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M A T E R I A L S  S C I E N C E

Reentrant tensegrity: A three-periodic, chiral, tensegrity 
structure that is auxetic
Mathias Oster1, Marcelo A. Dias2, Timo de Wolff3, Myfanwy E. Evans4*

We present a three-periodic, chiral, tensegrity structure and demonstrate that it is auxetic. Our tensegrity struc-
ture is constructed using the chiral symmetry + cylinder packing, transforming cylinders to elastic elements and 
cylinder contacts to incompressible rods. The resulting structure displays local reentrant geometry at its vertices 
and is shown to be auxetic when modeled as an equilibrium configuration of spatial constraints subject to a quasi-
static deformation. When the structure is subsequently modeled as a lattice material with elastic elements, the 
auxetic behavior is again confirmed through finite element modeling. The cubic symmetry of the original structure 
means that the auxetic behavior is observed in both perpendicular directions and is close to isotropic in magnitude. 
This structure could be the simplest three-dimensional analog to the two-dimensional reentrant honeycomb. This, 
alongside the chirality of the structure, makes it an interesting design target for multifunctional materials.

INTRODUCTION
The geometric design of material microstructures allows specific 
material properties to be prescribed through particular motifs and 
mechanisms. Additive manufacturing has highlighted the potential 
for designed materials with targeted functionality. Auxetic struc-
tures, being those with a negative Poisson’s ratio, are an interesting 
target in the design of metamaterials. An auxetic material is most 
simply characterized by a perpendicular expansion on stretching 
the material in a chosen direction. The two-dimensional (2D) reen-
trant honeycomb pattern is the quintessential example of auxeticity 
from geometric design (1). Theoretically, some understanding and 
design principles exist for auxetic structures in ℝ2 in terms of ex-
pansiveness and pseudo-triangulations (2); however, a three-periodic 
counterpart is notoriously hard, because the design rules of the 2D 
case are not easily generalized to the 3D case. The current breadth 
of examples using a reentrant vertex geometry involves only a lim-
ited number of structures (3, 4). Furthermore, many techniques 
focus on analyzing existing databases of lattices for possible inter-
esting mechanisms (5), which is limited by the breadth of existing 
framework databases. Here, we propose a previously unknown 3D 
auxetic structure, alongside its construction technique, which has 
auxetic behavior both as an idealized geometric motif and a simu-
lated elastic material.

We begin with the idea of a tensegrity, a term that comes from 
the notion of integrity under tension. Originating in the architec-
tural work of Kenneth Snelson and Buckminster Fuller, tensegrity 
structures use a combination of tension and compression forces to 
give the illusion of floating rods in space (6, 7). A tensegrity com-
bines strut elements and cable elements. The struts are extendable 
rigid bars with a prescribed minimum length, which are typically 
under a compression force. The cables are elements under tension 
connecting the rigid bars. The combination of these elements and 
their internal tension maintain the integrity of the structure. Instead 

of cable elements, elastic elements under tension could also be used 
to stabilize the structure.

A tensegrity can be describsed mathematically by a set of vertices 
that fulfill simple distance constraints. Struts prescribe that the ver-
tices can never be closer than given distance but can be arbitrarily 
far apart. Vertices connected by a cable can be as close together as 
desired but not farther apart than the length of the cable. In the case 
of elastic elements rather than cables, a spring energy can be consid-
ered along each of the elements. The equilibrium configuration is 
then the minimization of the spring energy given the distance con-
straints of the struts. An interesting parallel to the spatial constraints 
of a tensegrity structure can be made to sphere packings, where the 
centers of spheres can never be closer than twice the radius, analo-
gous to the strut constraint (7). This idea has also been used to ex-
plore configurations and stability of periodic sphere packings (8).

