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Critical functions for STAT5 tetramers in the
maturation and survival of natural killer cells
Jian-Xin Lin1, Ning Du1, Peng Li1, Majid Kazemian 1,2, Tesfay Gebregiorgis1, Rosanne Spolski1

& Warren J. Leonard1

Interleukin-15 (IL-15) is essential for the development and maintenance of natural killer (NK)

cells. IL-15 activates STAT5 proteins, which can form dimers or tetramers. We previously

found that NK cell numbers are decreased in Stat5a−Stat5b tetramer-deficient double knockin

(DKI) mice, but the mechanism was not investigated. Here we show that STAT5 dimers are

sufficient for NK cell development, whereas STAT5 tetramers mediate NK cell maturation

and the expression of maturation-associated genes. Unlike the defective proliferation of Stat5

DKI CD8+ T cells, Stat5 DKI NK cells have normal proliferation to IL-15 but are susceptible to

death upon cytokine withdrawal, with lower Bcl2 and increased active caspases. These

findings underscore the importance of STAT5 tetramers in maintaining NK cell homoeostasis.

Moreover, defective STAT5 tetramer formation could represent a cause of NK cell

immunodeficiency, and interrupting STAT5 tetramer formation might serve to control NK

leukaemia.
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STAT5A and STAT5B are signal transducers and activators
of transcription (STAT) family proteins1,2. These tran-
scription factors are critical for the actions of many cyto-

kines, including growth hormone, prolactin, erythropoietin,
haematopoietic cytokines (such as IL-3, IL-5 and GM-CSF) and
immune cytokines (such as IL-2, IL-7, IL-9, IL-15 and TSLP)3.
The formation of STAT5 dimers depends on bivalent interactions
between a key C-terminal phosphotyrosine of each STAT5
monomer and the SH2-domain of the other monomer, allowing
the STAT5 dimer binding to γ-interferon activated sequence
(GAS) motifs1,2. Additionally, STAT5 proteins4,5, analogous to
STAT1 and STAT46–8, can form tetramers by an N-terminal

region (N-domain)-mediated interaction between two dimers,
which allows binding to lower affinity tandemly linked
non-consensus GAS motifs.

We have previously shown that mutant STAT5 proteins
that cannot form tetramers are expressed at a similar level to
WT STAT5 proteins and can be phosphorylated in response to
IL-2 stimulation9. To determine the importance of STAT5
tetramerization in vivo, we also identified and mutated residues in
the STAT5A and STAT5B N-domains that are critical for tetra-
merization and generated Stat5a and Stat5b single knockin and
Stat5a/Stat5b double knockin (DKI) mice9. In marked contrast to
the perinatal lethality observed in Stat5a/Stat5b double knockout
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Fig. 1 Decreased bone marrow and splenic NK cells in Stat5 double knockin (DKI) mice. a Total bone marrow cell numbers from 8 WT (open bar) and
8 Stat5 DKI (filled bar) mice after removal of red blood cells. b Representative flow cytometric data of total bone marrow NK cells (lin(CD19, CD3, TCRβ,
CD4, CD8, Ter119)−CD122+) (upper panels) and progenitor (NK1.1−DX5−), immature (NK1.1+DX5−), and mature (NK1.1+DX5+) NK cells (lower panels) in
WT and Stat5 DKI (DKI) bone marrow. The numbers are the percentage of gated populations. c Total bone marrow NK (Total), NK progenitor (NKp),
immature NK (iNK) and mature NK (mNK) cell numbers from 8 WT (open bars) or 8 DKI (filled bars) mice. d Representative flow cytometric data of total
bone marrow NK cells from WT and Stat5 DKI mice gated as lin-CD122+NK1.1+DX5+ (lower panels of b) and further characterised based on CD11b and
CD27 staining. e Numbers of total bone marrow NK cells (Total) and CD11b−CD27+, CD11b+CD27+, and CD11+CD27low populations from 8 WT (open
bars) and 8 Stat5 DKI (filled bars) mice. f Total splenocyte numbers from 8WT (open bar) and 8 Stat5 DKI (filled bar) mice, after removing red blood cells.
g Representative flow cytometric data of total splenic NK cells from WT and Stat5 DKI mice gated as CD3−CD122+NK1.1+ (upper panels) and further
characterised based on CD11b and CD27 staining (lower panels). h Number of total splenic NK cells (Total), CD11b−CD27+, CD11b+CD27+, and CD11
+CD27low populations from 8 WT (open bars) and 8 DKI (filled bars) mice. Error bars in c, e and h are means± SEM and statistical analyses were
performed by grouped multiple t-test using Prism 7.0b
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mice10, STAT5 tetramer-deficient DKI mice survive and develop
normally9. However, these mice have fewer CD8+ T cells, and
have defective CD8+ T-cell proliferation in vitro, as well as in
response to acute infection with lymphocytic choriomeningitis
virus (LCMV) in vivo9. CD4+CD25+ cells were also diminished in
number in Stat5 DKI mice, with attenuated regulatory T (Treg)
cell function in a model of inflammatory bowel disease9. In
addition to these T cell defects, we also observed decreased
numbers of splenic natural killer (NK) cells, but the basis for this
defect and the functional activity of Stat5 DKI NK cells was not
explored.

