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Abstract: 2-Benzoylamino-N-phenyl-benzamide derivatives (5a–h) were prepared from 2-phenyl-3,1-
(4H)-benzoxazin-4-one 3 and substituted anilines 4a–h in the presence of a Keggin-type heteropolyacids
series (H3PW12O40·13H2O; H4SiW12O40·13H2O; H4SiMo12O40·13H2O; and H3PMo12O40·13H2O)
as catalysts without solvent and under microwave irradiation. We found that the use of
H3PW12O40·13H2O acid coupled to microwave irradiation allowed obtaining a high-yielding
reaction with a short time. The compound structures were established by 1H-NMR and 13C-NMR.
The antibacterial and antifungal activities of the synthesized compounds exhibited an inhibition of
the growth of bacteria and fungi.

Keywords: Keggin-type heteropolyacids; 2-benzoylamino-N-phenyl-benzamide derivatives;
microwave irradiation; solvent free conditions; antibacterial; antifungal

1. Introduction

The concept of the green chemistry consists in the development of an environmentally
friendly approach for organic synthesis using ecological and efficient protocols [1]. In order to
develop a methodology that could fit into the green chemistry field, for the synthesis of new
2-benzoylamino-N-phenylbenzamide derivatives via benzoxazinone, the choice was made on the use
of bothpolyoxometalates (POMs) as catalysts, known for their efficiency, and microwave irradiation
for time-saving.

Benzoxazinones can be used as precursor for the synthesis of wide variety of heterocyclic
compounds, such as quinazolinones and quinazolines [2–4]. The benzoxazinone derivatives are
already known for their biological and pharmacological activities [5,6], as anti-convulsants [7–9],
antihypertensive [10], analgesic [11,12], anti-inflammatory [13],antimicrobial [14–16], antifungal [17,18]
andantibacterial [19] activities, antimuscular contractor and hypnotic activities [20], anti-fetal
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activity [21], antidiabetic and hypolipidemic activity [22], and as antidepressants [23].
The benzoxazinones were also tested for their inhibitory activity toward human leukocyte elastase [24,25],
antimalarial, anticancer, and anti-HIV [26,27].

As benzoxazinones, the 2-benzoylamino-N-phenylbenzamide derivatives can be also used as
precursors for both quinazolinone and quinazoline synthesis, and can also present biological and
pharmacological activities.

The POMs, particularly the heteropolyacids (HPAs), having the Keggin structure, have received
much attention for organic synthesis. They are soluble in all the solvents, which allows for the recovery
of the synthesized product by simple filtration [28]. Thus, HPAs offer a strong option for efficient
and cleaner processes compared to polluting and corrosive liquid acid catalysts, such as mineral
acids. Effectively, in previous works, HPAs showed excellent catalytic activities in several reactions as
the synthesis of substituted 1,4-diazepines and 1,5-benzodiazepines [29], 4(3H)-quinazolinones [30],
calix [4] resorcinarenes [31], and 3,4-dihydropyrimidinones [32].

Among the derivatives of the 2-benzoylamino–N-phenylbenzamide (5a–h) series, 2-benzoylamino-
N-phenylbenzamide 5a was synthesized from 2-phenyl-1,3-(4H)–benzoxazin-4-one 3 and aniline
in the presence of HPAs series as formula H3PW12O40 (PW12), H4SiW12O40 (SiW12), H3PMo12O40

(PMo12) and H4SiMo12O40 (SiMo12), under microwave irradiation and solvent-free conditions. Then,
the most efficient catalyst was used to synthesize all the series of 2-benzoylamino-N-phenylbenzamide
derivatives via benzoxazinone 3, in the presence of substituted anilines (4a–h).

2. Results and Discussion

In the literature, the synthesis of 2-phenyl-1,3-(4H)-benzoxazin-4-one 3 (Scheme 1) was carried
out from anthranilic acid 1 with benzoyl chloride via an intermediate 2 that cyclizes under the acetic
anhydride action, at reflux heating [33]. In this work, we took it back by using reflux heating and
microwave irradiation to highlight the efficiency of the latter. Thus, 97% of the product yield was
obtained in a few minutes under microwave irradiation against 90% after 2 h of the conventional reflux
heating method.
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The 2-phenyl-1,3-(4H)-benzoxazin-4-one 3 compound was used for the 2-benzoylamino-N- 
phenylbenzamide 5a synthesis from its condensation with aniline 4. The reaction was conducted, 
under microwave irradiation, in solvent-free conditions, using a series of Keggin-type 
heteropolyacids, HnXM12O40 (abbreviated as XM12, where X = P or Si and M = W or Mo) (Scheme 2). 
Results are summarized in Table 1. 
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Scheme 1. Synthesis of 2-phenyl-1,3-(4H)-benzoxazin-4-one 3.

