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Abstract

Background: Multi-state models are being increasingly used to capture complex disease pathways. The convenient
formula of the exponential multi-state model can facilitate a quick and accessible understanding of the data.
However, assuming time constant transition rates is not always plausible. On the other hand, obtaining predictions
from a fitted model with time-dependent transitions can be challenging. One proposed solution is to utilise a general
simulation algorithm to calculate predictions from a fitted multi-state model.

Methods: Predictions obtained from an exponential multi-state model were compared to those obtained from two
different parametric models and to non-parametric Aalen-Johansen estimates. The first comparative approach fitted a
multi-state model with transition-specific distributions, chosen separately based on the Akaike Information Criterion.
The second approach was a Royston-Parmar multi-state model with 4 degrees of freedom, which was chosen as a
reference model flexible enough to capture complex hazard shapes. All quantities were obtained analytically for the
exponential and Aalen-Johansen approaches. The transition rates for the two comparative approaches were also
obtained analytically, while all other quantities were obtained from the fitted models via a general simulation
algorithm. Metrics investigated were: transition probabilities, attributable mortality (AM), population attributable
fraction (PAF) and expected length of stay. This work was performed on previously analysed hospital acquired
infection (HAI) data. By definition, a HAI takes three days to develop and therefore selected metrics were also
predicted from time 3 (delayed entry).

Results: Despite clear deviations from the constant transition rates assumption, the empirical estimates of the
transition probabilities were approximated reasonably well by the exponential model. However, functions of the
transition probabilities, e.g. AM and PAF, were not well approximated and the comparative models offered
considerable improvements for these metrics. They also provided consistent predictions with the empirical estimates
in the case of delayed entry time, unlike the exponential model.

Conclusion: We conclude that methods and software are readily available for obtaining predictions from multi-state
models that do not assume constant transition rates. The multistate package in Stata facilitates a range of
predictions with confidence intervals, which can provide a more comprehensive understanding of the data.
User-friendly code is provided.
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Background

Multi-state models are being increasingly used to investi-
gate complex disease pathways, for example, when interest
lies in subsequent and/or intermediate events as well as
a primary event. This unified approach facilitates a bet-
ter understanding of the whole disease profile and pro-
vides clinically relevant predictions, for example, transi-
tion probabilities and expected duration in each state. One
example is in breast cancer, where the time to interme-
diate events, such as local recurrence and distant metas-
tases, is of interest as well as overall survival [1]. Another
example is repeated hospitalisations in patients with heart
failure, where interest lies in the time spent in hospital
(during each episode and in total) [2]. Further applica-
tions include other cancers (colorectal [3, 4], ovarian [5]
and acute myeloid leukemia [6]), progression to diabetes
[7], health-care associated urinary tract infections [8] and
pleural effusion following allogeneic hematopoietic stem
cell transplantation [9].

Semi- and non-parametric methods have been fre-
quently used to analyse multi-state models, however,
interest is growing in parametric approaches. Although a
variety of complex parametric models can relatively easily
be fitted to each transition; the difficulty lies in obtaining
the corresponding predictions from the full multi-state
model. Assuming an exponential Markov model allows
for direct calculation of the transition probabilities, as
the Kolmogorov forward equations can be solved ana-
lytically, however, assuming constant transition rates can
be restrictive. Piecewise exponential models relax this
assumption [10], however, discontinuous transition rates
may not be biologically plausible. Another suggestion has
been to model the transition rates of a Markov model
with quadratic B-splines and obtain predictions by numer-
ically solving the Kolmogorov forward equations [11].
This paper focuses on a general simulation algorithm to
obtain predictions from a range of fitted parametric mod-
els [12], including Royston-Parmar models [13]. In terms
of implementation, available software includes: mstate
in R [14] for semi- and non-parametric methods; msm in
R [10] for exponential and piecewise exponential models;
flexsurvinR [15] for fitting models and obtaining pre-
dictions by numerically solving the Kolmogorov forward
equations; and flexsurv in R [15] or multistate in
Stata [12] for the general simulation algorithm, the latter
following model fitting by merlin [16, 17].