Similar to the description of sphere packing, symmetric, periodic 
packing of cylinders in 3D space is a useful technique in the descrip-
tion of crystalline materials. In the description of a crystal structure, 
the cylinders represent rods of strongly bonded atoms or groups of 
atoms. For example, the 3D structure of the mineral Garnet was well 
known for many years, but the subsequent use of cylinder packings 
provided a more simple description and understanding of the struc-
ture (9). More recently, cylinder packings have been used in the design 
and construction of metal-organic frameworks to achieve topologi-
cally robust structures (10).

Using the invariant axes of the crystallographic space groups al-
lows the enumeration of the simplest and most symmetric cylinder 
packings (11). The restriction to cubic symmetry (which corresponds 
to a spatially isotropic material), as well as all rods being related to 
each other by a symmetry of the packing, yields precisely six distinct 
cylinder packings (11). Relaxing the requirement that the cylinders 
are straight allows the formation of a more general class of curvilin-
ear cylinder packings, obviously with more geometric freedom. The 
central axes of the curvilinear cylinders are still along the original 
directions, but the cylinders can curve past, and weave through, 
their neighbors (12, 13). A particular set of these curvilinear cylin-
der packing structures were observed to have what was termed a 
dilatant property, where mutual straightening of the curvilinear cyl-
inders leads to a homothetic expansion of the material (13). This struc-
tural mechanism can be used to explain the swelling of mammalian 
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skin cells on prolonged exposure to water, where the cylindrical 
packing describes the organization of keratin intermediate fila-
ments in the cells (13, 14).

We take here the dilatant + cylinder packing (11), as shown in 
Fig. 1. It is also referred to as the -Mn rod packing, as it describes 
the chemical structure of -Mn (15, 16). This packing has the chiral 
space group symmetry P4132, with three distinct cylinder axes along 
{1,0,0}, {0,1,0}, and {0,0,1}. The + packing is described by the vectors

	​​ ​{​​ ​ 1 ─ 4 ​, 0, u​}​​​{​​ ​ 3 ─ 4 ​, ​ 1 ─ 2 ​, u​}​​​{​​u, ​ 1 ─ 4 ​, 0​}​​​{​​u, ​ 3 ─ 4 ​, ​ 1 ─ 2 ​​}​​​{​​0, u, ​ 1 ─ 4 ​​}​​​{​​ ​ 1 ─ 2 ​, u, ​ 3 ─ 4 ​​}​​​​	

where u is any real number, and the periodicity gives the parallel 
cylinders. When the straight cylinders of + are relaxed to a curvi-
linear form, the symmetry of the packing drops to the I4132 space 
group (which is also chiral) and the packing becomes more dense. 
This curvilinear packing then displays the dilatant property on co-
operative straightening of the curved cylinders (17). Figure 1 shows 
the transformation from an expanded structure with straight cylin-
ders in contact to a compacted structure with helical cylinders.

Inspired by the parallel between tensegrities and sphere pack-
ings, we construct a tensegrity from the helical + cylinder packing 
by reimagining the structure as follows:

1) At all contacts between cylinders, rigid and incompressible 
bars are placed, connecting the central axes of the cylinders, with a 
length twice the cylinder radius. They represent the incompressibil-
ity of the cylinder at the contact.

2) Thin elastic elements are placed along the central axes of the 
cylinders in the packing. These elastic elements connect to the in-
compressible bars passing through the contact points. These elastic 
elements span the periodic boundary conditions.

3) The final constraint is that the periodicity of the structure re-
mains, which, in this case, means that three orthonormal transla-
tion vectors of the same length remain fixed.

What results are a series of rigid rods suspended in space by a 
periodic web of elastic filaments. This is our periodic tensegrity 
structure, as shown in Fig. 1.