The 2-phenyl-1,3-(4H)-benzoxazin-4-one 3 compound was used for the 2-benzoylamino-
N-phenylbenzamide 5a synthesis from its condensation with aniline 4. The reaction was conducted,
under microwave irradiation, in solvent-free conditions, using a series of Keggin-type heteropolyacids,
HnXM12O40 (abbreviated as XM12, where X = P or Si and M = W or Mo) (Scheme 2). Results are
summarized in Table 1.

Table 1. 2-Benzoylamino-N-phenylbenzamide yields (%).

Catalysts PW12 SiW12 PMo12 SiMo12

Yields (%) 80 72 65 56
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2-phenyl-1,3-(4H)-benzoxazin-4-one 3 and aniline 4 in the presence of HPAs under microwave 
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more active, unlike siliceous heteroatoms, resulted in a yield of 5a of 80% against 72% for W-based 
HPAs and 65% against 56% for Mo-based HPAs. The results obtained show that the decrease in yield 
(PW12 > SiW12 > PMo12 > SiMo12) follows that of the acidity strength [34]. Thus, PW12heteropolyacid was 
chosenas the catalyst to synthesize a series of 2-benzoylamino-N-phenylbenzamide derivatives 5a–h 
with substituted anilines 4a–h in the same conditions (Scheme 3). The products are obtained in a few 
minutes. The results are summarized in Table 2.  
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Scheme 3. 2-Benzoylamino-N-phenylbenzamide derivatives 5a–h synthesis by condensation of 
2-phenyl-1,3-(4H)-benzoxazin-4-one 3 with various substituted anilines 4a–h in the presence of PW12 
catalyst under microwave irradiation in solvent-free conditions. 

Table 2. Impact of aniline structure on reaction yield. 

Products ArNH2 (4a–h) Yield (%) M.p. (°C) T (°C) a 
5a C6H5 80 281–282 151 
5b 4-Me-C6H4 85 123–124 155 
5c 4-OH-C6H4 91 160–163 155 
5d 4-Cl-C6H4 77 161–162 160 
5e 2,4-Cl2-C6H3 73 140–142 106 
5f 2,5-Cl2-C6H3 67 167–168 105 
5g 2,6-Cl2-C6H3 65 162–164 121 
5h 3,4-Cl2-C6H3 70 192–193 124 

a Temperature measurement by IR-thermometer. 

The aniline substituent group nature shows a strong impact on the yields. Thus, the presence of 
electron donating groups led to a yield increase. With methyl and hydroxy groups in C6H4, the 
yields are 85% and 92%, respectively, against 80% for the phenyl. These groups are beneficial 
because of their high electron density, induced by the aromatic system unlike, the electron 
withdrawing group as chloro, which led to a yield decrease from 80% to 78%. The presence of a 

Scheme 2. Synthesis of 2-benzoylamino-N-phenylbenzamide 5a by condensation of 2-phenyl-1,3-(4H)-
benzoxazin-4-one 3 and aniline 4 in the presence of HPAs under microwave irradiation in
solvent-free conditions.

2-Benzoylamino-N-phenylbenzamide yields (Table 1) depended on the nature of both the metal
atom (W, Mo) and the heteroatom (P, Si) of HPA. Thus, W-based HPAs were more efficient than
Mo-based (72–80% against 56–65% of 5a yield). Phosphorus heteroatoms, which make the HPA more
active, unlike siliceous heteroatoms, resulted in a yield of 5a of 80% against 72% for W-based HPAs
and 65% against 56% for Mo-based HPAs. The results obtained show that the decrease in yield
(PW12 > SiW12 > PMo12 > SiMo12) follows that of the acidity strength [34]. Thus, PW12heteropolyacid
was chosenas the catalyst to synthesize a series of 2-benzoylamino-N-phenylbenzamide derivatives
5a–h with substituted anilines 4a–h in the same conditions (Scheme 3). The products are obtained in a
few minutes. The results are summarized in Table 2.
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Scheme 3. 2-Benzoylamino-N-phenylbenzamide derivatives 5a–h synthesis by condensation of
2-phenyl-1,3-(4H)-benzoxazin-4-one 3 with various substituted anilines 4a–h in the presence of PW12

catalyst under microwave irradiation in solvent-free conditions.

