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Abstract: In the last 20 years, gut microbiota in patients with cystic fibrosis (CF) has become an object
of interest. It was shown that these patients had gut dysbiosis and this could explain not only the
intestinal manifestations of the disease but also part of those involving the respiratory tract. The
acquisition of previously unknown information about the importance of some bacteria, i.e., those
partially or totally disappeared in the gut of CF patients, in the regulation of the activity and function
of the gut and the lung was the base to suggest the use of probiotics in CF patients. The main
aim of this paper is to discuss the biological basis for probiotic administration to CF patients and
which results could be expected. Literature analysis showed that CF intestinal dysbiosis depends
on the same genetic mutations that condition the clinical picture of the diseases and is aggravated
by a series of therapeutic interventions, such as dietary modifications, the use of antibiotics, and the
administration of antacids. All this translates into a significant worsening of the structure and function
of organs, including the lung and intestine, already deeply penalized by the genetic alterations of CF.
Probiotics can intervene on dysbiosis, reducing the negative effects derived from it. However, the
available data cannot be considered sufficient to indicate that these bacteria are essential elements of
CF therapy. Further studies that take into account the still unsolved aspects on how to use probiotics
are absolutely necessary.

Keywords: cystic fibrosis; dysbiosis; gut-lung axis; microbiota; probiotic

1. Introduction

Cystic fibrosis (CF) is a heritable, autosomal recessive disease caused by mutations in
a gene located on the long (q) arm of chromosome 7 at position 31.2 that codes for the cystic
fibrosis transmembrane conductance regulator (CFTR) protein, a small ion channel that is
essential for sodium and chloride transport across cell membranes [1,2]. Currently, more
than 2110 CFTR mutations have been identified [3]. Of them, only 401 are recognized as CF-
causing mutations because they are associated with absent or decreased function of CFTR
protein and development of CF [4,5]. This is a disease mainly characterized by thickened
and poorly hydrated mucus secretions in various organs and body systems, including
the respiratory tract, liver, pancreas, gallbladder, and intestine [6,7]. CF phenotypes can
significantly vary according to the nucleotide alterations in the CFTR gene and the impact
of environmental and additional genetic factors on CFTR-protein activity [7,8]. However,
the most severe CF cases are those with the greatest respiratory tract involvement, as
respiratory infections and lung functional deterioration are the most common causes of
hospitalization and early death in CF patients [9]. For this reason, the majority of the
microbiological studies carried out in CF patients since the identification of the disease
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have regarded respiratory microbiota and the impact of its modifications on the illness
course, the risk of acute respiratory exacerbations, the choice of the most effective antibiotic
therapy, the development of antibiotic resistance, and the potential therapeutic value of all
the interventions capable of restoring the normal respiratory flora composition [10–14].

The CF gut microbiota was initially neglected. Only in the last 20 years has it become
an object of interest, and only more recently it has been thoroughly studied [15,16]. Several
factors may explain this. It was partially because of the evidence that gut microbiota
composition could be associated with the clinical course of several intestinal and extrain-
testinal diseases and that reversing dysbiosis, i.e., the imbalance of gut microflora with a
reduction in microbial diversity and emergence of potentially pathogenic bacteria, could be
of benefit not only for some intestinal problems but also for treatment of obesity, allergic
disorders, type 1 diabetes mellitus, autism, and some respiratory conditions [17]. Even
more important is the finding that CF patients themselves had dysbiosis and that this could
explain at least in part not only the intestinal disorders but also the respiratory ones. The
acquisition of previously unknown information about the importance of some bacteria,
i.e., those partially or totally disappeared in the gut of CF patients, in the regulation of the
activity and function of both the gut and the lung was the base to suggest the use of these
microorganisms, the so-called probiotics, in CF patients [18,19]. Main aim of this paper is
to discuss which are the biological basis for probiotic administration to CF patients and
which results could be expected.