NK cells are vital to innate immunity through their
cytolytic activity and ability to eliminate tumour cells and
pathogen-infected cells11–15, and also contribute to adaptive
immune responses, particularly through their production of
pro-inflammatory (TNF and IFNγ) and immunosuppressive
(IL-10) cytokines as well as chemokines13,16. Conventional
NK cells develop and mature in the bone marrow, where IL-15
promotes their differentiation, maturation, survival and
expansion11,17. IL-15 binds with high affinity to the IL-15
receptor α chain (IL-15Rα)18 and signals primarily via its trans-
presentation19,20 by IL-15Rα to a heterodimer consisting of the
IL-2 receptor β chain (IL-2Rβ) and common cytokine receptor γ
chain (γc)21,22, although cis signalling can also occur when all
three receptor chains are co-expressed23. The essential functions
of IL-15 signalling in the development, maturation, survival and
expansion of NK cells are underscored by the findings that
deletion of either Il1524 or Il15ra25 causes profoundly defective
NK-cell development. Interestingly, mice lacking Il1524

have fewer NK cells than mice lacking Il15ra25, consistent with
the ability of IL-15 to signal via either IL-2Rβ/γc dimeric or
IL-15Rα/IL-2Rβ/γc trimeric receptor complexes on NK cells.

There are fewer NK cells in mice lacking either Stat5a or
particularly Stat5b26, and mice lacking both Stat5a and Stat5b are
essentially devoid of NK cells10. Because NK cells develop in Stat5
DKI mice, albeit in decreased numbers, we could use these
animals to investigate the biological actions of STAT5 tetramers
and dimers in NK cell development and function. Whereas
STAT5 dimers are sufficient for the early development of
conventional NK cells and cytotoxicity, STAT5 tetramers are
required for the later stages of maturation of conventional NK
cells in bone marrow and spleen, and for the development of
thymic NK cells. Interestingly, STAT5 tetramers are not required
for NK cell expansion but are required for maintaining expression
of anti-apoptotic proteins and suppression of pro-apoptotic
proteins, and thus for NK cell survival. The decreased expression
of BCL2 in Stat5 DKI NK cells is associated with increased levels
of active caspases that initiate NK cell death. Our data thus reveal
that both a partial block of NK maturation and increased NK cell
death contribute to the lower NK cell numbers observed in Stat5
DKI mice, underscoring the critical functions of STAT5 tetramers
in the maturation and survival of NK cells.

Results
STAT5 tetramers are required for normal NK cell numbers.
To study the function of STAT5 tetramers in the development
of conventional natural killer (NK) cells, we initially compared
the maturation status of NK cells in bone marrow and spleen
in WT and Stat5 DKI mice. The total numbers of WT and
Stat5 DKI bone marrow cells were similar (Fig. 1a); however, in
the Stat5 DKI mice, there was a ~50% decrease in the frequency
of bone marrow lin−CD122+ total NK cells (Fig. 1b, upper
right versus upper left panel), without a significant change in the
frequency of NK1.1+DX5+ mature NK cells (Fig. 1b, lower
panels), resulting in fewer total Stat5 DKI NK cells (Fig. 1c).
The lin−CD122+NK1.1+DX5+ mature NK cells (mNK) were
substantially decreased, whereas lin−CD122+NK1.1−DX5−

progenitor NK (NKp) and lin−CD122+NK1.1+DX5−immature
NK (iNK) cells were not significantly affected (Fig. 1c).

Based on cell surface expression of CD11b and CD27, mouse
conventional NK cells can be further divided into four maturation
subsets, from CD11b−CD27−NK cells, through CD11b−CD27+

and CD11b+CD27+ NK cells, to terminally differentiated
CD11b+CD27low mature NK cells27–29. In Stat5 DKI
bone marrow, the frequency of terminally differentiated
CD11b+CD27low mature NK cells was markedly decreased,
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Fig. 2 Altered gene expression in Stat5 double knockin (DKI) NK cells.
a Schematic illustration of NK maturation; we identified genes differentially
regulated between Q1 to Q2 and Q2 to Q3 in WT NK cells, where Q1=
CD11b−CD27+, Q2=CD11b+ CD27+, and Q3= CD11b+CD27low. b Heatmap
showing differentially expressed genes in WT NK subpopulations, as
illustrated in a. Genes expressed higher in each WT subpopulation were
indicated by black curly brackets on the left. The heatmap colours in each
row are proportional to RPKM values. c Scatter plot showing all genes in
grey and differentially expressed genes in red between WT and Stat5 DKI
CD11b−CD27low NK cells. d Bar graph showing the 4 gene sets most
enriched in the gene list of c based on the Gene Set Enrichment Analysis
algorithm (GSEA, Broad Institute, Boston, MA)
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whereas CD11b−CD27+ NK cells were increased (Fig. 1d),
underscoring the importance of STAT5 tetramers for NK cell
maturation beyond the CD11−CD27+ stage. In fact, the number
of each subpopulation of NK cells was decreased, but the defect
was greatest in the most mature Stat5 DKI NK cells (Fig. 1e).
Analogous to bone marrow, total splenocyte numbers were
similar in WT and Stat5 DKI mice (Fig. 1f), but total NK cell
frequency (Fig. 1g, upper panels) and numbers (Fig. 1h; ref. 9)
were lower in Stat5 DKI NK mice, with a partial block in
maturation (Fig. 1g, lower panels), with the greatest defect in
terminally differentiated CD11b+CD27low NK cells (Fig. 1h).

Because IL-7 activates STAT5 proteins30 and thymus-derived
NK cell homoeostasis depends on IL-731, we also examined
thymic NK cells. The frequency of total (lin−CD122+) thymic NK
cells was moderately decreased in Stat5 DKI mice (Suppleman-
tary Fig. 1a, upper panels), whereas the frequency of mature
(CD122+NK1.1+DX5+) thymic NK cells showed little if any
decrease (Supplementary Fig. 1a, lower panels). Nevertheless, the
number of these cells was significantly lower in Stat5 DKI than in
WT mice (Grouped Multiple t-test, p< 0.001, Supplementary
Fig. 1b). IL-7Rα expression was normal (Supplementary Fig. 1c,
d), so we attribute the decrease in thymic NK cell numbers to
defective STAT5 tetramer formation. Thus, STAT5 tetramers are
essential for the maintenance and/or expansion of thymic as well
as bone marrow and splenic NK cells.