Table 2. Impact of aniline structure on reaction yield.

Products ArNH2 (4a–h) Yield (%) M.p. (◦C) T (◦C) a

5a C6H5 80 281–282 151
5b 4-Me-C6H4 85 123–124 155
5c 4-OH-C6H4 91 160–163 155
5d 4-Cl-C6H4 77 161–162 160
5e 2,4-Cl2-C6H3 73 140–142 106
5f 2,5-Cl2-C6H3 67 167–168 105
5g 2,6-Cl2-C6H3 65 162–164 121
5h 3,4-Cl2-C6H3 70 192–193 124

a Temperature measurement by IR-thermometer.

The aniline substituent group nature shows a strong impact on the yields. Thus, the presence of
electron donating groups led to a yield increase. With methyl and hydroxy groups in C6H4, the yields
are 85% and 92%, respectively, against 80% for the phenyl. These groups are beneficial because of
their high electron density, induced by the aromatic system unlike, the electron withdrawing group as
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chloro, which led to a yield decrease from 80% to 78%. The presence of a second chlorine atom in the
aniline also led to a yield decrease from 78% to 65%. Among dichloroanilines, 2,4-dichloro-C6H3 gave
the better yield (73% against 65–70%). This decrease is attributed to the group steric effect.

Scheme 4 shows a plausible mechanism of the 2-benzoylamino-N-phenylbenzamide 5a formation
in the heteropolyacid presence. The initial step corresponds to the protonation of carbonyl on a
Brønsted site of HPA favoring the amine attack that leads to the intermediate I1. Thelatter is then
deprotonated to give another intermediate I2 and the released proton is then recovered by the HPA.
Finally, a proton transfer from the aniline to the amide nitrogen takes place, thus leading to the final
product. It is known that the presence of an electron donating group favors the amine basic character.
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3. Antibacterial, Antifungal of the Synthesized Compounds

The synthesized compounds were screened for their antimicrobial activity against fungal and
bacterial pathogenic strains by the disc diffusion method [35–37]. Gram-negative bacterial strains,
namely Escherichia coli (ATCC-11105) and Pseudomonas aeruginosa (ATCC-9027), and Gram-positive
bacteria, namely Staphylococcus aureus (ATCC-6538) and Bacillus subtilis (ATCC-6633), were chosen as
model bacterial strains, and fungi, namely Candida albicans (ATCC-10231) and Aspergillus brasiliensis
ATCC-16404)). Agar plates, containing 2-benzoylamino-N-phenylbenzamide products dissolved in
dimethylsulfoxide (600 µg/mL) were inoculated uniformly from fresh bacterial culture and incubated
at 37 ◦C for 24 h. Antimicrobial activity data are given in Table 3.

Table 3. Antimicrobial activity data of the synthesized compounds 5a–h, determined by the agar
diffusion method.

Compounds
Bacteria Fungi

E. coli S. aureus P. aeruginosa B. subtilis C. albicans A. brasiliensis

5a ++ - +++ + +++ +++
5b + + ++ ++ +++ +++
5c ++ ++ ++ ++ +++ +++
5d ++ +++ ++ +++ +++ +++
5e ++ +++ +++ +++ +++ +++
5f ++ + ++ - +++ +++
5g ++ ++ ++ ++ +++ +++
5h ++ + ++ ++ +++ +++

The sensitivity of microorganisms, toward tested compounds, was identified in the following manner: no activity
(- ≤ 8 mm), slightly active (8 < + < 16 mm), moderately active (16 ≤ ++ ≤ 20 mm) and highly active (+++ > 20 mm).