2. Characteristics of Gut Microbiota in Cystic Fibrosis

Several studies carried out in both experimental animals and humans have shown that
individuals with CF have significant differences in gut microbiota composition compared
to healthy subjects. Despite differences between studies, in CF animals and patients,
gut bacterial diversity is generally decreased [20–22]. Moreover, potentially pathogenic
microbes, such as those usually associated with gut infections, are expanded, whereas
potentially beneficial bacteria, such as Lactobacilli and Bifidobacteria, are reduced [20,23–26].
In CF individuals, dysbiosis is established in the first weeks of life. Contrarily to healthy
subjects in whom gut microbiota develop rapidly reaching definitive composition between
3 and 5 years of age, in CF children gut microbiota maturation is significantly slower.
Diversity increases very slowly, remaining lower than in healthy subjects throughout
adolescence. Moreover, gut microbiota composition is differently established [27–29].
Kristensen et al. compared gut microbiota of healthy and CF infants examining stool
samples collected during the first 18 months of age [27]. They found that most healthy
children initially had a Bifidobacterium dominated profile which was changed between
month 8 and month 18 to a profile dominated by both Bifidobacterium and Blautia. On the
contrary, although most CF children also started with a prevalent presence of Bifidobacterium,
a relevant part of them was already colonized by Streptococcus or Escherichia coli from one
month of life [27]. Moreover, more detailed analysis of gut microbiota composition revealed
that several beneficial bacteria were more abundant in healthy children than in CF patients.
This is the case for Clostridia IV and Anaerostipes [27] that, as well as Bifidobacteria, are short-
chain fatty acid (SCFA) producing microbes [28] and Akkermansia degrades mucus [29]. On
the contrary, in fecal samples of CF infants, bacteria strongly associated with inflammation,
such as E. coli and Veillonella, were more frequently detected [27].

Similar gut microbiota modifications were also found in adult subjects [30,31], al-
though it is not definitively established whether differences between CF patients and
healthy subjects tend to increase progressively with age. However, as reported by Burke
et al., compared to healthy subjects, adult CF patients generally have a significant increase
in Firmicutes and a reduction in Bacteroidetes [24]. Moreover, differences were strictly
related to the severity of CF manifestations. Subjects with severe lung dysfunction (% pre-
dicted FEV1 ≤ 40%) had significantly (p < 0.05) reduced gut microbiota diversity compared
to those presenting with mild or moderate dysfunction [24].
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3. Main Factors Leading to Gut Dysbiosis in Cystic Fibrosis Patients

Gut dysbiosis commonly seen in CF patients is basically dependent on the reduced
CFTR protein function. Several animal studies suggest this conclusion [32–34]. Compared
to wild-type animals, CFTR knockout mice have significant small intestinal bacterial over-
growth [32]. Moreover, they show remarkable differences in gut microbiota composition
due to a relevant decrease in bacterial community richness, evenness, and diversity [33].
Finally, it has been shown that when wild mice are colonized with CF-selected micro-
biota, they tend to revert to a non-CF microbiota, suggesting that the characteristics of gut
microbiota of CF individuals are disease specific [34]. Data collected in humans further
indicate that the presence of one or more CFTR mutations is associated with gut dysbiosis
development, although a strict relationship between the type and number of mutations
and severity of dysbiosis is not precisely defined [35,36]. Differences between studies in
this regard can derive from the methodological limitations of some studies that did not
consider the role of other genes and/or external confounding in conditioning results [35].
However, Schippa et al. reported that patients with severe phenotypic expression and
homozygous delF508 mutations were those with the greatest gut microbiota modifications,
with a reduction in beneficial bacteria, such as Bifidobacterium and Faecalibacterium species,
and the greatest prevalence of pathogens, such as E. coli and Eubacterium biforme [36].

Several potential mechanisms have been suggested to explain why CFTR dysregula-
tion modulates the gut microbiome. The chloride channel dysfunction leads to thick, and
inspissated mucus that accumulates along the villus surfaces and is slowly cleared [37], so
providing an anchorage for bacterial adherence and abnormal colonization. The malab-
sorption of dietary nutrients, mainly the fat component, is associated with the emergence
of certain microorganisms that fit better with the different environmental characteristics. It
has been shown that E. coli detected in feces of CF patients differ from those cultured in
healthy subjects as they present peculiar metabolic characteristics that are considered an
adaptation to the greater availability of intestinal fats [38]. The reduced bile acid production
and the decreased secretion of pancreatic enzymes and bicarbonate lead to a lower pH
of the intestinal content. This can directly select gut bacteria or indirectly favor dysbiosis
through the reduction in intestinal antimicrobial peptides [31,39]. Paneth cells secrete a
variety of MyD88-dependent antimicrobial compounds that protect the epithelium and
trapping of the Paneth cell granules in the crypts could alter their antimicrobial activity in
the CF gut [40].

