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Bisphenol A (BPA) produced from biomass is a typical endocrine disrupting compound

that is carcinogenic and genotoxic and can be accumulated in water due to its

extensive use and difficult degradation. In this study, the porous ZnO photocatalyst with

core-shell structure and large surface area was successfully developed for the efficient

photocatalytic degradation of BPA. The various effects of calcination temperatures, BPA

concentrations, ZnO dosages, pH and inorganic ions on the degradation performance

were systemically studied. The results showed that 99% degradation of BPA was

achieved in 1 h using the porous ZnO calcined at 550◦C under the conditions of 30

mg/L BPA, 1 g/L ZnO, and pH of 6.5. Besides, the inhibition effects of anions for the

photocatalytic removal of BPA decreased in the order of H2PO
−

4 >HCO−

3 > SO2−
4 >Cl−,

while the cations K+, Ca2+, and Na+ had little effect on the photocatalytic degradation

of BPA. The results of scavenging experiments showed that h+, ·O−

2 , and e− played

the key role in the photocatalytic degradation process. Finally, the main pathways of

BPA degradation were proposed based on ten intermediates found in the degradation

process. This workmay provide a good guideline to degrade various endocrine disrupting

compounds in wastewater treatment.

Keywords: photocatalytic degradation, BPA, porous ZnO, kinetics, mechanisms

INTRODUCTION

Bisphenol A (BPA) derived from biomass is usually utilized as the stabilizing agent in the processing
of plastics and epoxy resins. In 2015, around 7.7 million metric tons of BPA was consumed with an
annual increase of almost 5% until 2022 all over the world (Ozyildiz et al., 2019; Wang et al., 2019).
However, BPA is regarded as a typical endocrine disrupting compound (EDC) and is carcinogenic
and genotoxic. 193 ng/L BPA was detected in the surface water and 39 ng/L in the subsurface and
bottom waters (Rachna et al., 2019). The release of BPA into the environment poses a threat to
human health even at low exposure levels (Selvakumar et al., 2019). As is well-known, BPA is stable
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in an aqueous solution and is refractory to degradation because
it consists of two benzene rings in a symmetrical structure. Thus,
it is very urgent and significant to develop effective processes for
BPA removal from water (Ye et al., 2019; Zhang et al., 2019).

Photocatalysis has been considered to be one of the promising
technologies for degradation of BPA (He et al., 2019a; Sabouni
and Gomaa, 2019). Among various semiconductor metal oxides,
ZnO is one of the most extensively studied photocatalysts used
to degrade dyes such as acid violet (González-Casamachin et al.,
2019), rhodamine B (Hao et al., 2019; Lops et al., 2019), reactive
red (Rezk et al., 2019), etc. Nevertheless, some limitations such as
ultraviolet light response and low quantization efficiency hinder
its practical application. Recently, the strategy of doping has
been carried out to enhance photocatalytic degradation activity
of BPA (Meng et al., 2015; Vaiano et al., 2018). Bechambi et al.
(2015c, 2016) showed that the Ce-[15] doped ZnO obtained
the complete degradation of BPA after 24 h of UV irradiation.
Bechambi et al. (2015b) also developed the C-[15]doped ZnO
photocatalyst to promote the photodegradation of BPA. Kamaraj
et al. (2014) doped Ce in ZnO to generate a sunlight-active
photocatalyst which could degrade 98% 10 mg/L BPA in 8 h
under sunlight in the summer. The photocatalytic degradation of
BPA was also enhanced by the modification of ZnO with doping
Ag (Jasso-Salcedo et al., 2014; Bechambi et al., 2015a).