STAT5 tetramers mediate NK cell-related gene expression.
Because mature CD11b+CD27low NK cells were significantly
reduced in Stat5 DKI bone marrow and spleen, we next
performed RNA-Seq using sorted splenic NK cells to identify the
genes whose expression correlated with the CD11b−CD27+ to
CD11b+CD27+ (Q1−Q2) and CD11b+CD27+ to CD11b+CD27low

(Q2 to Q3) transitions (as illustrated in Fig. 2a). First, we com-
pared expression profiles in these populations of WT NK cells
(purity of sorted NK populations ranged from 92 to 100%,
Supplementary Fig. 2a, b) and identified a total of 892 genes that
were differentially expressed during these transitions (Reads Per
Kilobase of transcript per Million mapped reads (RPKM) ≥5 in at
least one population and fold change (FC) ≥1.5)(Fig. 2a, b,
Supplementary Data 1a). Of these, 462 genes were differentially
expressed during the CD11b−CD27+ to CD11b+CD27+ transition
and 678 genes during the CD11b+CD27+ to CD11b+CD27low

transition, with some (248 genes) differentially expressed in both
transitions (Fig. 2a, Supplementary Data 1b, c). These included 82
genes encoding transcription factors (TFs) (Supplementary
Fig. 2c, Supplementary Data 1f) such as Tox, Klf4, and Prdm1
(Supplementary Fig. 2c, d) and 77 genes encoding cytokines,
chemokines, their receptors, and NK receptors such as inhibitory
NK receptor Klrg1, activating NK receptor Cd160, and Il7r
(Supplementary Fig. 2e, f, Supplementary Data 1g).

Interestingly, a number of genes encoding transcription factors
(Supplementary Fig. 2c) and cytokines/chemokines/receptors/NK
receptors (Supplementary Fig. 2e) had altered expression in
Stat5 DKI NK subpopulations as compared to cells from
WT mice (Supplementary Fig. 3a−f, respectively); whether
they are responsible for the maturation defects seen in Stat5
DKI NK cells remains to be elucidated.

Most of the 892 genes that were differentially expressed during
the CD11b−CD27+ to CD11b+CD27+ and/or CD11b+CD27+ to
CD11b+CD27low transitions had similar expression patterns in
corresponding WT and Stat5 DKI NK populations, but some genes,
including those encoding a number of cytokine signalling molecules
(e.g., Cish and Socs2) and anti-apoptotic protein (Bcl2) were
expressed at lower levels in Stat5 DKI NK cells (Fig. 2c).
Interestingly, a number of genes, including some of those involved

in cell cycle progression, were downregulated during the
CD11b+CD27+ to CD11b+CD27low transition in WT but not in
Stat5 DKI NK cells. For example, Mki67, Ccna2, Ccnb2 and Cdkn3
were still expressed at higher levels in Stat5 DKI CD11b+CD27low

NK cells than those in corresponding WT NK cells (Fig. 2c and
Supplementary Data 1d). A Gene Set Enrichment Analysis of the 357
differentially expressed genes in WT versus Stat5 DKI CD11
+CD27low NK cells revealed that the top 4 enriched gene sets are
involved in cell cycle progression (Fig. 2d). Surprisingly, most of the
genes (e.g., Il2rb, Il2rg, Il15ra, Il7r, Stat5a, Stat5b, Jak3, Eomes, Elf4,
Ets1, Ets2, Nfil3, Gata3, Id2, Irf1, Irf2, Klf4, Prdm1, Tbx21 and Tox)
(Supplementary Fig. 4a) known to be critical for NK development
and/or maturation24,26,32–44 were similarly expressed in
CD11b−CD27+ (Supplementary Fig. 4b), CD11b+CD27+ (Supple-
mentary Fig. 4c), and CD11b+CD27low (Supplementary Fig. 4d)
subpopulations of WT and Stat5 DKI NK cells (Supplementary
Data 1e). Expression of the genes encoding JAK1, JAK2 and JAK3
and all seven STAT proteins was similar in CD11b−CD27+

(Supplementary Fig. 4e), CD11b+CD27+ (Supplementary Fig. 4f),
and CD11b+CD27low (Supplementary Fig. 4g) WT and Stat5 DKI
NK cells (Supplementary Data 1e).

STAT5 tetramers are needed for cytokine-mediated NK sur-
vival. As noted above, there are fewer NK cells in Stat5 DKI mice
(Fig. 1h; Supplementary Fig. 2a). To evaluate their functionality,
we expanded both WT and Stat5 DKI splenic NK cells with IL-15
in vitro (Supplementary Fig. 3a) and found that both populations
exhibited similar killing of 51Cr-labelled YAC-1 cells (Fig. 3a).
Moreover, WT and Stat5 DKI mice showed similar clearance of
H2 class I gene-deficient RMA-S T lymphoma cells45 (Fig. 3b, c).
No statistically significant difference between WT and Stat5 DKI
mice was observed in RMA-S tumour rejection experiments
(Kaplan−Meier method, p= 0.323), although Stat5 DKI mice
appeared slightly less efficient in rejecting RMA-S tumour cells
in vivo (Fig. 3d). These experiments together showed that
despite there being fewer NK cells in the Stat5 DKI mice, their
cytotoxicity was normal, indicating that STAT5 dimers are
sufficient for this function.