Von Cube et al. [18] recommended the exponential
model as an accessible approach to obtain a quick, gen-
eral understanding of the data. The authors demonstrated
this method on hospital acquired infection (HAI) data: an
extended illness-death model where a patient can have a
HALI (intermediate event) and then/or be discharged or
die (competing risks, the death/discharge with HAI are
distinct from those without, resulting in 6 states). Von
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Cube et al. [18] acknowledged the potential implausibility
of time constant transition rates (saying that this assump-
tion is rarely met in practice) and recommended more
sophisticated methods if the assumption was violated.

In this paper, we compare the method described in von
Cube et al. [18] to the approach described in Crowther
and Lambert [12]. We demonstrate that there is accessible
software - namely the multistate package in Stata
[12] - to obtain transition probabilities from multi-state
models with transition-specific (and time-dependent) dis-
tributions. We then extend the previous analysis [18] by
presenting, and highlighting the importance of, uncertain-
ties and by estimating length of stay.

This paper is organised as follows: the “Methods”
section introduces the multi-state process, illustrative
example, metrics of interest and analysis approaches. The
“Results” section displays the quantities of interest graph-
ically, including comparisons between the approaches and
confidence intervals for the predictions. The “Discussion”
section provides recommendations for future analyses.
User-friendly code for the illustrative example is provided
in Additional file 1.

Methods

Multi-state models

Following Fiocco et al. [19], consider a stochastic process
Y(¢), t > 0 with a finite state space Z = {1,...,Z} and
process history up to time s, Hs = {Y(4);0 < u < s}. The
transition probabilities can then be defined as:

P(Y(t) = blY(s) = a, Hs-) (1)

This is the probability that a patient in state a at time s
moves to state b by time ¢, conditional on the process his-
tory up until the time just before s, H,_, where a,b € Z.
This can be simplified to a Markov model, which makes
the assumption that the probability in Eq. 1 is only condi-
tional on the state at time s and no other process history:

PY () =blY(s) =a,Hs—) =P(Y () =b|Y(s) =a) (2)

Henceforth, let P, (s, ) represent the transition prob-
ability given in Eq. 2. This paper focuses on Markov
models.

The transition rate, or transition hazard, from state a to
state b at time ¢ is:

P(Y(¢t+ 8t) = b|Y(t) = a)
ot

hyp(t) = SItiLnO

This represents the instantaneous failure rate of moving
from state a to b and is analogous to the hazard function
in the standard survival setting. The collection of transi-
tion rates governs the rate at which patients move between
states and therefore the multi-state model. For a tutorial
in multi-state models see Putter et al. [20].
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Another useful measure is the restricted length of stay
in a state. This is analogous to restricted mean survival in
the standard survival setting [21]. The residual, restricted
expected length of stay in state b given a patient is in (non-
absorbing) state a at time s is:

t
eqp(s,t) = / P(Y(u) = b|Y(s) = a)du

See Grand and Putter [22] for more details on expected
length of stay.

The extended iliness-death model for HAIs

This paper considers a multi-state model in the con-
text of hospital acquired infections (HAIs), as previously
described by von Cube et al. [18]. When a patient is admit-
ted to hospital, they are at risk of acquiring a HAIL, which
could lead to an increased hospital stay or increased risk
of (hospital) death. An extended illness-death model with
six states and five transitions, as illustrated in Fig. 1, has
been used to investigate the risks and consequences of
HAIs. The time scale is days since hospital admission. All
patients begin in state 1 at time 0, where the patient has
been admitted to hospital but does not have an infection.
The patient will then either become infected (state 2), be
discharged without an infection (state 3) or die without an
infection (state 4). If the patient acquires an infection, they
will then either be discharged (state 5) or die (state 6) with
an infection. The i transition rate from state ; to b; has
been denoted as /;(t) where:

{a1,a2,as3,a4,a5} = {1,1,1,2,2}
{blr b2’ bB’ b4,, b5} = {2’ 3) 4" 5) 6}

Metrics of interest

The first metric of interest was transition probabilities
from state 1 at time 0, P1,(0,¢), b = {1,2,3,4,5,6}. By
definition, HAIs take at least three days to develop [18]
and so there were no HAI events prior to time 3 (3 days
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after hospital admission). Therefore, transition probabili-
ties from state 2 at time 3, Py, (3, %), b = {2, 5, 6}, were also
estimated.