As is well-known, the morphological features and surface
area have a great influence on the photocatalytic activity
(Dong et al., 2017; He et al., 2019b; Wetchakun et al., 2019).
Fabrication of different morphological features of ZnO is
another strategy to optimize the photocatalytic performance
(Dong et al., 2020). The rational design of nanostructured
ZnO with morphological features (such as: spherality, core-shell,
nanowire and nanosheet etc.) and high effective surface area
can make extraordinary progress in enhancing the activities for
photocatalysis applications (Theerthagiri et al., 2019). Taylor et al.
(2019) synthesized ZnO nanowire and reported the enhanced
photo-corrosion resistance, the improved photo-response, and
stability. Qi et al. (2013) fabricated ZnO nanoflower to eliminate
methyl orange which exhibited higher photocatalytic activity
than ZnO fragments. Our previous works also showed that
the mesoporous structure was beneficial for the photocatalytic
performance (Hu et al., 2020; Li et al., 2020; Wang et al., 2020b).

Herein we reported the mesoporous ZnO photocatalyst
with core-shell structure and large surface area which was
controllably synthesized by a hydrothermal synthesis method
with the aid of urea. So far, there is little investigation of the
control of the structure of ZnO to improve the photocatalytic
activity for photodegradation of BPA. In this study, the
prepared ZnO photocatalyst showed better performance for the
photodegradation of BPA than the ones reported in the previous
literature. A combination analysis of XRD, XPS, SEM, TEM,
and HR-TEM was conducted to investigate the physicochemical
properties, morphology, and structure of the prepared ZnO.
Furthermore, the various effects of calcination temperatures, BPA
concentrations, ZnO dosages, pH, and inorganic ions on the
degradation performance were systematically analyzed. Besides,
scavenging experiments and electron spin resonance (ESR)
technique were performed to investigate reaction mechanisms.

The main pathways of BPA degradation were also rationally
deduced based on the identified intermediates by LC-MS.

METHODS AND MATERIALS

Chemicals
Zinc acetate dihydrate (99.99%), bisphenol A (99%), and
hydrogen peroxide (30 wt.%) were purchased from Aladdin
(Shanghai, China). Urea (99%), tert-butyl alcohol (99.5%),
p-benzoquinone (99%), ammonium oxalate (98%), sodium
hydroxide (97%) and dimethyl sulfoxide (99.7%) were obtained
from Macklin (Shanghai, China). The other chemicals were
at least analytical reagents and utilized directly without
any purification.

Synthesis of Porous ZnO
In a typical synthesis, 0.002mol zinc acetate dihydrate and
0.02mol urea were stirred for 2 h at room temperature under
400 rpm to dissolve in 40mL deionized water. Then, the solution
was transferred into a 100mL Teflon-lined stainless autoclave
which was kept at 140◦C for 3 h and finally cooled naturally. The
procedure adopted for the synthesis of porous ZnO photocatalyst
was depicted in Figure 1. The sample obtained was washed with
the deionized water and absolute ethanol for several times and
then treated with centrifugation under 10,000 rpm in 5min. After
drying in air at 80◦C for 12 h, the residual powder was calcined
at various temperatures (350◦, 450◦, 550◦, and 650◦C) for 6 h
with a heating rate of 3◦C/min in air. Then, the combination
analysis of XRD, XPS, SEM, TEM, and HR-TEM was conducted
on the as-prepared samples. The detailed information is shown
in Supporting Information (SI).

BPA Photocatalytic Degradation
Procedures
The photocatalytic performance tests of porous ZnO
photocatalysts were investigated under a 300W Xenon lamp
(CEL-PF300-T8E, Beijing China Education Au-light Co., Ltd.),
which was used to simulate sunlight irradiation. The as-prepared
ZnO photocatalyst (50mg) was added to 50mL BPA solution.
Then, the suspension was treated by ultrasound for 2min and
stirred for 30min to reach adsorption equilibrium in the dark. At
15-min intervals, ∼1.0ml solution was withdrawn for analysis
after the catalyst was removed through a 0.22µm PTFE filter.
The BPA concentration was detected using a high-performance
liquid chromatography (HPLC, Shimadzu LC-20A) with
column temperature at 30◦C. The mobile phase composition was
ultrapure water/methanol (30/70, v/v). The flow rate was kept at
1 ml/min and the injection volume was 10 µl.