Because STAT5 tetramers are essential for normal IL-2- and
IL-15-induced proliferation of CD8+ T cells in vitro and
homoeostatic proliferation of these cells in vivo9, we next
investigated whether the decreased NK cell numbers in Stat5
DKI mice might result from defective proliferation. Unexpect-
edly, Stat5 DKI bone marrow (Fig. 3e, f) and splenic (Fig. 3g, h)
NK cells had similar or even slightly higher proliferation to IL-15
(Fig. 3e, g) or IL-2 (Fig. 3f, h). These results were consistent with a
slightly higher percentage of Ki67+ Stat5 DKI NK cells among
freshly isolated and IL-15-stimulated bone marrow (Fig. 3i) or
splenic (Fig. 3j) NK cells. Moreover, when cultured in vitro
with IL-15 (Fig. 3k) or IL-2 (Fig. 3l), there were fewer viable Stat5
DKI than WT splenic NK cells, particularly at low concentrations
of the cytokines, indicating defective cytokine-induced survival of
the Stat5 DKI NK cells.

In view of the defective survival, we next examined whether
there were differences in IL-15-induced gene expression by RNA-
Seq. Of 467 genes that were most differentially expressed in either
WT or Stat5 DKI NK cells after 24 h of stimulation with IL-15
(RPKM ≥5, FC ≥2; Supplementary Fig. 5b, Supplementary
Data 2a), 71 genes had significantly altered expression in Stat5
DKI versus WT NK cells (Supplementary Fig. 5c, Supplementary
Data 2b). Interestingly, Ccnd1 (encoding cylin D1) was
dramatically increased in response to IL-15 stimulation in Stat5
DKI NK cells but not in WT NK cells (Supplementary Fig. 5c, d,
Supplementary Data 2b). The expression of Cdkn2b (encoding
p15INK4B, which forms complexes with CDK4 and CDK6 and
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course of proliferative responses of WT and Stat5 DKI splenic NK cells in response to 1000 Uml−1 IL-2. Black squares and solid lines indicate WT cells and
black triangles and dotted lines indicate Stat5 DKI cells. i Line graphs of Ki67 staining of WT and DKI bone marrow NK cells stimulated with 20 ngml−1 of
IL-15 for 0, 1, 4, 8, 24 and 48 h, as indicated. Black squares and solid lines indicate WT cells and black triangles and dotted lines indicate Stat5 DKI cells.
j Line graphs of Ki67 staining of WT and DKI splenic NK cells stimulated with 20 ngml−1 of IL-15 for 0, 1, 4, 8, 24 and 48 h, as indicated. Black squares
and solid lines indicate WT cells and black triangles and dotted lines indicate Stat5 DKI cells. (k and l) Dose response of WT (open circles) and Stat5
DKI (filled circles) splenic NK cells to IL-15 (k) or IL-2 (l) stimulation on day 4. The percentages of live cells were determined using live/dead cell assay kit
and flow cytometry cell counting beads. Error bars in c and e−l are means± SEM and statistical analyses were performed by grouped multiple t-test
using Prism 7.0b
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prevents CDK activation by cyclin D) was not regulated by IL-15
in WT NK cells but its level was significantly lower in Stat5 DKI
NK cells and decreased further after IL-15 stimulation (Supple-
mentary Fig. 5e). Conversely, Cish, an inhibitor of IL-15
signalling in NK cells46, had significantly lower expression in
Stat5 DKI NK cells stimulated by IL-15 (Supplementary Fig. 5f).
Higher cyclin but lower CDK inhibitor and Cish expression are
consistent with Stat5 DKI NK cells exhibiting normal or even
increased cell division in response to cytokine stimulation but
does not explain the defective survival of these cells.

Bcl2 is regulated by STAT5 tetramers in NK cells. To clarify the
mechanism underlying the defective survival of Stat5 DKI
NK cells, we next sought to identify direct target genes for
STAT5 dimers versus tetramers and thus performed ChIP-Seq
using anti-STAT5B and WT or Stat5 DKI splenic NK cells
expanded in vitro with IL-15. We identified 2748 STAT5 binding
sites in IL-15-treated WT NK cells (Fig. 4a, b), far fewer than the
11,526 sites we observed in IL-2-treated T cells (Fig. 4a, b).
Approximately 70% of the sites in NK cells (1935 of 2748 sites)
were shared with those in T cells, while the rest were cell
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type-specific (Fig. 4a, b). By comparing the STAT5 binding sites
identified in WT cells (bound by STAT5 dimers and/or tetra-
mers) with those identified in Stat5 DKI cells (bound by STAT5
dimers but not tetramers), we identified 267 tetramer-specific
binding sites; some genes had multiple sites, so these corre-
sponded to a total 185 genes (Supplementary Data 3a). The
motifs for both STAT5 dimers and tetramers (Fig. 4c) and the
preferred spacing between two tandemly linked γ-interferon
activated sequence (GAS) motifs in tetramer binding sites
(Fig. 4d) were similar to what we defined in T cells9, although
spacings of 11–13 and 16 bp were even more preferred in NK
cells9 (Fig. 4d). Of the 185 genes associated with tetramer binding
sites, a number of them had ≥1.5-fold lower in mRNA expression
in Stat5 DKI than WT NK cells, indicating that they were direct
targets of STAT5 tetramers (Supplementary Data 3b). These
included the known STAT5 tetramer-dependent Il2ra gene, but
also Bcl2. STAT5 binding intensity to all of the sites in the Il2ra
gene and to one of three intronic regions of Bcl2 gene were
significantly reduced in Stat5 DKI cells stimulated by IL-15
(Fig. 4e, f). Consistent with the defective STAT5 tetramer

binding, Il2ra and Bcl2mRNAs were induced by IL-15 in WT NK
cells but not in Stat5 DKI NK cells (Fig. 4g, h).