Following the formulas from Schumacher et al. [23] and
von Cube et al. [18], let P1p(s, £) denote the probability of
dying (states 4 or 6) by time ¢, given a patient was in hospi-
tal without a HAI (state 1) at time s. Let P16+ (s, t) denote
the probability of dying with a HAI (state 6) by time ¢,
given a patient was in hospital without a HAI (state 1) at
time s and had become infected (states 2, 5 or 6) by time
t. Similarly, let P14/ (s, t) denote the probability of dying
without a HAI (state 4) by time ¢, given a patient was in
hospital without a HAI at time s and in a non-infected
state (states 1, 3 or 4) at time ¢. The quantities can be
calculated as follows:

Pip(s,t) =P(Y(t) € {4,6}|Y(s) = 1)
= P14(S, t) + P16(S’ t)

Pigl+(s,0) =P(Y(®) = 6]Y(s) = 1, Y(¥) € {2,5,6})
_ Pis(s, 1)
 Pia(s,8) + Pi5(s, ) + Pie(s, )
Pry_(s,t) =P(Y(t) =41Y(s) =1, Y (@) €{1,3,4})
_ Pra(s, t)
~ Pri(s,t) + P13(s, ) + Pra(s, )
The second set of metrics of interest were attributable
mortality (AM) and population attributable fraction
(PAF). AM and PAF can be used to investigate the exces-

sive risk of dying due to HAIs, see references for discus-
sion [18, 23].

AM(s,t) = P1g|+(s,t) — P1aj—(s, ) (3)
P ,b) — Pra)—(s, t
PAE(s,t) = 1D(8, ) — P14)— (s, £) @)
Pip(s, 1)
AM and PAF were estimated from time 0 (i.e. s = 0 in

Egs. 3 and 4).

The third metric of interest was expected length of stay.
Given a patient started in state 1 at time 0, the following
quantities were estimated: restricted length of stay in state

State 1:

hy (1)

State 2:

Admission to hospital

” Hospital acquired infection

h, (1) h3(t) hy(t) hs(t)
State 3: State 4: State 5: State 6:
Discharge (no HAI) Death (no HAI) Discharge (HAI) Death (HAI)

Fig. 1 Extended illness-death model for discharge and death with and without a hospital acquired infection (HAI)
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1 (e11(0,1)), in state 2 (e12(0,t)) and overall in hospital
(e11(0,t) + €12(0, £)). Due to the three day delay in devel-
oping a HAI the residual, restricted length of stay in state
2, conditional on having entered state 2 by time 3, was also
of interest (e2(3,£)). These were calculated up until the
last event time (from any transition).

Analysis approaches

The three (set of) metrics were obtained from three
models. The predictions from the different models were
compared against each other and against non-parametric
Aalen-Johansen estimates. Note that we use the terms
“Aalen-Johansen” and “empirical” interchangeably to refer
to the non-parametric estimates. The Aalen-Johansen
estimator generalises the Kaplan-Meier estimator to
Markov multistate processes. The metrics are obtained
analytically, see Additional file 2 for brief details or
the following references for more comprehensive details
[24-26)].

The first approach was to fit an exponential model
to each of the transitions and obtain the metrics ana-
lytically, as was demonstrated by von Cube et al. [18].
This approach was referred to as the “Exp” model. The
parametrisation of all three models is presented in Addi-
tional file 2.

The second approach was to select the best fitting dis-
tribution for each transition based on the Akaike Infor-
mation Criterion (AIC), henceforth denoted the “AIC”
model. Following Crowther and Lambert [12], to each
transition the following parametric models were applied:
exponential, Weibull, Gompertz, log-logistic, log-normal,
generalised gamma and Royston-Parmar models [13] with
2 to 5 degrees of freedom. The confidence intervals for
the transition rates were obtained using the delta method.
Once the multi-state model was fitted analytically, with
the best fitting distribution for each transition, the general
simulation algorithm was applied to obtain the metrics,
see the next section for more details.

The third approach was to fit a Royston-Parmar model
with 4 degrees of freedom to each of the transitions,
henceforth denoted the “RP(4)” model. This was chosen
as a reference parametric model for comparison purposes,
as it should have sufficient flexibility to capture most
complex hazard shapes. A recent sensitivity analysis of
Royston-Parmar models [27] suggested that 4 degrees of
freedom can adequately capture the baseline hazard. The
analysis was performed in a relative survival setting; how-
ever, the conclusions can be applied to standard survival
[27]. Once the multi-state model was fitted analytically,
the general simulation algorithm was applied to obtain the
metrics.