The topology of the constructed network is known as bmn, as 
described in the Reticular Chemistry Structure Resource database 
(18): This terminology comes from the relation of the structure to 
the chemical structure of -Mn. The structure has I4132 space group 
symmetry, is embedded in a triply periodic unit cell, and has 24 

vertices and 36 edges within each cubic unit cell. The vertices are 
degree 3, and all display the reentrant geometry characteristic of 
many auxetic materials, including the 2D reentrant honeycomb 
pattern. We note that there is a degree of freedom in the construc-
tion technique: Depending on the level of dilation/compaction of 
the starting rod packing (such as the two structures given in Fig. 1), 
we obtain different configurations of the bmn network, with differ-
ent sized periodic unit cells of our periodic tensegrity. These struc-
tures correspond to a variation of the angle of the reentrant vertices. 
The structure shown in Fig. 1 is one such structure in this family of 
structures. The reentrant geometry of the vertices is suggestive of 
auxetic behavior, and it is this hypothesized behavior that we now 
investigate more deeply.

RESULTS AND DISCUSSION
We investigate the equilibrium configurations and quasi-static de-
formations of the constructed periodic tensegrity structure. As the 
starting point for our simulated deformations, we take the configu-
ration shown in Fig. 1, which corresponds to the densest packing of 
the original cylinder packing, within a fixed unit cell. It can be con-
firmed numerically by Newton’s method that this structure is an 
equilibrium configuration, where the spring energy is at a mini-
mum not assuming minimal spring lengths. We used several per-
turbed starting configurations to verify the minimization. The 
deformation process is then modeled by a quasi-static extension 
that assumes the springs to have length bounded from below by the 
configuration computed initially.

The behavior of the structure over an initial phase of deforma-
tion is dominated by a breaking of symmetry of the highly symmetric 
initial structure; all of the symmetries of the structure are lost, leaving 
just periodicity. On further extension, the structure reaches a more 
stable behavior, which sees an expansion of the structure in both of 
the perpendicular directions, indicating auxeticity. Figure 2 shows 
two configurations of the structure during the deformation process, 
both the starting equilibrium configuration and the maximally de-
formed, equilibrium structure. As a result of this process, we can 
measure the y- and z-direction lattice parameter lengths, as plotted 
in Fig. 3 (top).

The Poisson’s ratio is typically defined only for small strain linear 
elastic behavior. A more subtle formulation is required when con-
sidering highly nonlinear elastic materials over large strain inter-
vals. We used two such formulations to analyze the deformation of 
the tensegrity structure, the instantaneous Poisson’s function and 
the Poisson’s ratio using the log transform true strain (19). We can 
calculate the instantaneous Poisson’s ratio in terms of the engineer-
ing strain at time step t as follows (19)

	​​ ​ xy​​  = ​  
− ​e​ y​​ ─ ​e​ x​​  ​​	

where x is the direction of applied strain, y is an orthogonal direc-
tion, and ey and ex are given by

	​​ e​ y​​  = ​  
​(​L​ 

y
​​)​ 

t
​​ − ​(​L​ 

y
​​)​ 

t−1
​​
  ─ ​(​L​ y​​)​ t−1​​  ​​	

	​​ e​ x​​  = ​  ​(​L​ x​​)​ t​​ − ​(​L​ x​​)​ t−1​​  ─ ​(​L​ x​​)​ t−1​​  ​​	

Fig. 1. The + cylinder packing in three different geometric incarnations. (Left) The 
+ cylinder packing composed of straight cylinders, with chiral space group sym-
metry P4132, and three distinct cylinder axes. (Centre) A compacted version of + 
where the cylinders become curvilinear, which now has the chiral space group I4132. 
(Right) The bmn periodic tensegrity structure, where the incompressible rods are 
shown in black and the elastic struts colored like the cylinder packing above. The 
periodic unit cell is outlined in the thick black lines.
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where Lx and Ly are the lattice parameter lengths in the x and y di-
rections taken at time step (t) and the previous time step (t – 1). The 
instantaneous Poisson’s function for the deformation of the tenseg-
rity structure is shown in Fig. 3 (middle).