Rapid cytokine depletion-induced death of Stat5 DKI NK cells.
The role of STAT5 tetramers in Bcl2 regulation and the dimin-
ished viability of Stat5 DKI NK cells cultured with lower doses of
IL-2 or IL-15 led us to further examine the viability of freshly
isolated NK cells (Fig. 5a, upper panels). There was a significant
increase in Annexin V+7AAD+ (Grouped Multiple t-test,
p< 0.01) but not in the Annexin V+7AAD− cells among freshly
isolated splenic Stat5 DKI NK cells as compared to WT NK cells
(Fig. 5a, lower panels and Fig. 5b), consistent with the lower
viability in the Stat5 DKI NK cells. Corresponding to our
RNA-Seq analysis showing significantly decreased Bcl2 mRNA in
Stat5 DKI NK cells (Fig. 4h), BCL2 protein levels were also
significantly lower in freshly isolated bone marrow (Grouped
Multiple t-test, p< 0.001, Fig. 5c) and splenic (Grouped Multiple
t-test, p< 0.001, Fig. 5d) Stat5 DKI NK cells than in corre-
sponding WT NK cells, and Bcl2 mRNA (Fig. 4h, Supplementary
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Data 2a) and BCL2 protein (Fig. 5e, f) were less potently induced
by IL-15 in Stat5 DKI NK cells than in WT NK cells.

The lower induction of Bcl2 expression in the Stat5 DKI NK
cells prompted us to evaluate the effect of IL-15 withdrawal.
Importantly, Stat5 DKI NK cells that were expanded in vitro with
IL-15 exhibited significantly more rapid cell death than we
observed with similarly treated WT NK cells (Fig. 6a). BCL2
protein levels (Fig. 6b, c) also were lower in Stat5 DKI than in
WT NK cells after IL-15 withdrawal, consistent with the
increased apoptosis of Stat5 DKI NK cells and elucidating the
basis for the lower number of NK cells in Stat5 DKI mice.
Because BCL2 supports cellular viability and decreasing its
expression can initiate an apoptotic cascade by activating caspases
and eventually leading to cell death47,48, we hypothesised that
decreased expression of anti-apoptotic factors rather than the
induction of pro-apoptotic protein(s) was the basis for increased

NK cell death in the Stat5 DKI mice. We next assessed active
caspase levels using the fluorochrome-labelled inhibitors of
caspases (FLICA) assay and found significantly increased
FLICA+ cells in freshly isolated splenic Stat5 DKI NK cells
(Grouped Multiple t-test, p< 0.01, Fig. 6d, e) and following IL-15
withdrawal from Stat5 DKI NK cells that were cultured in vitro
with IL-15 (Grouped Multiple t-test, p< 0.01, Fig. 6f, g). These
data further establish the model that lower BCL2 expression in
Stat5 DKI NK cells promotes caspase activation and the
apoptosis/death of these cells.

Discussion
Formation of STAT1, STAT4 and STAT5 tetramers was
demonstrated years ago5–8, but the in vivo roles of STAT tetra-
mers were only recently elucidated, based on the analysis of

a b

f g

Li
ve

 c
el

ls
 (

%
)

100

60

40

20

0
0 4 8

IL-15 withdrawal (hr)

12 16 20 24

80 WT
DKI

200

400

600

0

WT
DKI

B
C

L2
 (

M
F

I)

0

IL-15
withdrawal (h)

6
0

20
40
60
80

100

0
20
40
60
80

100

0 102 103 104 105

0 102

20

40

60

50

40

30

20

10

00
103 104 105 0 102 103 104 105

0 102 103 104 105

BCL2

E
ve

nt
s 

(%
 o

f m
ax

) 0 h

IL-15
withdrawal (hr)

6 h

WT
DKI

Iso

c

0

10

30

20

40

F
LI

C
A

+
 c

el
ls

 (
%

)

WT
DKI

Total 1 3 & 7 9Caspase:

IL-15 withdrawal:

Total 1 3 & 7 9

0

10

30

20

40

F
LI

C
A

+
 c

el
ls

 (
%

)

4 h 8 h

**

** ** ** **

** **
**

d e

4.31 10.4

FLICA

WT DKI
G

at
ed

 c
el

ls
 (

%
)

15

10

5

0
WT DKI

**

F
LI

C
A

+
 (%

)

Fig. 6 Dysregulated expression of cell survival-related genes and increased active caspase levels in Stat5 DKI NK cells. a Time course of the percentage of
viable WT (filled squares) or Stat5 DKI (open triangles) NK cells following IL-15 withdrawal. Cells were isolated from spleen and cultured in vitro with IL-15
for 6 days prior to withdrawal. Three WT and Stat5 DKI mice were used. The experiment was performed twice. Error bars are means± SEM and statistical
analyses were performed by grouped multiple t-test using Prism 7.0b. b Histograms of intracellular BCL2 staining of WT (blue) and Stat5 DKI (red) NK
cells. Staining was of cells cultured in 20 ngml−1 IL-15 (0 h) or 6 h upon IL-15 withdrawal. c Summary of BCL2 levels (MFI) before (0 h) and after IL-15
withdrawal for 6 h. d Representative FLICA staining of freshly isolated splenic NK cells. The numbers in the gated regions are FLICA+ NK cells (%).
e Summary of d of freshly isolated splenic WT (open bar) and Stat5 DKI NK (filled bar) cells analysed using the FLICA Poly Caspase Assay kit. Error bars
are means± SEM and statistical analyses were performed by grouped multiple t-test using Prism 7.0b. f Summary of FLICA staining of WT (open bars) and
Stat5 DKI (closed bars) NK cells at 4 h after IL-15 withdrawal for poly caspases (Total), caspase-1 (1), caspases-3 and 7 (3, 7), and caspase-9. Error bars are
means± SEM and statistical analyses were performed by grouped multiple t-test using Prism 7.0b. g Summary of FLICA staining of WT (open bars) and
Stat5 DKI (closed bars) NK cells at 8 h after IL-15 withdrawal for poly caspases (Total), caspase-1 (1), caspases-3, 7 (3, 7), and caspase-9. Error bars are
means± SEM and statistical analyses were performed by grouped multiple t-test using Prism 7.0b