Simulation algorithm
The simulation algorithm works by projecting a patient
through the multi-state model in order to create their full
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event history. This is done a large number of times and
the metrics of interest are calculated empirically from the
large complete set of histories. The process will now be
described in brief, for further details see Crowther and
Lambert [12]. Let a be the starting state, entered at time
t,. If desired, specify a maximum follow-up time ¢,,,. For
each simulated patient, following the algorithm of Fiocco
et al. [19] and Crowther and Lambert [12], repeat the
following:

1 Let B be the set of states that can be reached from
state  and let N be the cardinality of set 3. If
N, = 0 (i.e. a is an absorbing state), stop. Otherwise,
for each state b € B, let h,;(t) represent the
transition rate from a — b.

2 For each state b € B, use h,,(¢) to simulate event
times ¢7, conditional on entering state a at time ¢,.
Event times are simulated using the general inversion
method described in Crowther and Lambert [28].

3 The obseryed event time is then
tr=min\ty,. .., t;N,/ bnax (- I £ = tax, stop.

4 Seta = cwheret* =t},ce Bandsett, =t*

The algorithm above is repeated for a large N number
of patients. The transition probabilities are then estimated
by calculating the proportion of simulated patients in each
state at each time point of interest. The full event history
of the simulated patients is known and therefore extended
predictions can easily be obtained. For example, expected
length of stay can be calculated by averaging the time
spent in each state (up to each time point of interest) over
all patients.

Let b be the vector of parameter estimates and V be
the variance-covariance matrix from the fitted multi-state
model (note that it is b that is used to obtain the transition
rates /1,5 (¢) in the algorithm above). Confidence intervals
can be obtained by drawing from a multivariate normal
distribution with mean b and variance V M times [12,
19]. For each draw m, the simulation algorithm above is
repeated using the sampled b, instead of b to calculate the
transition rates (and therefore event times). The variance
of the M sets of estimates is then calculated and used to
produce confidence intervals via normal approximation.

When the general simulation approach was utilised,
1000000 simulated patients were used (N = 1000000)
for the point estimates. 100000 simulated patients (N =
100000) were repeated 500 times (M = 500) for the corre-
sponding confidence intervals. These values were chosen
as a balance to minimise the Monte Carlo error and com-
putational time. To produce the confidence intervals for
the transition probabilities from the “AIC” model, where
probabilities were calculated at 165 equally spaced time
points, took 48.5 minutes on a standard HP laptop with i5
processor and 8 GB of RAM.
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Software

All analyses were performed in Stata version 15.1 and
the code can be found in Additional file 1. The paramet-
ric transition rates were obtained using merlin, version
1.12.0 dated 20/09/2020. All predictions and confidence
intervals obtained via the general simulation algorithm
were achieved using predictms, version 4.0.0 dated
28/10/2020, from the multistate package. The Aalen-
Johansen estimates were obtained using msaj, version
1.0.1 dated 11/09/2020, also part of the multistate
package.

Results

Data

The analysis was performed on the publicly available
los.data from the R package etm [24]. This is a sample
from an observational cohort study conducted to analyse
the burden of HAIs in intensive care, see Beyersmann et al.
[29] for details. 756 patients were admitted to hospital (all
patients started in state 1 at time 0). 632 patients did not
acquire an infection during the study, of which 475 were
discharged and 157 died. 124 patients did acquire an infec-
tion, of which 90 were discharged and 34 died. There was
no censoring in this sample and the last event occurred 82
days after admission.