We can also calculate the Poisson’s ratio in terms of the log 
transform true strain at time step t as follows (19)

	​​ ​ xy​​  =  − ​ 
​​ y​​ ─ ​​ x​​ ​​	

where, again, x is the direction of applied strain, y is an orthogonal 
direction, and y and x are given by

	​​ ​​ y​​  =  ln ​(​​1 + ​ 
​(​L​ 

y
​​)​ 

t
​​ − ​(​L​ 

y
​​)​ 

0
​​
 ─ ​(​L​ y​​)​ 0​​ ​​ )​​​​	

	​​ ​​ x​​  =  ln ​(​​1 + ​ ​(​L​ x​​)​ t​​ − ​(​L​ x​​)​ 0​​ ─ ​(​L​ x​​)​ 0​​ ​​ )​​​​	

where Lx and Ly are the lattice parameter lengths in the x and y di-
rections taken at time step (t) and the original configuration. The 
Poisson’s ratio calculated using the log transform true strain for the 
tensegrity structure is shown in Fig. 3 (bottom).

The magnitudes of the instantaneous Poisson’s function and the 
Poisson’s ratio using the log transform normal strain are both com-
parable, as expected from previous results comparing these formu-
lations. The Poisson’s ratio is around −1.1  in the y direction and 
−0.75 in the z direction in the steady state. The cubic symmetry of 
the structure should imply that the Poisson’s ratio is the same in 
both the y and z directions; however, in this case, the complete loss 
of symmetry that occurs with the initial deformation results in these 
directions no longer being equivalent. The choice of which direc-
tion gives a larger or smaller Poisson’s ratio is also arbitrary and 
depends of the minimizing configuration found. Despite these dif-
ferences arising from the symmetry breaking, the auxetic response 
of the structure stays close to isotropic in the x, y, and z directions, 
which is a remarkable property for a 3D material.

The phase of deformation directly after the initial loss of symme-
try of the structure is highly interesting from both a material science 

and numerical perspective. It is instructive to explore the stability of 
these minimizing configurations in more detail; however, the nu-
merical tools are still under development.

We now turn our attention to the engineering potential of realizing 
these idealized geometric constructions. This is done by extending 

x

y

z

Fig. 2. The geometry of the tensegrity structure under deformation. (Left) The 
starting configuration of our tensegrity structure, shown as a block of 2 × 2 × 2 unit 
cells. The black cube frame is shown for visualization purposes. The structure is in 
equilibrium and has the full I4132 symmetry. (Right) The structure is stretched 
along the x axis, and the resulting equilibrium structure is shown. The symmetry of 
the structure has been broken, for example, the fourfold screwaxes of the helices 
disappear. The expansion in the perpendicular y direction in response to the 
stretch can be seen in the size of the deformed structure, and a similar magnitude 
of expansion is also present in the z direction.

0.95

1

1.05

1.1

1.15

L

L
y

L
z

-4

-3

-2

-1

0

1

2

3

4

 

xy
int.

xz
int.

0 100 200 300
Time step (L

x
)

-1.5

-1

-0.5

0

0.5

 

xy

xz

Fig. 3. Measurement of the mechanics of the tensegrity structure under deformation. 
(Top) The length of periodic lattice translation in the y and z directions (Ly and Lz) 
on repeated extension and compression cycles (cyclical Lx). One can see that, after 
an initial phase of instability, the structure reaches a steady state of expansion in 
the y and z directions during expansion in the x direction and, likewise, contraction 
when x is contracted. (Middle) The instantaneous Poisson’s function (xy and xz) 
on repeated extension and compression cycles of the structure in the x direction. 
The values reach a relatively steady state of around −1.1 for xy and − 0.75 for xz. 
(Bottom) The Poisson’s ratio (xy and xz) computed using the log transform true 
strain on repeated extension and compression cycles of the structure in the x direc-
tion. The values reached here are comparable to those seen in the instantaneous 
Poisson’s function above.
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the concept of the auxetic periodic tensegrity structures to finite 3D 
lattices composed of elastic elements. For such more realistic situa-
tions, the driving principle toward auxeticity depends on the interplay 
between geometry and elasticity (20, 21)—by turning a mechanism 
into an actual structure, through locking of the hinge points, loading 
carrying will occur via axial stresses and bending moments.