Together with CFTR-related factors, several acquired factors can further modulate
gut microbiota composition, leading to dysbiosis. Antibiotic administration is the most
common and the most important. Antibiotics are largely prescribed to CF patients as they
are essential for the prevention and treatment of the numerous respiratory tract infections
that continuously undermine the health of these subjects [41–44]. Unfortunately, their use
has been repeatedly found to be associated with the same modifications of gut microbiota
composition that characterize CF, with reduced presence of Bacteroides and Bifidobacterium,
and increased concentrations of Enterococcus [27,45–47]. Moreover, although dysbiosis can
occur even after short-term antibiotic exposure [48–50], it is more common and severe
when repeated courses of antibiotic therapy are prescribed. CF individuals receiving the
greatest exposure to antibiotics because given repeated intravenous antibiotic courses had
the lowest microbiota diversity [24].

Diet is a second factor that may lead to gut dysbiosis in CF patients, although the
relationships between diet composition and dysbiosis development are not definitively
clarified. Fat content seems the most relevant factor. Due to fat malabsorption and risk of
poor nutrition, CF patients are given high-fat diets [5,7]. In mice, this type of diet has been
negatively associated with the abundance of Akkermansia but positively associated with the
relative abundances of Firmicutes and Allobaculum. Starting from animal studies, it has been
hypothesized that high-fat diets can favor translocation of some bacterial communities or
increase abundance of lipopolysaccharide-producing bacteria also in humans [51].
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Finally, use of proton pomp inhibitor (PPI), i.e., drugs frequently administered to CF
patients to face gastroesophageal reflux disease may play a role in favoring gut dysbiosis
development in CF patients. Although there are some exceptions [31], studies regarding
use of these drugs in the general population have shown that it can be associated with
significant gut dysbiosis, favoring the increase in pathogenic bacteria. Lower species
diversity and overrepresentation of E. coli, Enterococcus spp., and Streptococcus can be
commonly found in stool samples of these patients [52]. Moreover, association between
increased risk of gut infections due to Clostridium difficile, Salmonella spp., Shigella spp., and
Campylobacter spp., and PPI use has been repeatedly reported [53,54].

4. Impact of Gut Dysbiosis in Cystic Fibrosis Patients

Gut dysbiosis of CF patients significantly contributes to the severe intestinal inflam-
mation and altered intestinal structure and function seen in many CF patients. Most
bacteria that are significantly reduced in CF gut microbiota, such as those included in the
Ruminococcaceae family (mainly F. prausnitzii [55]), in the Bifidobacteria genus [56], and in the
Lactobacillus genus [57] exert, among others, also have relevant anti-inflammatory proper-
ties. On the contrary, some of the pathogens, whose concentration is significantly increased
in CF gut microbiota, such as E. coli, Clostridium perfringens, S. aureus, and P. aeruginosa, are
directly associated with gastrointestinal inflammation [58]. Evidence of gut inflammation
in CF patients has been reported since 2000, when Smyth et al. showed that CF patients had
increased intestinal outputs of albumin, IgG, IgM, eosinophil cationic protein, neutrophil
elastase, interleukin 1beta (IL-1β), and interleukin 8 (IL-8) [59]. Moreover, in the same
year, Raia et al. reported that, in children with CF, mononuclear cells in the lamina propria
of the intestinal mucosa had an increased expression of several immunological markers,
suggesting the activation of an immune mediated inflammatory process [60]. Later studies
have confirmed these findings, highlighting that CF patients suffer from a condition similar,
although less severe, to that usually found in patients with inflammatory bowel diseases.
Elevated fecal concentrations of calprotectin, M2-pyruvate kinase, and rectal nitric oxide,
all markers of gut inflammation, are commonly found in CF patients [61–66].