RESULTS AND DISCUSSION

Characterization of the Photocatalysts
The crystal phase and structure of the fabricated porous
ZnO was analyzed by XRD (Supplementary Figure 1).
Supplementary Figure 1A shows that the maximum relative
intensity for porous ZnO were found at 31.8◦, 34.4◦, 36.2◦,
and 56.6◦ with d-spacing of 2.8143, 2.6033, 2.4759, and 1.6247,
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FIGURE 1 | Schematic illustration of the synthesis of porous ZnO photocatalyst.

FIGURE 2 | (a) SEM; (b,c) TEM (Inset was the shell thickness); (d) HR-TEM of porous ZnO calcined under 550◦C.

respectively. These corresponding peaks are, respectively,
related to the (100), (002), (101), and (110) crystal planes,
which are well-consistent with JCPDS No. 36-1451 (a = b =

3.250 Å, c = 5.207 Å), suggesting the hexagonal structure.
Supplementary Figure 1B shows that the diffraction peaks
of the precursor are well-consistent with Zn5(CO3)2(OH)6
(JCPDS No. 19-1458). After it was annealed at 550◦C for 6 h,
no other peak was detected, which indicated the precursor
had completely transformed into the pure ZnO crystal. The
details of the calcination process were described in SI. The
general morphology and microstructure of the fabricated

ZnO photocatalyst were further analyzed by SEM. Figure 2a
and Supplementary Figure 2 display the SEM images of
the as-prepared ZnO at various calcination temperatures.
Supplementary Figures 2A,B shows the ZnO is form of plate
structure with porosity at 350◦ and 450◦C. Figures 2a,b and
Supplementary Figure 2C exhibit the porous framework
structure under the calcination temperatures of 550◦ and 650◦C.
These results revealed that the calcination temperature has a
significant effect on the morphology and structure of ZnO. The
detailed microstructure was further studied by TEM and HR-
TEM (Figures 2c,d). Core-shell hexagonal crystal nanoparticles
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were clearly observed in the range of 20–50 nm in length. The
shell thickness is∼4 nm (inset in Figure 2c). It can also be clearly
seen that ZnO nanoparticles with lattice spacing of 0.245 nm
and 0.257 nm correspond to (101) and (002) plane, respectively
(Figure 2d).

XPS was then applied to analyze the chemical state of
the synthesized ZnO. The result shows that the as-prepared
nanoparticles are primarily composed of Zn, O, and C
(Figure 3A). The detected very small carbon peak is probably
due to the adsorbed ambient CO2 on the surface (Samadi et al.,
2014). As shown in Figure 3B, two peaks at 1021.2 eV and
1044.3 eV attribute to the conveyed binding energies of Zn 2p3/2
and Zn 2p1/2 that indicates the presence of Zn2+ state (Naseri
et al., 2017). Besides, these two peaks’ difference of 23.1 eV
also confirmed that ZnO was generated (Qiao et al., 2016).
Figure 3C shows that the O 1 s peak located at 530.1 eV was
assigned to the lattice oxygen O2− and that the other peak at
531.8 eV was ascribed to the adsorbed hydroxyl groups (Al-
Gaashani et al., 2013; Yang et al., 2013). The BET surface area
and pore size distribution of the porous ZnO were analyzed
by nitrogen adsorption-desorption. Supplementary Figure 3A

shows that the porous structure is highly possibly from the space
between particles. The BET specific surface area is determined to
be up to 31.4 m2/g. Correspondingly, Supplementary Figure 3B

shows that the pore size distributions calculated by the BJH
method displays a mean size of∼18 nm.