The boundary conditions were enforced constraining the nor-
mal displacements of the elements for the lattice’s planes at x = 0, 
y = 0, and z = 0. A quasi-static and displacement controlled condition 
was applied to the end of the cable elements at the plane x = n × L 
(where L is the length of the unit cell), thus imposing a stretch in the 
direction normal to the yz plane. First, from Fig. 4, we look at the 
level of axial stresses 11 in each element. As expected, from a 
tensegrity structure, tension and compression will be carried by the 
cables and struts, respectively. By zooming in to a representative 
volume in the interior of the lattice, as shown in Fig. 4, we noticed 
that 11 > 0 for the “cable” elements and 11 < 0 for the struts. We 
further measure the effective structural Poisson’s ratio, as shown in 
Fig. 5, and we observe that xy and xz depend in a nonmonotonic 
manner with respect to the diameter ratio dc/ds, which is here seen 
as a design parameter. Notice that auxeticity can be maximized for 
1 ≲ dc/ds ≲ 1.6, depending on the direction of the deformation. In 
Fig. 6, we show two perspectives, xy and xz, of center unit cells in 
8 × 8 × 8 lattices, in their rest and deformed configurations. To 
highlight the effect of curvature on each of the elements, we show 
two examples of aspect ratios dc/ds = 0.6 and dc/ds = 1.2, coloring the 
elements by the absolute value of the total curvature vector —here, 
its components in the moving frame parameterized by the arc length 
are two normal curvatures and one twist. Notice that the effect of 
auxeticity is derived from the fact that there is a local increase of 
voids’ size within the unit cell, which is the same phenomenon ob-
served in the idealized mechanism seen in Fig. 2. However, given 
that, in the real structure where the hinges are locked, the moment 
balance at the nodes leads to an increase in the curvature of the ca-
ble elements, which results in less “free length” for the expansion in 
all directions. Hence, the difference in the Poisson’s ratio observed 
in Fig. 5 against the values xy = − 1.1 and xz = − 0.75 is computed 

for the idealized case, as shown in Fig. 2. We choose to demonstrate 
this effect from the curvature data because it gives us an intuitive 
geometric measure of the causal relationship between curvatures 
and the moments transferred by the joints via the bending rigidity 
of the element, i.e., the constitutive behavior of the elements.

To further extend these ideas to real materials, we explored 3D 
printing of a toy model of the structure. We printed in a single ma-
terial, using rubber-like thermoplastic polyurethane, without dif-
ferentiating between the rigid and elastic elements. The radius of 
the rigid and elastic in the printed is the same, which would corre-
spond to the case of dc/ds = 1 in the simulations. Despite this sim-
plification, we were able to observe mild auxetic behavior of the 
structure (Fig. 7). A full movie of the deformation is included in the 
Supplementary Materials.

Struts

Cables

Stru

Cab

Fig. 4. Tension and compression of the tensegrity elements. 8 × 8 × 8 lattice for 
dc/ds = 0.6. The color map represents the level of axial stresses 11, normalized by 
the Young’s modulus E, along the elements’ arc lengths. The inset shows a repre-
sentative volume and further the dissection of the cable and the strut elements to 
show that they are subjected to tension and compression, respectively. The de-
formed configurations are shown at 0.025 strain.

Fig. 5. Poisson’s ratio of the structure. It shows the Poisson’s ratio xy and xz, as 
a function of the diameter ratio dc/ds between the of the cable and the strut 
elements. The results for lattice assemblies with different numbers of unit cells, n, 
are shown.