Antibacterial screening revealed that all tested compounds 5a–h showed from moderate (++)
to good (+++) inhibition against bacterial strains: E. coli, P. aeruginosa. For S. aureus and B. subtilis
bacterial strains, 5a and 5f, respectively, do not show any antibacterial activity. Antifungal screening
also revealed that all the tested compounds 5a–h showed a good (+++) inhibition against C. albicans
and A. brasiliensis.
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The antibacterial and antifungal activities of a compound capable of inhibiting the visible growth
of bacterial and fungal strains are defined by the value of the MIC that corresponds to its lower
concentration. In order to determine the minimum inhibition concentration (MIC) values of the
compound 5e against the bacterial strains mentioned above, it was dissolved in DMSO at different
concentrations (100, 200, 300, 400 and 600 µg/mL). The results are summarized in Table 4. The MIC
values found for compound 5e are less than 100 µg/mL for E. coli, P. aeruginosa, B. subtilis, and
C. albicans, and they are 100–200 and 300–400 µg/mL for S. aureus and A. brasiliensis, respectively.

Table 4. Minimum inhibitory concentration (MIC) values of compound 5e.

Concentration
(µg/mL)

Bacteria Fungi

E. coli S. aureus P. aeruginosa B. subtilis C. albicans A. brasiliensis

600 ++ + + ++ +++ +++
400 + + + ++ +++ +
300 + + + + +++ -
200 + + + + ++ -
100 + - + + ++ -
MIC ≤100 100–200 ≤100 ≤100 ≤100 300–400

The sensitivity of microorganisms, toward tested compounds, was identified in the following manner: no activity
(- ≤ 8 mm), slightly active (8 < + < 16 mm), moderately active (16 ≤ ++ ≤ 20 mm), and highly active (+++ > 20 mm).

4. Conclusions

High 2-benzoylamino-N-phenylbenzamides derivatives 5a–h yields (66–92%) with short reaction
times (3 min) were obtained using a microwave irradiation and Keggin-type heteropolyacids as
catalysts in solvent free conditions. A plausible mechanism of the 2-benzoylamino-N-phenylbenzamide
5a formation was proposed. 2-Benzoylamino-N-phenyl benzamides derivatives 5a–h showed both
moderate and good antibacterial and antifungal activities. These results give an idea of further research
on these molecules in the biological domain.

5. Experimental Section

5.1. General

Pure heteropolyacids HnXM12O40 (PM12) were prepared by the standard method involving
the synthesis of the corresponding sodium salt and the extraction of acid by diethyl ether and its
purification by crystallization in water at 4 ◦C [38].

All research chemicals and solvents were purchased from Sigma-Aldrich (Sigma-Aldrich,
Saint-Quentin-Fallavier, France) and were used as such for the reactions. The progress of all the
reactions was monitored by thin-layer chromatography (TLC) using glass plates precoated with silica
gel-60 F254 to a thickness of 0.5 mm. The melting points were taken in an open capillary tube using
an Electrothermal melting point apparatus (Electrotermal, Rochford, Great Britain). The values are
reported in ◦C and are uncorrected. NMR spectra were recorded with a Bruker Avance 300 spectrometer
(300 MHz (1H) and 75 MHz (13C)) (Bruker Biospin GmbH, Rheinstetten, Germany). Chemical shifts
are expressed in parts per million (ppm) downfield from using tetramethylsilane (TMS). Data are
reported as follows: chemical shift (multiplicity (s: singlet, d: doublet, dd: double doublet, ddd:
double double doublet, dm: double multiplet, dt: double triplet, t: triplet, td triple doublet, tm, triple
multiplet, tt: triple triplet, q: quartet, quint: quintuplet, m: multiplet, br: broad), coupling constants
(J) in Hertz, integration). All the compounds gave satisfactory elemental analysis within ± 0.4% of
theoretical values.

The multimode microwave reactor (a modified Candy MGA 20 M microwave oven) has a single
magnetron (2450 MHz) with a maximum delivered power of 800 W. Experiments were carried out
in a Pyrex reactor fitted with a condenser. During experiments, the temperature was monitored with
an external infrared thermometer, Flashpoint FZ400 (Shenzhen Jumaoyuan Science and Technology
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CO., LTD, Guangdong, China). Our modifications to a domestic microwave oven, adopted since 1992,
are similar to those described, currently, for microwave chemistry experiments [39]. In a typical design,
a hole was drilled for a condenser tube in the oven top. External steel tube of the same diameter
(~12 cm long) was welded to the hole in order to eliminate possible microwave leakage. The microwave
equipment operates within the safety limits prescribed: the accepted limit on the safe stray leakage of
the microwave power density is 10 mW/cm2 at 2450 MHz measured at a 50 mm distance from the
equipment (microwave leakage detector). The apparatus has been adapted for laboratory applications
with an external reflux condenser, multi-limb vacuum receivers, and a Dean Stark trap.