Effect of Calcination Temperatures and
BPA Concentrations
As shown in Figure 4A, with the calcined temperature of ZnO
increased from 350◦ to 550◦C, the degradation efficiency of
BPA increased. The maximum degradation efficiency (99%)
in 1 h was reached at 550◦C. The superior performance is
possibly related to the higher crystallinity than the ZnO calcined
at 350◦C and the greater number of pore structures than
the ZnO calcined at 450◦ and 650◦C. The high crystallinity
is a benefit for photoactivity and the pore structure is a
benefit for the adsorption and photodegradation of BPA. The
comparison between ZnO photocatalysts for BPA degradation
prepared in this study with those reported in the literature
was listed in Supplementary Table 1. It showed that the porous
ZnO photocatalyst synthesized in this study possessed the
best performance. Figure 4B shows degradation efficiencies
of different initial BPA concentrations from 10 to 70 mg/L.
The result showed that ∼99% BPA can be removed in 1 h
at the concentration of 30 mg/L. However, the decline of
the degradation efficiency is observed with the increased BPA

FIGURE 3 | (A) XPS survey of the porous ZnO; The high-resolution XPS spectra: (B) Zn 2p and (C) O 1s.
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FIGURE 4 | (A) Effect of porous ZnO photocatalysts synthesized under different calcination temperatures; (B) Effect of BPA concentrations on photodegradation (ZnO

dosage = 1.0 g/L and pH = 6.5).

FIGURE 5 | (A) Comparison of ZnO dosages and (B) Effect of ZnO dosages on reaction rate constant for photodegradation of BPA under simulated sunlight

irradiation (BPA concentration = 30 mg/L and pH = 6.5).

concentration. This is possibly due to the fact that the active
catalytic sites supplied by 50mg porous ZnO are not enough
for the degradation of a higher BPA concentration. Besides, high
BPA concentration can adsorb light energy and inhibit photons
to activate the porous ZnO photocatalyst (Ani et al., 2018).

Effect of ZnO Dosages
Figure 5 shows the influence of ZnO dosages on the BPA
photodegradation. The result shows that the reaction rate
constant increased from 0.0173 to 0.0684 min−1 with the ZnO
dosage increased from 0.2 to 1.0 g/L. However, the reaction
rate constant was then decreased to 0.0276 min−1 when the
ZnO dosage rose to 1.4 g/L. It is well-known that increasing
the ZnO dosage can generate more radicals for highly efficient
BPA photodegradation (Ghasemi et al., 2016). However, an
excess amount of the ZnO photocatalyst could lead to negative
effects. The high suspension might inhibit the penetration of
photons and enhance the tendency of agglomeration, which
would reduce the effective surface area of ZnO for light

absorption (Ling et al., 2015). The trade-off between these two
opposing effects led to the optimum catalyst dosage at 1.0 g/L
in this study. Moreover, 50 µl and 100 µl 30 wt.% H2O2

were added to hinder the recombination of photo-generated
electrons and holes to improve the BPA photodegradation.
However, Supplementary Figure 4 shows that H2O2 hinders the
photocatalytic degradation of BPA. The possible reasons are that
(1) H2O2 consumed OH− and h+ which were reactive species,
(2) there was adsorption competition between H2O2 and BPA on
the porous ZnO, and (3) H2O2 was adsorbed onto ZnO surface
to result in adverse modification (Dougna et al., 2015).

Effect of Original pH Value
In this study, the sample pH was adjusted by HCl and
NaOH to analyze the effect of different pH values on the
degradation efficiency. The results show that pH of 10.0 led to
the minimum degradation efficiency (85%), and the degradation
efficiency increased with the pH decrease to 6.0 (Figure 6A). The
maximum degradation efficiency reached at pH of 6.0. This is
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FIGURE 6 | (A) Comparison of pH on degradation of BPA; (B) Effect of pH on the reaction rate constant over porous ZnO under simulated sunlight irradiation (BPA

concentration = 30 mg/L and ZnO dosage = 1 g/L).

possibly due to the fact that the photodegradation performance
of BPA is affected by ions in the solution and also the charges
on ZnO photocatalyst and BPA. When pH <6.0, the anionic Cl−

could compete with the adsorption of BPA, which reduces the
degradation efficiency. On the other hand, ions generated from
NaOH also competed with the adsorption of BPA (Sin et al.,
2013). In addition, the zero-point charge of ZnO is reported at
around pH 9.0 (Xu et al., 2020). The pKa values of BPA are 9.6
and 10.2 (Nguyen et al., 2019). The reactions on the ZnO surface
at different pH were shown in Figure 6B and SI. When pH >9.0,
the porous ZnO becomes deprotonated to result in the repulsion
between the ZnO and anionic BPA for the low degradation at
high pH.