Fig. 6. The effect of curvature on each of the elements. Unit cell’s rest and de-
formed configurations for dc/ds = 0.6 and dc/ds = 1.2 from a 8 × 8 × 8 lattice. The 
color map represents the norm of the curvature vector . Two different perspectives 
are presented, xy and xz. The deformed configurations are shown at 0.75 strain.
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In summary, we have described here a method for constructing 
a chiral, triply periodic tensegrity structure, based on the high sym-
metry + rod packing, well known from structural chemistry. It 
displays local reentrant geometry at all of its vertices, giving the 
structure an auxetic behavior on quasi-static extension and com-
pression deformations. We have demonstrated that this auxetic 
behavior also carries over the realistic material simulation. The 
quantitative differences in the values of xy and xz, contrasting the 
computations for the idealized structure and that which is obtained 
from finite element method (FEM), are attributed to the overcon-
strained hinges in the more realistic situation—this is seen by the 
gain in curvature of the elements at a cost of free length, as shown in 
Fig.  6. The structure presented here is potentially the simplest 
three-periodic incarnation of the reentrant honeycomb motif and, 
as such, is an interesting design target for framework materials. In 
particular, the relationship of the tensegrity structure to the original 
rod packing suggests that this could be an interesting design target 
in the metal-organic framework context, where rod packings are 
already realistic design targets. Given that the structure is also chi-
ral, this suggests that the structure could be a target for metamate-
rials, where chirality is a precursor to an array of functionality in 
materials, particularly electrical, optical, and magnetic properties.

The auxetic behavior is related to the original dilatant property 
of the + rod packing. There are a suite of similar curvilinear cylin-
der packings described in (13), all displaying the dilatant property, 
and we expect that the conversion of these packings to tensegrity 
structures using the methodology described here should lead to 
similar auxetic behavior. In particular, the Σ+ cylinder packing that 
appears in the microstructure of mammalian skin cells displays a 
particularly large degree of dilatancy, and we expect it to be an in-
teresting target material (14). This process of using dilatant rod 
packings as a construction technique for auxetic tensegrity struc-
tures opens a design technique for a wide array of auxetic materials, 
which inherit the low-density characteristics of the original cylinder 
packings.

The analysis of this structure instigated various explorations in 
available tools from the fields of algebraic geometry and optimiza-
tion. It was apparent in most situations that the structure was too 
complicated for most of the available numerical tools, although 
from a materials science perspective, the tensegrity structure is rel-
atively simple. This has already prompted the development of new 
numerical and symbolical approaches in these fields of mathematics 

(22–24), and we are optimistic about the use of these tools in further 
studies of this type.

MATERIALS AND METHODS
We investigated the equilibrium configurations and quasi-static de-
formations of the constructed periodic tensegrity structure. For any 
of our constructed tensegrity structures with different degrees of 
compression, we calculated the equilibrium configuration (6). If we 
place springs along each of the elastic cables, then these will each 
have an energy proportional to the square of their length. If we min-
imize this collectively while maintaining all of the length conditions 
of the tensegrity, then the equilibrium configuration can be found. 
The periodicity of the structure for a fixed unit cell size is incorpo-
rated through additional constraints keeping vertices related to 
copies of themselves by the orthonormal periodicity vectors. Notic-
ing that the discrete Laplacian (25) fulfills Hooke’s law at each ver-
tex of the structure, we interpret the spring energy of the tensegrity 
as the discrete Dirichlet energy ℰ on the vertex set V and edge set E 
of the unit cell. Using this idea, one gets

	​​ ​ ∂ ─ ∂ ​f​ i​​
 ​ ℰ( f  ) = ​ ∂ ─ ∂ ​f​ i​​

 ​​(​​ ​ 1 ─ 2 ​ ​ ∑ 
ij∈E

​​​ ​​ ij​​∥​f​ i​​ − ​f​ j​​ ​∥​​ 2​​)​​  = ​   ∑ 
j:ij∈E

​​​ ​​ ij​​( ​f​ i​​ − ​f​ j​​)​​	

where ij ∈ E is an edge between vertices i and j, and j : ij ∈ E are all 
vertices j that share an edge with vertex i. Furthermore, ij > 0 is the 
spring constant, ∥ · ∥ denotes the Euclidean norm, and f : V → ℝ3 is 
a realization of the network, i.e., fi are the Euclidean coordinates of 
a vertex i for the actual configuration.