Transition rates

Table 1 gives the AIC for each distribution fitted to each
transition separately. The AIC indicated that the follow-
ing models gave the best fit for each transition and were
therefore chosen for the “AIC” model:

1 Transition 1: Royston-Parmer model with 4 degrees
of freedom.

2 Transition 2: Generalised gamma model.

3 Transition 3: Royston-Parmer model with 4 degrees
of freedom.

4 Transition 4: Log-normal model.

5 Transition 5: Generalised gamma model.
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Figure 2 illustrates the transition rates from the “AIC”
model. The point estimates and confidence intervals are
shown from the time of the first event until the last event
for each transition by a solid line. The corresponding
intervals were [3,40], [3,82], [3,69], [5,78] and [ 6, 54]
for transitions 1-5, respectively. The point estimates were
extrapolated to cover the interval [0, 82] with a dashed
line. It was evident that the transition rates were not
constant over time and transition 2 (admission to dis-
charge without HAI) appeared to deviate most drastically
from this assumption. Additional file 3: Figure S1 com-
pares the transition rates from the “AIC” model to the
“Exp” model, “RP(4)” model and to non-parametric esti-
mates obtained using the Epanechnikov kernel smoother.
The smoothed non-parametric estimates varied depend-
ing on the kernel type and bandwidth used, how-
ever, in all cases, the transition rates were clearly not
constant.

Transition probabilities

Figure 3 compares the transition probability estimates
from the three approaches with empirical estimates (start-
ing in state 1 at time 0). The predictions from the
“AIC” and “RP(4)” models had high concordance with
the Aalen-Johansen estimates. As von Cube et al. noted
[18], despite clear departures from the constant transi-
tion rates assumption, the “Exp” model performed well
for states 4, 5 and 6 (death without HAI, discharge with
HAI and death with HAI). There were some discrepancies
with states 1, 2 and 3 (hospital admission without HAI,
with HAI and discharge with HAI) up to 30 days after
admission. Importantly, the predictions obtained from the
“AIC” and “RP(4)” models captured the three day delay in
acquiring a HAI (and in fact the delay in experiencing any
event, as the minimum event time was 3 days since admis-
sion), which the “Exp” model could not capture. Where
estimates are shown comparing approaches in the main
body of the paper, Additional file 3: Figures S2, S5 and S6

Table 1 AIC for each parametric model fitted to each transition separately (to determine the “AlC" model)

Model Transition 1 Transition 2 Transition 3 Transition 4 Transition 5
Exponential 1229.7 34289 1482.3 691.6 328.7
Weibull 1208.6 3363.2 14259 692.5 3300
Gompertz 12301 3430.1 1475.6 6934 3284
Log-logistic 1193.8 3204.2 1389.6 6874 3282
Log-normal 11757 31826 13747 686.6 3280
Generalised gamma 1141.9 30476 1361.0 687.3 3250
R-P DF=2 1168.1 3163.1 1367.3 687.7 327.1
R-P DF=3 1141.5 30814 1367.0 687.9 3283
R-P DF=4 1136.8 30725 1361.0 689.1 328.7
R-P DF=5 11385 3070.3 1363.3 690.8 3303

R-P = Royston-Parmar, DF = Degrees of freedom
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Fig. 2 Transition rates from the “"AlC" model with 95% confidence intervals (shaded region). Point estimates and confidence intervals were defined
from the time of the first event until the last event for each transition (solid lines). The point estimates were extrapolated to cover the interval [0, 82]

(dashed line)

show the corresponding graphs for the “AIC” model with
confidence intervals.

Additional file 3: Figure S3 illustrates the transition
probabilities conditional on being in state 2 (in hospi-
tal with a HAI) by time 3. Predictions from the “AIC”
and “RP(4)” models were slightly more consistent with
the empirical estimates than those from the “Exp” model
(especially in the first 20 days). Additional file 3: Figure S4
is the corresponding graph for the “AIC” model with
confidence intervals.

Attributable mortality and population attributable fraction
About 20-25 days after hospital admission, AM was above
0 for the “AIC” and “RP(4)” models. This suggested that
after 25 days, the probability of dying was greater for those
with an infection than for those without. AM can be inter-
preted as, for example: an individual that acquired a HAI
by time 10 had a 4.7 percentage point decreased proba-
bility of dying by time 10 compared to an individual who
did not acquire a HAI. Alternatively, an individual that
acquired a HAI by time 30 had a 1.4 percentage point
increased probability of dying by time 30. These results
were similar for PAF, suggesting that after 25 days the
occurrence of a HAI increased the risk of death and there-
fore the overall probability of dying. PAF can be inter-
preted as, for example: the proportion of individuals dying
by time 10 would have increased by 4.2% if there were no
HAIs. Alternatively, the proportion of individuals dying

by time 30 would have decreased by 0.9% if there were no
HAISs (all predictions from the “AIC” model). Schumacher
et al. [23] describes the phenomenon of the AM and PAF
initially being lower than 0.