Effect of Inorganic Ions
Figure 7 shows the degradation performance in the presence
of inorganic ions. Figure 7A shows that the BPA degradation
process is inhibited at different levels after the addition of 10mM
H2PO

−

4 , HCO−

3 , SO2−
4 , and Cl− anions. Especially, H2PO

−

4
remarkably inhibited the degradation of BPA to lead to only
10% degradation efficiency; the rate constant was decreased from
0.0684 to 0.0026 min−1. Cl− exhibits the minimal inhibition
which decrease the rate constant to 0.0531 min−1 (Figure 7B).
Similar to the trend found by Tang et al. (2018), the inhibition
effects for the photocatalytic degradation of BPA found in this
work were decreased in the order H2PO

−

4 > HCO−

3 > SO2−
4 >

Cl−. The main reason is that anions are generally considered to
be scavengers of hydroxyl radicals and photo-holes. However, it
is noteworthy that the reaction rate increased to 0.0776 min−1

with the addition of 10mM NO−

3 . The possible reason is that
nitrate is the primary precursor of hydroxyl radicals, which are
the strong reactive species for the degradation of BPA (Gao
et al., 2017). As shown in Figure 7C, the degradation efficiency
of BPA is just slightly decreased with the addition of 10mM of
K+, Ca2+, and Na+. It was reported that K+, Ca2+, and Na+

could reduce the thickness of electrical double layer to suppress
electrostatic repulsion between porous ZnO to enhance the
aggregation (Zhao et al., 2018). On the other hand, the adsorbed

cations could generate a screening effect that benefits from
dispersion interactions between BPA and the ZnO photocatalyst
(Liu et al., 2016). Thus, the trade-off between the porous ZnO
aggregation and the positive effect caused by screening effect
might contribute to a very slight change to the degradation
of BPA.

Stability of the ZnO Photocatalyst
The stability of the ZnO photocatalyst is an important
criterion for practical applications. In this study, five cycles of
photodegrading BPA were conducted under the same condition
to investigate the stability of the porous ZnO photocatalyst.
After each cycle of photocatalytic degradation of BPA in 1 h, the
porous ZnO was washed with absolute ethanol and ultrapure
water, and then centrifuged and dried. As shown in Figure 8A,
there is only a very slight decline for the BPA degradation
efficiency after three cycles confirming that the porous ZnO
photocatalyst is stable. Moreover, the XRD spectra and SEM
of the porous ZnO photocatalyst after five cycles were also
compared. Figure 8B and Supplementary Figure 5 show that
no obvious difference in the diffraction peak, structure, and
morphology is observed, thus confirming the stability of the
ZnO photocatalyst.

Roles of Reactive Species
In this study, scavenging experiments were conducted to
investigate reactive species formed in the photocatalytic
degradation process. Ammonium oxalate (AO), t-butyl alcohol
(TBA), p-benzoquinone (BQ), and dimethyl sulfoxide (DMSO)
were added to scavenge h+, ·OH, ·O−

2 and e−, respectively.
As shown in Supplementary Figure 6, the photocatalytic
degradation of BPA is inhibited differently by various scavengers
which illustrates that different reactive species play different
roles. It was inhibited substantially by AO, BQ, and DMSO
revealing that h+, ·O−

2 , and e− play the key role for BPA
degradation. Besides, ·OH also contributed in a certain way
to the degradation of BPA. The existence of ·OH and ·O−

2
was further confirmed using the ESR technique with DMPO
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FIGURE 7 | (A) Comparison of different inorganic anions on the degradation of BPA, (B) Effect of inorganic anions on the reaction rate constant, and (C) Comparison

of different inorganic cations on the degradation of BPA (BPA concentration = 30 mg/L and ZnO dosage = 1 g/L).