As an alternative approach, we can interpret the incompressible 
bars as springs with fixed lengths and assume a momenta and torque-
free equilibrium, and the following optimization problem arises

	​​  min​ 
f:V→​ℝ​​ 3​

​​ ​ 1 ─ 2 ​ ​ ∑ 
ij∈E

​​​  ∥​f​ i​​ − ​f​ j​​ ​∥​​ 2​​	

under the constraints
1) ∥fi − fj∥2 = length (bars) = constant if ij is an incompressible bar
2) ​∥​f​ i​​ − ​f​ j​​ ​∥​​ 2​  ≥ ​ l​ij​ min​​ if ij is a spring of minimal length ​​l​ij​ min​​
3) ​∑ torque  = ​  ∑ 

j:ij∈E
​​​( ​f​ i​​ × ( ​f​ i​​ − ​f​ j​​ ) ) = 0​

where × denotes the cross product in three dimensions. This amounts 
to a polynomial optimization problem over semialgebraic sets. How-
ever, the number of variables in the problem is too high for the usual 
sums of squares/semidefinite programming–based approach in 
polynomial optimization [implemented in the packages like GloptiPoly 
(26)], resulting in memory overflow. Thus, we used the solvers of 
constrained optimization preimplemented in MATLAB. These solvers 
cannot guarantee to find a globally optimal solution; however, they 
will find local equilibrium configurations. MATLAB provides mul-
tiple solvers (27) that give consistent results for our problem. Here, 
we use the results obtained by the interior point algorithm (28), 
which replaces the inequality constraints by a sequence of equality 
constrained minimization problems involving logarithmic barrier 
functions that are solved either by Newton’s method or conjugate 
gradient steps.

We perform the quasi-static extension (and then subsequent com-
pression) of the structure with small step sizes (0.0025) by changing 
the lattice parameter length of the structure in one direction (in this 

Fig. 7. Deformation of a 3D print of a block of the tensegrity structure. The object 
is printed using rubber-like thermoplastic polyurethane material. The full structure 
is printed in the same material, so there is no differentiation made between the 
incompressible bars and the elastic elements. Despite this highly simplified design, 
we still observe auxetic behavior.



Oster et al., Sci. Adv. 7, eabj6737 (2021)     10 December 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

6 of 6

case, the x direction) while observing how the structure reacts to 
this deformation and finds a new equilibirum. The lattice parameter 
lengths perpendicular to the deformation direction (in this case, y 
and z directions) are free variables in the optimization process. At 
this point, it is important to consider a minimal spring length to 
avoid collapse of the structure. The cubic symmetry of the structure 
ensures the generality of choosing a single deformation direction.

In the context of the 3D material consisting of elastic elements, 
we apply the FEM to 3D lattice assemblies of n × n × n bmn unit 
cells, shown in Fig. 1, where n is an integer number that assigns the 
number of unit cells. The FEM simulations were performed in the 
commercial software COMSOL Multiphysics. The elastic elements 
are modeled as intrinsically 1D variational problems, i.e., using line 
elements for an Euler-Bernoulli beam formulation. This implies 
that the elastic elements, in contrast with the idealized strut ele-
ments and cable elements, are all subjected to line tensions and 
bending moments. We assume that the cross sections of the elastic 
elements are circular, where the strut elements have diameter ds and 
cable elements dc. A Hookean rubber-like material is chosen, where 
the Young’s modulus is E = 0.1 GPa and Poisson’s ratio  = 0.49—
because auxeticity is dominated by geometry, the choice of base ma-
terial does not play a key role in our discussion. We searched for 
solutions with the default stationary solver, where Newton’s meth-
od is implemented. Mesh refinement studies were undertaken to 
ensure convergence of the results.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/ 
sciadv.abj6737
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