Chronic inflammation significantly impacts on CF patient growth. Fecal calprotectin
concentrations have been found strictly associated with the degree of underweight and the
reduction in weight and height z-scores [67]. Moreover, gut inflammation seems to influence
CF severity, including risk of lung infection and progressive deterioration. In a systematic
review of studies regarding fecal calprotectin and phenotype severity in CF patients, Talebi
et al. reported that there were significant correlations between fecal calprotectin and
the factors that characterize a more severe CF phenotype, including colonization by P.
aeruginosa, predicted FEV1 <50%, pancreatic insufficiency, and underweight status [68].
Moreover, reduced gut microbiota diversity has been found associated with lower FEV1
values [23] and increased risk of pulmonary exacerbations [25]. All these findings seem to
indicate that the gut microbiota is related to lung function through the so-called gut–lung
axis that allows homeostasis in both compartments. Practically, it is thought that, mainly
through gut microbiota-derived metabolites, gut beneficial bacteria can regulate immune
response at both the intestinal and respiratory level (see later the section on probiotics for
detailed mechanisms). Several data support this relationship. In experimental animals, gut
microbiota influences the risk of respiratory tract infection development [69]. Early gut
dysbiosis is associated with increased risk of atopy and asthma development [70–72].

Patients with chronic gastrointestinal diseases, such as irritable bowel syndrome
(IBS) and inflammatory bowel disease (IBD), have a higher prevalence of pulmonary
diseases [73–75]. Regarding CF patients, it was evidenced that microbial communities
of the gut and lung develop simultaneously and share several colonizing species [76].
Moreover, the appearance of some species in the gut is associated with the following
appearance of the same species in the lungs, suggesting that the gut microbiota may help
shape the development of the lung microbiota [70,77].
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Furthermore, it has been reported that colonization of the respiratory tract with
P. aeruginosa, a marker of severe respiratory disease, are preceded by a significant reduction
in gut beneficial microbes, mainly Parabacteroides [1].

Finally, gut dysbiosis is considered a significant contributor to the development of gut
malignancies that are significantly more common in CF patients that in individuals without
CFTR mutations [78,79].

5. Mechanisms of Probiotic Potential Benefits

According to the Food and Agriculture Organization (FAO)/World Health Organi-
zation (WHO) working groups, probiotics are defined as live microorganisms that, when
administered in adequate amounts, confer a health benefit to the host [80]. Initially, probi-
otic preparations were mainly based on lactic acid producing bacteria, such as Lactobacilli
and Bifidobacteria. More recently, other microorganisms capable of inducing beneficial
effects were identified. Among them, bacteria included in Eubacterium, Propionibacterium,
Faecalibacterium, Akkermansia, and Roseburia species are the most frequently used [81,82].

How probiotic administration can lead to gastrointestinal and extraintestinal benefits
is not precisely defined, although several contributing factors have been suggested. It has
been shown that probiotics can significantly influence intestinal colonization by bacterial
pathogens, favor maintenance of structural integrity of the gut mucosal barrier, regulate
production of beneficial metabolites, modulate immune system activity, and stimulate
vitamin production [70]. Unfortunately, effects can significantly vary from probiotic to
probiotic and can be different according to various factors, such as the dose administered,
the duration of administration, and the substrate on which they act. These findings explain,
at least in part, why evaluation of clinical efficacy of probiotic administration in the different
conditions in which they could be prescribed remains very difficult. Competition for
nutritional sources and production of bacteriocin or bacteriocin-like substances are the most
important mechanisms with which probiotics can inhibit intestinal pathogenic bacteria and
displace them from the gut [83]. In vitro studies have shown that Bifidobacterium lactis Bb12
and Lactobacillus rhamnosus LGG, alone and in combination, could inhibit the adhesion of
pathogenic strains, such as Salmonella, Clostridium, and E. coli, to pig intestinal mucosa [84].
Similarly, it was found that L. paracasei FJ861111.1 could strongly inhibit multiplication
and adhesion to intestinal cells of common pathogens, including Shigella dysenteriae, S.
aureus, Cronobacter sakazakii, E. coli, and Candida albicans [85]. Most of these findings were
confirmed in the experimental animal [86] and are one of the most important reasons for
the suggestion to use probiotics for the prevention and treatment of some human diarrheal
diseases [87].

Improvement of gut barrier integrity and function derives from the ability of probiotics
of regulate tight junction functions of epithelial cells and mucus properties. Lactobacillus
and Bifidobacterium strains have been found able to increase the expression of tight junction
proteins so preventing translocation of proinflammatory substances and pathogenic bacte-
ria [88–90]. Moreover, the same bacteria can upregulate mucin production genes, reducing
the risk the pathogenic bacteria can adhere to the intestinal cells [91–93].