5.2. General Procedure for the Preparation of 2-Phenyl-3,1-(4H)-benzoxazin-4-one 3

Method I (conventional heating): A mixture of anthranilic acid (10 mmol) and benzoyl chloride
(10 mmol) was carried out under reflux in toluene (15 mL) for 2 h. A white solid wasobtained. The latter
wasthen treated with the acetic anhydride under reflux for 2 h.

Method II (microwave irradiation): A mixture of anthranilic acid (10 mmol) and benzoyl chloride
(10 mmol) and 10 mL of toluene was carried out under microwave irradiation. The power was
initially set to 420 W for 5 min, and then it was increased to 510 W for 7 min. A white solid
wasobtained. The latter with the acetic anhydride (10 mL) irradiated under microwave at 500 W
for 8 min. The obtained solid was washed by the water to eliminate acid.

2-Phenyl-3,1-(4H)-benzoxazin-4-one (3). White solid, Yield 97%; m.p. 126 ◦C; 1H-NMR (CDCl3,
300 MHz): δ = 7.24–8.35 (m, 9H, Ar-H) ppm; 13C-NMR (CDCl3, 75 MHz): δ = 116.62, 126.80, 127.73,
128.02, 128.26, 129.81, 132.13, 135.96, 146.46, 156.52, 158.80 ppm; Anal. Calcd. for C14H9NO2: C, 75.58;
H, 4.12; N, 6.28;O, 14.00. Found: C, 75.33; H, 4.06; N, 6.27; O, 14.33%.

5.3. General Procedure for the Preparation of 2-Benzoylamino-N-phenylbenzamide Derivatives 5a–h

To a mixture of 2-phenyl-3,1-(4H)-benzoxazin-4-one (10 mmol) and amines (10 mmol) was
added the catalyst heteropolyacid (1.2 mol %). This mixture was heated by microwave, initially
set to 300 W for 3 min and then it was increased to 450 W for 10 min. The obtained solid was
washed by the water to eliminate acid. The 1H-NMR and 13C-NMR spectrums of compounds 5a–h in
Supplementary Materials.

2-Benzoylamino-N-phenylbenzamide (5a): Yield 80%; m.p. 281 ◦C; 1H-NMR (DMSO-d6, 300.13 MHz):
δ = 11.68 (s, 1H, NH), 10.55 (s, 1H, NH), 8.47 (d, J = 8.6 Hz, 1H), 7.92 (d, J = 8.1 Hz, 3H), 7.72 (d,
J = 7.56 Hz, 2H), 7.65–7.69 (m, 4H), 7.30–7.40 (m, 3H), 7.16(t, J = 7.02 Hz, 1H); 13C-NMR (DMSO-d6,
75.47MHz): δ = 166.90, 166.85, 138.16, 137.98, 133.97, 133.90, 131.77, 131.56, 128.44, 128.18, 126.52,
122.82, 120.67 ppm. Anal. Calcd. for C20H16N2O2: C, 76.13; H, 5.25; N, 8.98; O, 9.63. Found: C, 75.93;
H, 5.10; N, 8.86; O, 10.11%.

2-Benzoylamino-N-(4-methylphenyl)benzamide (5b): Yield 85%; m.p. 123 ◦C; 1H-NMR (DMSO-d6,
300.13 MHz): δ = 11.81 (s, 1H, NH), 10.49 (s, 1H, NH), 8.63 (d, J = 8.3Hz, 1H), 8.54 (d, J = 9 Hz,
3H), 7.61–7.32 (m, 6H), 7.10–7.20 (m, 3H), 2.29 (s, 3H); 13C-NMR (DMSO-d6, 75.47 MHz): δ = 167.80,
165.00, 139.31, 136.34, 133.88, 132.50, 131.77, 129.62, 129.38, 128.04, 127.46, 123.65, 121.67, 121.56,
21.10 ppm. Calcd. for C21H18N2O2: C, 76.55; H, 5.60; N, 8.53; O, 9.31. Found: C, 76.43; H, 5.49; N, 8.48;
O, 9.69%.