FIGURE 8 | (A) Photocatalytic degradation of BPA over the ZnO photocatalyst over five cycles; (B) XRD patterns of the ZnO photocatalyst after five cycles.

as the spin trap (Wang et al., 2020a). As shown in Figure 9,
the characteristic peaks of DMPO-·OH and DMPO-·O−

2 are
obviously detected under simulated sunlight irradiation, while

no signal is found in the dark. These results revealed that ·OH
and ·O−

2 were formed for the photocatalytic degradation of BPA
over the as-fabricated ZnO photocatalyst.
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FIGURE 9 | ESR spectra of (A) DMPO-·OH and (B) DMPO-·O−

2 under light and in the dark.

FIGURE 10 | Two proposed photocatalytic degradation pathways of BPA over the ZnO photocatalyst.
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Possible BPA Degradation Pathways
As shown in Supplementary Figure 7 and
Supplementary Table 2, several reaction intermediates were
detected in this study. Based on present LC-MS results and the
previous literature, two possible pathways of the degradation of
BPA over the porous ZnO are proposed in Figure 10. In pathway
I, radicals in the aqueous solution attacked the electron-rich C-C
bound to generate intermediate A (m/z 199) (Xu et al., 2018).
The attack of electrophilic ·OH formed intermediate B (m/z
233). Intermediate C (m/z 173) was produced by the route of
BPA→ A→ B→ C via oxidation reaction for the cleavage of the
C-C bridge and the aromatic ring. In pathway II, the electrophilic
·OH group attacked the aromatic ring of the BPA, resulting in the
formation of hydroxylated intermediate D (m/z 243). Secondly,
intermediate E (m/z 241) was formed through the hydroxylation
and dehydration (Li et al., 2016). It was reported that reactive
species could attack the C-C bond between the two aromatic
rings to form intermediate F (m/z 135) (Zhu et al., 2018). At the
same time, intermediate G (m/z 149) was produced by the route
of BPA→ D→ E→ F→ G or BPA→ D→ G (Du et al., 2016).
Intermediate H (m/z 133) was produced by the dehydrogenation
process of F (m/z 135) (Diao et al., 2018). Finally, ring opening
products including I (m/z 89) and J (m/z 115) were formed,
which were further mineralized into CO2 and H2O. Besides, the
total organic carbon (TOC) test was carried out to investigate
the mineralization rate of BPA over the porous ZnO. As shown
in Supplementary Figure 8, the mineralization rate of BPA after
60min is 54.7%.

CONCLUSION

In this study, we have successfully developed a porous ZnO
photocatalyst with core-shell structure and a large surface area
for efficient removal of BPA. Photocatalytic performance was
confirmed to be closely related to calcination temperatures,
BPA concentrations, ZnO dosages, and pH. In particular, the
porous core-shell ZnO calcined under 550◦C exhibited the
maximum catalytic activity, obtaining 99% degradation of BPA
in 1 h under the conditions of 30 mg/L BPA, 1 g/L ZnO and
pH of 6.5. Furthermore, reasonable degradation pathways of
BPA were proposed based on the determined intermediates,

mainly including the C-C bridge cleavage, aromatic ring cleavage,
hydroxylation, dehydrogenation, etc. The superior catalytic
activity of the as-prepared ZnO photocatalyst mainly benefited
from the porous core-shell structure with a large surface area,
which was able to improve mass-transfer efficiency, promote
light absorption, and expose more active sites. This study
demonstrates that the prepared porous ZnO photocatalyst has
high photoactivity and stability and is a promising photocatalyst
for the degradation of endocrine disrupting compounds.
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