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01477-5

8 NATURE COMMUNICATIONS | 8:  1320 |DOI: 10.1038/s41467-017-01477-5 |www.nature.com/naturecommunications

www.nature.com/naturecommunications


Stat5a and Stat5b DKI9 and Stat1 knockin (KI)49 mice, and
recently a model of the three-dimensional structure of STAT5
tetramers was generated that helps to explain their observed
binding preferences50. STAT5 tetramers are required for main-
taining normal numbers of peripheral CD8+ T cells, CD4+CD25+

T cells, and NK cells, proliferative response of T cells to IL-2 or
IL-15 stimulation, and T regulatory (Treg) cell function in vivo,
but they are not required for viability, organ development, B cell
development and function, or for the normal numbers of CD4+

T cells9. In this study, we have demonstrated that STAT5 dimers
are sufficient for early NK development, whereas STAT5 tetra-
mers were required for later natural killer (NK) cell maturation
(Fig. 7). Notably, in Stat5 DKI mice, the frequency of
CD11b−CD27+ cells was increased, whereas the more mature
CD11b+CD27low NK cells were nearly absent in bone marrow
and significantly decreased in spleen. Analysis of RNA-Seq data
from WT NK cells revealed that most of the genes known to be
critical for NK cell development were expressed similarly during
the CD11b−CD27+ to CD11b+CD27+ or CD11b+CD27+ to
CD11b+CD27low NK cell transitions, indicating their relatively
constant expression during NK cell development. Interestingly,
however, we identified 892 differentially expressed genes during
the CD11b−CD27+ to CD11b+CD27+ and/or the CD11b+CD27+

to CD11b+CD27low NK cell transition, implicating them as
playing roles in the NK cell maturation process. Among these
differentially expressed genes, a subset had dysregulated expres-
sion in the corresponding subpopulations of Stat5 DKI NK cells.
Interestingly, three genes (Mki67, Ccna2 and Ccnb2) that are
involved in proliferation/cycling were downregulated in WT but
not in Stat5 CD11b+CD27low NK cells.

In contrast to the defects in cell cycle progression of STAT5
tetramer-deficient T cells in response to high dose IL-2 or IL-15
stimulation in vitro or homoeostatic proliferation in vivo, STAT5
dimers were sufficient for cell cycle progression of NK cells in
response to IL-2 or IL-15. In fact, Stat5 DKI NK cells exhibited
slightly faster cell division in response to high doses of these
cytokines, and these cells expressed more Ki67+ cells than did WT
NK cells. Interestingly, as compared to WT NK cells, Stat5 DKI

NK cells had similar or increased expression levels of Ccn family
genes, similar expression of most Cdk, Cdkn and Chek family
genes (Supplementary Data 2b, c), but decreased expression of
Cdkn2b, Cdkn1a and Cish (Supplementary Data 2b). Thus, unlike
their essential roles in IL-2-induced T-cell proliferation, STAT5
tetramers are not required for NK cell cycle progression.

Although Stat5 DKI CD8+ T cells9 and NK cells both exhibit
increased cell death upon cytokine withdrawal, NK cells showed
more rapid and enhanced death upon cytokine withdrawal, and
this correlated with decreased expression of anti-apoptotic pro-
teins in these cells (Fig. 7). Importantly, active caspases were also
increased in Stat5 DKI NK cells, consistent with decreased
expression of anti-apoptotic protein BCL2 triggering the activa-
tion of caspases, especially the initiator caspases, caspase-1
and caspase-9, which can then activate downstream effector
molecules involved in cell death. Interestingly, in addition to the
IL-15→ STAT5→ BCL2 survival pathway, it was reported that
the IL-15→ ERK→ FOXO3A pathway augments expression of
MCL1, an anti-apoptotic BCL2 family protein, but diminishes
expression of pro-apoptotic BIM (Bcl2l11) and NOXA (Pmaip1),
which would promote the survival of WT NK cells51. Given that
there is lower expression of Bcl2l11 mRNA in Stat5 DKI NK cells
(Supplementary Data 2a), similar expression of Mcl1 mRNA in
Stat5 DKI and WT NK cells (Supplementary Data 2c), and very
low expression of Pmaip1 (Reads Per Kilobase of transcript per
Million mapped reads <3) in both WT and Stat5 DKI NK cells in
response to IL-15 stimulation, MCL1, BIM, and NOXA do not
appear to contribute to increased death in the Stat5 DKI NK cells.
Instead, our data support the concept that the absence of STAT5
tetramers lowers survival primarily due to diminished BCL2 and
augmented caspase activity.

Interestingly, STAT5 tetramer formation was reported to be
associated with leukaemogenesis in a mouse model52. However, a
caveat is that the study was performed in part with the STAT5A
W37A mutant, which initially was reported to be important for
tetramerization7 but then was shown to affect stability of the
protein rather than tetramer formation6. Thus, further work
is needed to better define the potential relationship of STAT5
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tetramers to leukaemogenesis. Our Stat5 DKI mice may allow one
to better evaluate the funcitons of STAT5 tetramers in the
development of leukaemia.