2-Benzoylamino-N-(4-hydroxyphenyl)benzamide (5c): Yield 92%; m.p. 160 ◦C; 1H-NMR (DMSO-d6,
300.13 MHz): δ = 11.99 (s, 1H, NH), 10.37 (s, 1H, NH), 9.38 (s, 1H), 8.57 (d, J = 8.4 Hz, 1H), 8.23
(d, J = 8.4 Hz, 1H), 7.65 (dd, J = 8.4 Hz, 4H), 7.63–7.47 (m,4H), 7.47 (d, J = 8.4 Hz, 2H), 7.16 (d, J = 6 Hz,
1H); 13C-NMR (DMSO-d6, 75.47 MHz): δ = 166.90, 166.85, 152.16, 137.98, 133.97, 133.90, 131.77, 131.56,
127.54, 127.28, 125.52, 121.82, 120.67 ppm. Calcd. for C20H16N2O3: C, 72.50; H, 4.96; N, 8.49; O, 14.04.
Found: C, 72.28; H, 4.85; N, 8.43; O, 14.44%.
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2-Benzoylamino-N-(4-chlorophenyl)benzamide (5d): Yield 78%; m.p. 161 ◦C; 1H-NMR (DMSO-d6,
300.13 MHz): δ = 11.56 (s, 1H, NH), 10.66 (s, 1H, NH), 8.44 (d, J = 8.2 Hz, 1H), 7.92 (d, J = 7.1 Hz, 3H),
7.74 (d, J = 8.6 Hz, 2H), 7.65–7.57 (m, 4H), 7.42 (d, J = 9.1 Hz, 2H), 7.26 (t, J = 9.1 Hz, 1H); 13C-NMR
(DMSO-d6, 75.47 MHz): δ = 167.48, 164.69, 138.62, 137.57, 134.50,132.35, 132.05, 129.05, 128.89, 128.60,
127.95, 127.09, 123.37, 122.97, 122.59, 121.52 ppm. Calcd. for C20H15ClN2O2: C, 68.55; H, 4.36; N,10.13;
O, 16.95. Found: C, 68.48; H, 4.31; Cl, 10.11; N, 7.99; O, 9.12%.

2-Benzoylamino-N-(2,4-dichlorophenyl)benzamide (5e): Yield 73%; m.p. 140 ◦C; 1H-NMR (DMSO-d6,
300.13 MHz): δ = 11.93 (s, 1H, NH),10.49 (s, 1H, NH), 8.58 (d, J = 8.6 Hz, 1H), 8.04 (d, J = 6.75 Hz,
3H), 7.72 (s, 1H), 7.65–7.49 (m, 6H), 7.43 (t, J = 8.1 Hz, 1H) ppm. 13C-NMR (DMSO-d6, 75.47 MHz):
δ = 164.10, 157.65, 147.39, 136.47, 134.90, 134.10, 132.13, 131.98, 131.18, 130.51, 129.16, 127.53, 127.43,
127.40, 127.03, 125.86, 125.68, 120.22 ppm. Calcd. for C20H14Cl2N2O2: C, 62.50; H, 3.71; Cl, 18.48; N,
7.37; O, 7.94 Found: C, 62.34; H, 3.66; Cl, 18.41; N, 7.27; O, 8.31%.

2-Benzoylamino-N-(2,5-dichlorophenyl)benzamide (5f): Yield 68%; m.p. 167 ◦C; 1H-NMR (DMSO-d6,
300.13 MHz): δ = 11.75 (s, 1H, NH), 10.45 (s, 1H, NH), 8.49 (d, J = 8.4 Hz, 1H), 7.91 (d, J = 8.0 Hz,
2H), 7.73 (s, 1H), 7.67 (d, J = 7.29 Hz, 1H), 7.61–7.40 (m, 7H), 7.41 (t, J = 8.1 Hz, 1H) ppm, 13C-NMR
(DMSO-d6, 75.47 MHz): δ = 167.98, 165.30, 139.21, 138.77, 134.90, 132.81, 132.45, 131.35, 130.96, 129.72,
129.41, 127.55, 126.15, 123.98, 123.90, 122.53, 122.34, 121.90 ppm. Calcd. For C20H14Cl2N2O2: C, 62.50;
H, 3.71; Cl, 18.48; N, 7.37; O, 7.94 Found: C, 62.34; H, 3.66; Cl, 18.41; N, 7.27; O, 8.31%.