Influence of probiotics on host metabolism is evidenced by the role of these bacteria
on bile acid metabolism, short chain fatty acid (SCFA) production, and reduction in plasma
lipopolysaccharide concentration. Gut microbiota deconjugate bile acids (BAs) through the
action of microbial enzymes. These are produced by various microbial species, including
those in the Lactobacillus, Bifidobacterium, Enterococcus, and Clostridium genera [94]. De-
conjugation results in increased gut concentrations of antimicrobial BAs, cholic acid, and
chenodeoxycholic acid that have significant antimicrobial activity and may drive shifts
in microbiome composition [95]. Some probiotics, such as Lactobacillus plantarum, have a
greater resistant than some pathogenic bacteria to BA-induced bacterial membrane lysis and
can have a significant role in favoring pathogen elimination and dysbiosis reduction [96].

SCFAs derive from the microbial fermentation of dietary fibers and include acetate,
propionate, and butyrate. Acetate production is common to several bacterial groups and
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seems important because of its role in the lipid and glucose metabolism favoring protec-
tion from fat accumulation and improving glucose tolerance [97,98]. Similar, but greater,
metabolic effects have been reported for propionate that, in addition, seems to induce a
protective effect in the gastrointestinal tract, reducing the risk of cancer development. It is
produced by relatively few bacterial genera, among which Akkermansia municiphila is the
most important [99]. The most relevant SCFA is, however, butyrate that is mainly produced
by F. prausnitzii, Eubacterium rectale, Eubacterium hallii and Ruminococcus bromii [100]. This
SCFA, together with very relevant positive influence on lipid and glucose metabolism,
exerts strong anti-infective and anti-inflammatory properties at the gut level [101].

Probiotics can reduce plasma lipopolysaccharide (LPS) concentration and the risk of
severe metabolic derangements, including metabolic endotoxaemia, that can follow LPS
accumulation. LPS is the major glycolipid component of the outer membrane of Gram-
negative bacteria, that are significantly increased when gut dysbiosis occurs and that can
be competitively reduced by probiotics. LPS accumulation is associated with a relevant
increase in intestinal permeability, severe gut inflammation, and the risk of metabolic
endotoxaemia with the emergence of glucose intolerance, hepatic insulin resistance, and fat
accumulation [102].

Probiotics can directly modulate immune system activity, and this can have effect not
only at the intestinal level but also in several extraintestinal sites, including the lungs. When
pattern recognition receptors on host epithelial and immune cells recognize microorganism-
associated molecular patterns expressed by probiotics, a molecular response against these
bacteria is generated. Cytokines and chemokines are produced and can enter the blood
circulation reaching distant organs, including the lungs, where they can exert their specific
activity [103]. Moreover, probiotics are internalized by gut dendritic cells and, through
these, promote the activation of various T cell subsets and the production of various
cytokines. T cell subsets then acquire immune homing molecules that allow their function
in extraintestinal organ and body systems [104].

Finally, it has been suggested that a direct microbial translocation from gut to lung
may occur. As colonization of gut in infants is associated with similar colonization in the
lung, it has been supposed that similar lung modifications with beneficial effects could
occur when probiotics revert gut dysbiosis [39,105].

6. Probiotic Use in Cystic Fibrosis Patients

Several studies were carried out with the intent to evaluate whether oral probiotics
could reduce gut inflammation and respiratory symptoms of CF patients. Unfortunately,
results of presently available clinical trials are conflicting and do not allow to definitively
establish whether probiotics are effective in reducing CF manifestations [106–111]. In most
of the studies, significant effects on the frequency of respiratory infections and intestinal in-
flammation markers, mainly calprotectin levels, were reported. However, discrepant results
of poor or no effect also exist. Moreover, in some studies emergence of adverse events, in-
cluding vomiting, diarrhea, and allergic reactions, were reported. All these findings explain
why no guideline, including those produced by the European Society for Clinical Nutrition
and Metabolism (ESPEN), the European Society for Pediatric Gastroenterology Hepatology
and Nutrition (ESPGHAN), and the European Cystic Fibrosis Society (ECFS) [7], considers
probiotics among treatment measures for CF patients, and in many countries probiotics are
not licensed as drugs but are simply considered as food supplements.

