than nano-Ag 50.

Several previous studies have demonstrated that mechanism by which AgNPs induce

hydroxyl radicals in the presence of hydrogen peroxide. The current model involves AgNPs

acting as a reagent and generates hydroxyl radicals through a Fenton-like reaction (Ag +

H2O2 + H+ = Ag+ + •OH + H2O) [56, 57]. Thus the level of AgNPs would affect the production

Fig 5. Nitrogenase activity (a) and relative expression of nifH (b) of A. vinelandii exposed to AgNPs for 12 h.

https://doi.org/10.1371/journal.pone.0209020.g005
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of hydroxyl radicals and ROS. This is also consistent with the dose-dependent inhibition on

A. vinelandii growth after AgNPs exposure. Recent studies suggest that ROS generation and

oxidative stress are the likely mechanism of AgNPs toxicity [58]. There are antioxidant systems

in the cells, which mainly include antioxidant enzymes and antioxidants such as SOD and

GSH [59]. Studies have shown that the presence of ROS will activate SOD or GSH to maintain

a dynamic balance between oxidation and antioxidant levels [8, 60]. Oxidative stress occurs

when ROS generation exceeds the capacity of the antioxidant defense mechanism. ROS and

oxidative stress harm cell membrane, leading to lipid peroxidation [48, 61]. In addition, DNA

damage, apoptotic cell death, reduction in ATP generation are also induced by ROS [62, 63],

and eventually lead to cell death. Thus, it is important to study antibacterial effects of AgNPs

and the underlying mechanisms of ROS-mediated damage in AgNPs treated cells should be

further explored.

AgNPs distribution in bacteria

The intracellular and cell-wall-bound Ag contents of A. vinelandii were determined after the

cells were treated with two different sizes of AgNPs for 12h (Fig 7). Compared with the treat-

ment group, the control group cells had almost no AgNPs present, which further demon-

strated the internalization of AgNPs in A. vinelandii. In addition, the intracellular Ag content

in the nano-Ag 10 (Fig 7a) treatment group was significantly higher than that on the cell mem-

brane, whereas the nano-Ag 50 (Fig 7b) treatment group had the opposite result, with most of

the Ag on the cell membrane. This phenomenon was attributed to that smaller AgNPs entered

into cell more easily [16, 64].

Similarly, Long et al [7] observed that the amounts of cytoplasmic Ag were slightly higher

than membrane Ag, which proved that regardless of the form (particles or ions) of AgNPs, it

can enter into the cells. Thus, they concluded that the AgNPs exert antibacterial activities

though the combination of internal and external methods; Ag could bind to the cell membrane

and destroy the respiratory chain protein, or it could enter into the cells to cause bacterial

damage. Uptake of AgNPs has been investigated in different cells and found to occur through

Fig 6. Changes in intracellular ROS levels of A.vinelandii (a) and generation of hydroxyl radicals by two sizes of AgNPs (b). Electron spin

resonance (ESR) spectra were obtained from samples containing 50 mM DMPO + 0.5 mM H2O2 + 10 mM pH 3.6 HAc-NaAc in the presence of

control (1), 2 mg/L (2), 10 mg/L (3) of nano-Ag 10, and 10 mg/L (4), 100 mg/L (5) of nano-Ag 50, respectively.

https://doi.org/10.1371/journal.pone.0209020.g006
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the following steps: initially, they bind on the cell membrane, with the internalization occur-

ring secondly [65]. Many analyses using flow cytometry and electron microscopy showed that

AgNPs could enter into cells by penetration or phagocytosis [62, 66]. Studies suggested that

the internalization of Ag might exert toxicity on cell membranes and cytoplasm through a Tro-

jan horse type mechanism, which explains the release of Ag ions from AgNPs [17, 48, 67].

Combining Ag distribution results with previous electron microscopy images showed that

smaller Ag nanoparticles with higher surface areas could damage cell membranes by direct

interaction with cell membranes to allow Ag atoms easy entry into the cells. As earlier

researches reported, the internalization of NPs was size- and concentration-dependent [68,

69]. Additionally, the internalized AgNPs can induce cell death by causing macromolecular

damage such as DNA fragmentation and protein denaturation [6, 70]. Further, AgNPs can

enter into the cells through diffusion, endocytosis or the action of carrier proteins, and react

with intracellular components, leading to the disintegration of cells and cell contents [46, 71].

Several studies have reported that after exposure of bacteria to NPs, cell wall damage and NPs

were also found in passaged cells; these findings suggested that nanoparticles could be internal-

ized and delivered to newly formed cells as a component of the cytoplasm [72, 73].

Passible mechanism for toxicity

The antibacterial activities of AgNPs were observed by a cell growth inhibition assay. Damages

to cell morphology upon exposure to AgNPs are shown in Fig 3. Apoptosis of cells were deter-

mined by FCM. The impact of AgNPs on bacterial function was detected by enzyme activity

and RT-qPCR assays. The intracellular ROS production was measured using the fluorescent

dye H2DCFDA. Based on the results, we speculate that the antibacterial mechanisms of AgNPs

(Fig 8) involve adherence to the surface of bacteria and destruction of the cell membrane struc-

ture. Smaller AgNPs more easily enter into the cell and react with sulfur-containing sub-

stances, such as DNA and proteins. These intracellular contents finally flow out along the pits

in the damaged cell membrane; AgNPs can bind to sulfhydryl group (-SH) of enzymatic pro-

teins in bacteria, inactivate the enzyme and inhibiting gene expression related to the enzyme;

this ultimately interferes with the particular function of the bacteria. The presence of AgNPs

Fig 7. Intracellular and membrane Ag contents of control cells and cells treated with two size of AgNPs for 12h. (a) nano-Ag 10 and (b)

nano-Ag 50.

https://doi.org/10.1371/journal.pone.0209020.g007
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also leads to the generation of ROS, which further damages cell structure and leads to bacterial

apoptotic death [8, 13, 65]. We believe that the toxicity mechanism of AgNPs may be much

more complicated than hypothesized. It may be that one or more mechanisms work together

and even lead to more serious cell damage. Thus, detailed bactericidal activities still require

more researches to verify.

Conclusion

The possible mechanisms of AgNPs effects were explored and AgNPs were found to have sig-

nificant inhibition on A. vinelandii. In addition, the toxicity of AgNPs was directly dose- and

size- dependent. AgNPs inhibited the growth of bacteria and accelerated the cell apoptosis

rate; it also affected the nitrogenase activity and expression of nifH. ROS detection and ESR

analysis revealed that the presence of AgNPs could generate ROS and hydroxyl radicals. Elec-

tron microscopy combined with the distribution assay for AgNPs showed that AgNPs tend to

attach to cell membrane, and damage the cells. At the same time, AgNPs could interact with

A.vinelandii and could be internalizated in cells.
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