The relative differences in predictions between the
models were greatest for AM and PAF, see Fig. 4 (although
the absolute differences were small). The “Exp” model
appeared to overestimate (until 15 days after admis-
sion) and then underestimate AM and PAF considerably;
whereas both “AIC” and “RP(4)” predictions appeared to
approximate the empirical estimates well. There was a
slight inconsistency with the “AIC” model and the empir-
ical estimates towards the end of the time window, how-
ever, this should not be over-interrupted due to the small
number of events occurring past 50 days.

Length of stay

Figure 5 illustrates the restricted expected length of stay
for the three models with empirical estimates (starting in
state 1 at time 0). The graph can be interpreted as follows:
82 days since hospital admission, on average a patient
spent 8.68 (95% CI 8.04,9.39) days in hospital without a
HAI and 1.98 (95% CI 1.53,2.58) days in hospital with a
HALI (estimates taken from the “AIC” model). The empir-
ical estimates were slightly better approximated by the
“AIC” and “RP(4)” models (especially in the first 20 days).
The confidence intervals for total hospital stay for the
“AIC” model are shown in Additional file 3: Figure S7.



Hill et al. BMC Medical Research Methodology (2021) 21:16 Page 7 of 10

Admission Discharge no HAI Death no HAI
1.0 1.0 1.0
0.8 0.8 0.8
2 2 2
= 0.61 = 0.61 = 0.61
fe] Ke} Ko}
(3] (3] ®
fe] Ko} Ko}
2 0.4+ Q2 0.4+ © 0.4+
o o o
0.2 0.2 0.2 f
0.0 0.0 0.0
T T T T T T T T T T T T T T T
0 20 40 60 80 0 20 40 60 80 0 20 40 60 80
Days since admission Days since admission Days since admission
HAI Discharge after HAI Death after HAI
1.0 1.0 1.0 Al
0.8- 0.8 0.8 — Exp
2 > > — RP 4)
= 0.6 = 0.6 = 0.6 — AIC
(3] ® ©
Qo Qo Qo
9 0.4+ Q 0.4+ 2 0.4+
o o o
0.2 0.2 0.2
0-0 . M 00 . /,—_ 00 . /
T T T T T T T T T T T T T T T
0 20 40 60 80 0 20 40 60 80 0 20 40 60 80
Days since admission Days since admission Days since admission

Fig. 3 Transition probabilities from state 1 at time 0 to each state for the different approaches: “AJ" (black), “Exp” (blue), “RP(4)" (red) and “AlC"
(green). Note that there is considerable overlap between the “RP(4)” and “AlC" estimates

Attributable mortality Population attributable fraction
0.02 0.02
0.004 \ 0.00 -\
_ -0.02- = -0.02
g T
5 G
= <
<
0.04 & 004
-0.06 -0.06
— AJ
— Exp
-0.08 -0.08 — RP()
— AIC
T T T T T T T T T T
0 20 40 60 80 0 20 40 60 80
Days since admission Days since admission

Fig. 4 Attributable mortality (AM) and population attributable fraction (PAF) of HAIs for the different approaches: “AJ” (black), “Exp” (blue), “RP(4)"
(red) and "AIC" (green)




Hill et al. BMC Medliical Research Methodology (2021) 21:16

Page 8 of 10

Admission state

Length of stay (days)

T T T T T
0 20 40 60 80
Days since admission

HAI state
— AJ
8- — Exp
— RP(4)
— AIC
BA
m
>
©
h=2
>
8
(2]
G 4
N
is)
c
(0]
-
2A
OA
T T T T T
0 20 40 60 80

Days since admission

Fig. 5 Length of stay in hospital without (state 1, left) and with (state 2, right) a HAI from state 1 at time O for the different approaches: “AJ" (black),

"Exp” (blue), “RP(4)" (red) and "AIC" (green)