In summary, our data underscore non-redundant roles of
STAT5 dimers and tetramers in the development, maturation,
survival, and expansion of mouse NK cells, with STAT5 dimers
being critical for early development of conventional NK cells and
their expansion in vitro, whereas STAT5 tetramers are essential
for later NK maturation, expansion at lower concentration of the
cytokines, and survival, providing an explanation for the lower
NK cell numbers in Stat5 DKI mice. We demonstrate that STAT5
tetramers are required for normal Bcl2 expression, with little if
any IL-15-induced expression of Bcl2 in Stat5 DKI NK cells.
Moreover, the lack of STAT5 tetramers is associated with the
activation of caspases to initiate the cascade for apoptosis/cell
death, underscoring the role of STAT5 tetramers in the survival as
well as the maturation of NK cells. Finally, our study also implies
that mutation(s) of the STAT5 N-domain that diminish or
abolish tetramer formation may result in NK cells deficiency, and
interfering with tetramer formation by small molecule inhibitors
could potentially be a mechanism for controlling NK cell num-
bers in NK leukaemia.

Methods
Mice. Stat5 DKI mice were described previously9. Both female and male mice from
8 to 20-weeks old were used for the experiments. The mice were housed in specific
pathogen-free mouse facilities at National Institutes of Health (NIH) Bethesda
campus. All mouse protocols were approved by the National Heart, Lung and
Blood Institute Animal Care Use Committee, and experiments followed NIH
guidelines for using animals in intramural research.

Flow cytometric analyses. For cell surface marker staining, 106 cells in 100 μl PBS
containing 0.5% BSA and 0.1% sodium azide were stained with 0.5 μg of
fluorescent-labelled monoclonal antibodies (BD Biosciences, San Jose, CA or
BioLegend Inc., San Diego, CA) for CD3 (145-2C11), CD122 (TM-β1, IL-2Rβ),
NK1.1 (PK136), CD11b (M1/70), CD27 (LG.3A10), CD49b (DX5), Ly49A (A1),
Ly49H (3D10); for detection of apoptosis, the cells were additionally stained with
Annexin V (5 μl per sample), 7AAD (5 μl per sample); for BCL2 expression, after
fixation and permibilization the cells were stained with 20 μl of FITC- or PE-
labelled hamster anti-mouse BCL2 Set (3F11, BD Biosciences); for exclusion of
linage-positive populations, 106 cells were first stained with 0.5 μg of biotin-labelled
antibodies (BioLegend) for TCRβ (H57-597), CD3 (145-2C11), CD4 (H129.19),
CD8a (53−6.7), CD19 (1D3), IgM (RMM-1), Ter119 (Ter119), and then with
0.125 μg fluorescent-labelled streptavidin (BioLegend).

To measure caspase activity in the cells, total splenocytes were incubated at
37 °C for 1 h with fluorescent-labelled caspase inhibitor FAM-VAD-FMK probes
(FLICA reagent) for Poly caspases (91), caspase-1 (97), caspases-3, 7 (93), and
caspase-9 (912) according to the manufacturer’s instructions (Immunochemistry
Technologies, Bloomington, MN, USA). Data were acquired using a FACSCanto II
flow cytometer (BD Immunocytometry Systems) and analysed using FlowJo
(v9.7.5, Tree Star, Inc., Ashland, OR).

Cell sorting and RNA isolation. To sort splenic NK subpopulations, total sple-
nocytes were isolated from 10 WT or 15 Stat5 DKI female mice and total NK cells
were enriched via negative selection using antibodies (0.5 μg per 106 cells) for IgM,
CD19, TCRβ, CD3, CD4, CD8, Ter119 (Biolegend) and Dynabeads Sheep anti-Rat
IgG (2.5 μl per 106 cells, Invitrogen, Grand Island, NY). CD3-CD122+NK1.1+

NK cells were then sorted on a FACSAriaII cell sorter for CD11b−CD27+,
CD11b+CD27+ and CD11b+CD27low NK subpopulations. Sorted cells were washed
with PBS once, lyzed in Trizol Reagent (Invitrogen, Grand Island, NY), and total
RNA was isolated using Direct-zol RNA MiniPrep Kit (R2050, Zymo Research,
Irvine, CA).

Cell proliferation and survival assays. To monitor cell division, 20 million
splenic or bone marrow cells from WT or Stat5 DKI mice were labelled in 1 ml of
PBS with 2.5 μM of CFSE (CellTracer CFSE Cell Proliferation Kit, Invitrogen,
Carlsbad, CA) at room temperature for 7 min, washed once with serum and twice
with complete RPMI-1640 medium, 1.5 × 106 ml−1 CFSE-labelled cells were then
cultured in the presence of 20 ng ml−1 recombinant human IL-15 (R&D Systems,
Minneapolis MN or BioLegend), and fresh rhIL-15 was added every 2 days. NK cell
division was monitored for CFSE dilution using flow cytometry on day 2, 3 and 4
by staining cells with fluorescent-labelled antibodies for CD3, CD122 and NK1.1.

To determine cell viability after IL-15 withdrawal, column purified (Miltenyi
Biotec Inc., San Diego, CA) NK cells from WT or Stat5 DKI mice were cultured in

complete RPMI-1640 medium supplemented with 20 ng ml−1 rhIL-15 for 6–7 days,
fresh rhIL-15 was added every 2 days, cells were then washed three times with
complete medium, cultured in complete medium without IL-15, stained at
the indicated time points, and viable NK cells were determined as CD3−CD122+

NK1.1+Annexin V−7AAD−. Annexin V+7AAD− cells were scored as apoptotic cells
and Annexin V+7AAD+ as dead cells.

Cell cytotoxicity assays. For in vitro NK cell cytotoxicity assays, splenic NK cells
from 3 of WT and Stat5 DKI mice were enriched using NK cell negative selection
kit (Miltenyi Biotech, San Diego, CA) and cultured with 20 ng ml−1 rhIL-15 (R&D)
for 6 days to reach similarly high purity of NK cells, incubated at indicated ratio in
triplicates with 51Cr-labelled YAC-1 cells at 37 °C for 4 h. Specific target (YAC-1)
cell lysis was calculated.