Detailed descriptions of probiotic impact on people with CF have been reported in the
most recent systematic Cochrane review that includes 12 completed randomized controlled
trials and 1 trial that was terminated early [111]. Both children and adults were enrolled for
a total of 464 participants. Data were analyzed combining studies with the same primary
objectives. When the number of pulmonary exacerbations during a 4–12 month timeframe
was considered [2,112–114], it was calculated that patients receiving a probiotic had suffered
from 0.32 (95% confidence interval (CI) −0.68 to 0.03) fewer episodes than controls given
placebo. This difference was not statistically significant (p = 0.07) and the 95% CI suggests
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that probiotic administration could be associated with both a positive or a negative effect
on the frequency of respiratory exacerbations. No evidence of a positive effect was shown
when lung function, hospitalization rates, and use of antibiotics were studied. Finally,
when the effects on gut inflammation and growth were studied, low-certainty evidence
of a positive effect or no effect were reported. Several factors may explain the discordant
results. Intrinsic methodological limitations that make results debatable can be detected
in some trials. Moreover, studies are not comparable. The number of people enrolled in
each study varied from 22 to 81, both children and adults with different disease severity
were included, probiotic preparations varied in type, dosage, and length of administration.
In this regard it must be highlighted that, while Lactobacilli were mainly used, the dose
varied from 108 colony forming unit (CFU)/day to 1011 CFU/day and duration ranged
from 1 month to 1 year. In some cases, multistrain formulations with prebiotics were
used [2,112–117].

The limitations mentioned above clearly indicate that further studies are needed before
probiotics administration can be considered an indispensable therapeutic intervention for
CF treatment. New prospective, larger, and well-designed studies are needed. According
to Neri et al. [107], study protocols should precisely define age and characteristics of the
enrolled population as age can be an important interference factor. Moreover, the positive
effect of treatment should be evaluated, taking into account that previous studies have
shown that frequency of pulmonary exacerbations and reduction in intestinal inflammation
markers were the most reliable targets to establish probiotic efficacy but that a minimum
reduction in these variables sufficient to define improvement should be a priori established.
Finally, long-term therapy should be planned. However, it seems likely that, even when
studies considering these suggestions will be performed, not all the problems related to
the use of probiotics in CF patients will be solved. Timing of the intervention according to
clinical condition of CF patients will remain undefined and totally undefined is the role
of the CFTR modulators, recently entered in the CF therapy, on gut dysbiosis modulation.
Theoretically, subjects with CFTR mutations strongly associated with the most severe
disease phenotype should receive probiotics as soon as genetic testing is available, which
presently does not always happen. The choice of the best strain or combination of strains
remains a problem, particularly when probiotics are given not only to have a generic
effect on gut and lung microbiota but to target specific CF pathogens. Probiotic effects
are largely species and strain specific and some probiotics, despite being included in the
same genus, can have different antimicrobial activity against CF pathogens. For example,
Lactobacillus strains, alone or in combination, are frequently the base for several probiotic
preparations, but the choice of one or the other could depend on the fact that Pseudomonas
aeruginosa is the target of the intervention because the antibacterial activity against this
pathogen can significantly vary among strains [118]. Ability of gut and lung colonization
of different probiotics remains unknown. Presently, marketed probiotics are selected taking
into account their ability to reach the intestine and adhere to epithelial cells, but it is not
defined if bacteria transferred from gut to lung can long survive in this environment and
play a role in exerting beneficial activity [50].

7. Conclusions

In CF, intestinal dysbiosis is extremely common. It depends on the same genetic
mutations that condition the clinical picture of the disease and is aggravated by a series
of therapeutic interventions, such as dietary modifications, the use of antibiotics, and the
administration of antacids. All this has profound practical repercussions because, alongside
chronic inflammation, the imbalance of the composition of the enteric flora is associated
with an alteration of the integrity of the intestinal barrier, with negative modifications of
the immune response and with an altered functionality of the intestine–lung axis. All this
translates into a significant worsening of the structure and function of all organs, including
the lung and intestine, that are already deeply penalized by the genetic alterations of CF.
There are experimental data and some studies in humans that probiotics can intervene on
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dysbiosis, reducing the negative effects derived from it. The available data cannot, however,
be considered sufficient to indicate that these bacteria are essential elements of CF therapy.
Further studies that take into account the still unsolved aspects of how to use probiotics are
absolutely necessary. However, to be really effective, these studies should be planned with
particularly attention, taking into account what has been already demonstrated and which
problems should be necessarily solved. Finally, the role of the CFTR modulator activity
should be considered.
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