Figure 6 illustrates the residual, restricted expected
length of stay, conditional on being in state 2 (in hospi-
tal with a HAI) by time 3. Between the interval [3, 82]
days, a patient would have spent on average 13.61 (95% CI
11.30, 16.26) days in hospital with a HAI, given they had a
HAI and were in hospital by time 3 (estimates taken from

the “AIC” model). While predictions obtained from the
“AIC” and “RP(4)” models were consistent with empirical
results, Fig. 6 shows a large discrepancy between the latter
and the “Exp” model. In the context of health economics,
such differences could be non-trivial when translated into
costs.
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Fig. 6 Residual length of stay in hospital with a HAI (state 2) from state 2 at time 3. In the left panel, for the different approaches:"AJ” (black), “Exp”
(blue), “RP(4)" (red) and “AIC" (green). In the right panel, for the “AIC" model (solid line) with 95% confidence intervals (shaded region)
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Discussion

Assuming constant transition rates in a multi-state model
can facilitate a basic understanding of the data and this
approach has been well demonstrated by von Cube et al.
[18]. However, this assumption may not always be plau-
sible and, as a result, predictions may be misspecified.
In the example shown, despite the transition rates not
being constant (Fig. 2), the transition probabilities from
the “Exp” approach were similar to the Aalen-Johansen
estimates. However, this was not the case for some func-
tions of the transition probabilities, for example, AM and
PAF (Fig. 4). In addition, predictions from the “Exp” model
starting in state 2 at time 3 had poorer concordance with
the non-parametric estimates (Additional file 3: Figure S3
and Fig. 6).

This paper compared the “Exp” model to two paramet-
ric approaches, where predictions from the latter were
obtained from the fitted model via a general simulation
algorithm. The “AIC” and “RP(4)” predictions were more
consistent with the Aalen-Johansen estimates than the
“Exp” model for all metrics. The greatest improvements
were seen in AM and PAF and when considering delayed
entry (predictions starting from state 2 at time 3).

As with any parametric approach, assumptions need to
be made regarding the most appropriate distribution for
each transition. A balance needs to be sought in terms
of parsimony and sufficient parameters to appropriately
capture the hazard shapes. This work has highlighted the
challenges of model selection as the “AIC” model (i.e.
the collection of the best fitting distributions for each
transition in terms of AIC) did not always have better con-
cordance with the non-parametric estimates compared
to the reference “RP(4)” model. Regardless of approach,
we would always recommend sensitivity analyses around
the assumptions of the baseline hazard. It is important to
note that both approaches still performed better than the
“Exp” model. For this data example, a conditional para-
metric model would have been more appropriate for any
transitions that could not have happened before day 3 (by
definition or design of the study). We chose not to con-
sider a conditional model to be consistent with, and allow
easier comparison with, the motivating paper by von Cube
etal. [18].

In addition to being able to model the transitions with
a range of parametric distributions, the general simu-
lation algorithm has other advantages. It easily lends
itself to extended predictions, such as length of stay, the
probability of ever visiting a state and disease specific
quantities, such as AM and PAF. Uncertainties can easily
be obtained, which can facilitate a more comprehensive
understanding of the data. There is also great flexibil-
ity available when modelling covariate effects, including
time-dependent effects [12]. The approach generalises
to more complex multi-state models, i.e. models with a
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greater number of states, greater number of transitions
and backward transitions. It can also be applied to non-
Markov models, unlike methods that rely on solving the
Kolmogorov forward equations to obtain predictions.

A disadvantage of the general simulation algorithm
is computational time. Although point estimates can
be obtained relatively quickly, confidence intervals can
require a considerable amount of time, especially in the
case of more complicated user-defined functions. A bal-
ance between computational time and Monte Carlo error
is therefore needed when choosing N (number of sim-
ulations) and M (number of repetitions for confidence
intervals). One possible alternative would be to use a
hybrid approach when calculating predictions, where the
transition rates obtained through parametric methods are
substituted into the non-parametric Aalen-Johansen esti-
mator [15, 30]. This approach would greatly decrease
computational time, however, is only applicable to Markov
models.

Conclusion

We conclude that methods and software are readily avail-
able for obtaining predictions from multi-state mod-
els that do not assume constant transition rates. The
multistate package in Stata facilitates a range of pre-
dictions with confidence intervals obtained from a fitted
multi-state model via a general simulation algorithm. We
agree that assuming constant transition rates can provide
a quick, basic understanding of the data; however, we rec-
ommend a more sophisticated parametric approach for a
comprehensive understanding that includes uncertainty.
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