For in vivo NK cell cytotoxicity assays, H2 class I gene-deficient RMA-S and H2
class I gene expressing RMA cells (provided by Dr. Lewis L. Lanier, University of
Califonia, San Francisco) were labelled by 0.5 and 5 μM of CFSE, respectively, equal
number of the labelled RMA-S and RMA cells were mixed, and 2 × 106 cells were
intraperitoneally injected into each of WT and Stat5 DKI mice. Peritoneal cells
were recovered 16 h after injection and the recovery rate of each cell types was
determined by flow cytometry.

Tumour rejection experiments. RMA-S cells were cultured in complete RPMI-
1640 medium supplemented with 50 μM β-mercaptoenthol. For tumour rejection
experiments, the cells were washed with PBS 3 times, resuspended in PBS, and 2 ×
105 cells in 150 μl PBS were subcutaneously injected into the scruff of the neck of
each mouse. Tumour size was measured using a digital caliper daily 7 days after
injection. Animals were killed when the tumour reached 20 mm in diameter or
showed severe ulceration.

RNA-Seq library preparation and sequencing. Libraries were prepared using
150 ng of total RNA from bone marrow NK cells and splenic NK subpopulations
and KAPA Stranded RNA-Seq Library Preparation Kit (KK8400, KAPA Biosys-
tems, Wilmington, MA), and each library was indexed using NEXflex DNA
Barcodes-24 (NOVA-514103, BIOO Scientific, Austin, TX). Barcoded PCR pro-
ducts were purified on 2% E-Gel, 250–400 bp fragments were purified, quantified
on Qbit (Invitrogen), mixed, and sequenced on an Illumina HiSeq 2500 or HiSeq
3000 platform (Illumina, San Diego, CA).

ChIP-Seq library preparation and sequencing. Splenic NK cells from 10 WT and
13 Stat5 DKI mice were purified (Miltenyi Biotec Inc.), expanded in vitro with
20 ng ml−1 of human recombinant IL-15 (R&D Systems or BioLegend) for 10 days,
with fresh rhIL-15 being added every two days, yielding 50–80 million of nearly
100% pure CD3−CD122+NK1.1+ cells. The cells were washed three times with
medium, rested in complete RPMI-1640 medium without IL-15 for 2 h, not treated
or treated with 40 ng ml−1 of IL-15 for 1 h, and cross-linked with 1% formaldehyde
(methanol-free, Pierce, Rockford, IL) at room temperature for 10 min. After
sonication, fragmented chromatin equivalent to 10 million cells were immuno-
precipitated with control rabbit IgG (sc-3888, Santa Cruz Biotechnology, Dallas
TX) or anti-STAT5B (AF1584, R&D Systems) and Magna ChIP Protein A + G
Magnetic Beads (16–663, Millipore, Billerica MA). ChIP-Seq DNA libraries were
prepared using KAPA LTP Library Preparation Kit (KK8232, Kapa Biosystems,
Wilmington, MA) and NEXflex DNA Barcodes-24 (NOVA-514103, BIOO Scien-
tific, Austin, TX), and the libraries were then sequenced on an Illumina HiSeq 3000
platform.

RNA-seq analysis. Sequenced reads (50 bp, single end) were obtained with the
Illumina CASAVA pipeline and mapped to the mouse genome (mm9/NCBI37)
using TopHat 2.0.11. Only uniquely mapped reads were retained. RefSeq gene
database was downloaded from the UCSC genome browser for RNA-Seq analysis.
Raw counts that fell on exons of each gene were calculated and normalised to
obtain RPKM (Reads Per Kilobase per Million mapped reads) values. Differentially
expressed genes were identified based on indicated RPKM and fold change
thresholds. The expression heatmaps were generated with the “pheatmap” library
in R using the scale = “row” parameter. Scatter plots are generated by DataGraph
4.1 (Visual Data Tools, Inc.)

ChIP-seq analysis. Sequenced reads were aligned to the mouse genome (mm9/
NCBI37) using Bowtie 0.12.9. Only uniquely mapped reads were retained. Nor-
malised read counts were summed in 20 bp sliding windows and displayed in the
Integrative Genomics Viewer (IGV). MACS 1.4.2 was used to call binding sites
(peaks) relative to control libraries. The p-value threshold was set as 1 × 10−5, and
the effective genome size was set as 2.7 × 109. Transcription factor was considered
as ‘bound’ to genes if peaks were within 5 kb upstream of the transcription start site
and anywhere across the gene body.

To compute STAT5B binding profiles in T and NK cells, we chose ±3 kb
regions around combined peak summits and divided the regions into bins of 20-bp
windows. Reads (or tags) that fell into each bin were counted and normalised by
library size. Heatmaps of binding profiles were generated based on K-means
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clustering and plotted using seqMiner 1.3.3. STAT5 dimer and tetramer motifs
were identified as described previously9.

Statistical analysis. Statistical analyses were performed by grouped multiple t-test
analysis using Prism 7.0b (GraphPad Software, Inc., La Jolla, CA), error bars are
means± SEM; ****p < 0.0001; ***p < 0.001, **p < 0.01; *p < 0.05; NS, p> 0.05.

Data availability. ChIP-Seq and RNA-Seq data have been deposited in the
National Center for Biotechnology Information Gene Expression Omnibus (GEO)
database (https://www.ncbi.nlm.nih.gov/geo) under the GEO Series accession
numbers GSE101470 and GSE36890. All other materials are available from the
corresponding authors on request.
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