2-Benzoylamino-N-(2,6-dichlorophenyl)benzamide (5g): Yield 65%; m.p. 162 ◦C; 1H-NMR (DMSO-d6,
300.13 MHz): δ = 12.08 (s, 1H, NH), 10.75 (s, 1H, NH), 8.70 (d, J = 8.2 Hz, 1H), 8.11 (d, J = 6.9 Hz, 2H),
7.87 (d, J = 6.9 Hz, 1H), 7.62–7.50 (m, 5H), 7.45 (d, J = 6.9 Hz, 2H), 7.32 (t, J = 8.1 Hz, 1H) ppm; 13C-NMR
(DMSO-d6, 75.47 MHz): δ = 168.38, 165.00, 140.11, 134.74, 134.52, 133.67, 132.90,132.63, 130.32, 129.47,
129.15, 127.32, 123.66, 121.18, 119.97 ppm. Calcd. for C20H14Cl2N2O2: C, 62.50; H, 3.71; Cl, 18.48; N,
7.37; O, 7.94 Found: C, 62.34; H, 3.66; Cl, 18.41; N, 7.27; O, 8.31%.

2-Benzoylamino-N-(3,4-dichlorophenyl)benzamide (5h): Yield 70%; m.p. 192 ◦C; 1H-NMR (DMSO-d6,
300.13 MHz): δ = 11.36 (s, 1H, NH), 10.71 (s, 1H, NH), 8.34 (d, J = 7.29 Hz, 1H), 8.01 (s, 1H), 7.92–7.85
(m, 3H), 7.70–7.31 (m, 5H), 7.28 (t, J = 6.75Hz, 1H) ppm; 13C-NMR (DMSO-d6, 75.47 MHz): δ = 167.98,
165.30, 139.23, 138.77, 134.90, 132.81, 132.45, 131.35, 130.96, 129.41, 129.27, 126.15, 123.99, 123.91, 122.54,
122.35, 121.30 ppm. Calcd. for C20H14Cl2N2O2: C, 62.50; H, 3.71; Cl, 18.48; N, 7.37; O, 7.94 Found: C,
62.34; H, 3.66;Cl, 18.41; N, 7.27; O, 8.31%.

5.4. Screening for Antibacterial Activity by the Agar Diffusion Method for
2-Benzoylamino-N-phenylbenzamide Derivatives 5a–h

The antimicrobial activities of compounds 5a–h were evaluated for their antibacterial activities
against S. aureus (ATCC29213), B. subtilis (ATCC6633), E. coli (ATCC11105)), P. aeruginosa (ATCC9027),
and Bacillus subtilis (ATCC-6633) bacterial strains and their anti-fungal activities against C. albicans
(ATCC-10231) and A. brasiliensis (ATCC-16404) by the agar diffusion method [37]. A sterile
physiological water solution contained a bacterial colonies, was prepared at room temperature,
with an optical density of 0.08–0.10 corresponding to a concentration of 106 cells/mL. The bacterial
solution was inoculated in the Muller-Hinton agar medium by swabbing using Petri dishes at room
temperature. The tested compounds were dissolved in dimethylsulfoxide (DMSO) with a concentration
of 600 µg/mL. Twenty-five microlliters of tested sample were poured onto filter paper discs 6 mm
in diameter, which were then delicately placed on the surface of the agar plates. These were later
maintained at 37 ◦C for 24 h. Activities were determined by measuring the diameter of the inhibition
zone (mm).
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5.5. Minimum Inhibitory Concentration Determination of the Compound 5e

In order to determine the minimum inhibition concentration (MIC) values of the compound 5e,
different concentrations (100, 200, 300, 400 and 600 µg/mL)were considered. The MIC of the sample
showedno turbidity and was recorded as the lowest concentration of the compound that would
completely inhibit bacterial growth. Each test was performed in triplicate.

Supplementary Materials: The 1H-NMR and 13C-NMR spectrums of compounds 5a–h are available online.
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