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The use of wearable devices to study gait and postural control is a growing field on neurodegenerative disorders such as Alzheimer’s
disease (AD). In this paper, we investigate if machine-learning classifiers offer the discriminative power for the diagnosis of AD
based on postural control kinematics. We compared Support Vector Machines (SVMs), Multiple Layer Perceptrons (MLPs), Radial
Basis Function Neural Networks (RBNs), and Deep Belief Networks (DBNs) on 72 participants (36 AD patients and 36 healthy
subjects) exposed to seven increasingly difficult postural tasks. The decisional space was composed of 18 kinematic variables
(adjusted for age, education, height, and weight), with or without neuropsychological evaluation (Montreal cognitive assessment
(MoCA) score), top ranked in an error incremental analysis. Classification results were based on threefold cross validation of 50
independent and randomized runs sets: training (50%), test (40%), and validation (10%). Having a decisional space relying solely
on postural kinematics, accuracy of AD diagnosis ranged from 71.7 to 86.1%. Adding the MoCA variable, the accuracy ranged
between 91 and 96.6%.MLP classifier achieved top performance in both decisional spaces. Having comprehended the interdynamic
interaction between postural stability and cognitive performance, our results endorse machine-learning models as a useful tool for
computer-aided diagnosis of AD based on postural control kinematics.

1. Introduction

Around 30% of the people aged more than 65, living in the
community, and more than 50% of those living in residential
care facilities or nursing homes fall every year. Moreover,
about half of those who fall do so repeatedly [1]. With the
increase in the elderly population, the number of falls in this
group has been rising constituting an important public health
problem [2]. Postural instability, characterized by excessive
and uncontrolled sway, degrades with ageing and is a risk
factor for the occurrence of falls, especially in neurodegen-
erative diseases, such as Alzheimer’s disease (AD) [3]. AD is
a neurodegenerative cortical disorder that besides memory
deficits also displays disturbances of posture and gait, which
triggers more serious falls compared to nondemented elderly

people. In that regard, diagnostic tools that allow an early and
noninvasive detection of AD pathology are highly required.

To this end, many researchers have devoted their efforts
to find appropriate data/features and have applied different
machine-learning methods for computer-aided diagnosis of
AD. Most of the works reported in the literature make use of
Support Vector Machines (SVMs) and Artificial Neural Net-
works (ANNs), such as Multiple Layer Perceptrons (MLPs),
Radial Basis Function Networks (RBNs), and Deep Belief
Networks (DBNs). We provide a brief review next in this
context.

SVMs are a particular type of supervised machine-
learning method that classifies data points by maximizing
the margin between classes in a high-dimensional space [4].
They are the most widely used classifiers and have shown
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promising results on problems of pattern recognition in
neurology and psychiatry diseases [5], including detection of
ADbased on electrical brain activity Electroencephalography
(EEG) [6], neuroimaging data from Magnetic Resonance
Imaging (MRI), and Positron Emission Tomography (PET)
brain images [7–10]. Several works have applied MLPs in
the diagnosis of AD, combining different variables such
as demographic, neurological, and psychiatric evaluation,
neuropsychological tests, and even more complex clinical
diagnostic tools (e.g., neuropathology, EEG, and MRI/PET
brain imaging), where hundreds of variables of recorded
data are potentially clinically relevant on one single patient
[7, 11, 12]. RBNs have successfully been applied to the dis-
crimination of plasma signalling proteins for the prediction
of this disease [13] and classification of MRI features of
AD [7]. DBNs are a recent machine-learning model that
is exhibiting performance records on classification accuracy
also on medical fields such as AD, based on MRI/PET
neuroimaging data [14, 15].

The survey of the above literature shows that the majority
of the studies have relied on neuroimaging data from MRI
and/or PET images, which though widely available, are
relatively expensive. In contrast, inertial measurement units
(IMUs), with integrated accelerometers and gyroscopes, are
inexpensive and small fully portable devices, opening a new
field of research on AD. In fact, IMUs have been used to
portrait different postural kinematic profiles inAD, including
a higher risk of falling [16]. These devices are independent of
inclination in space, having proved to be equivalent to force
platforms in the evaluation of the center ofmass (COM) kine-
matics.However, althoughhundreds of kinematic parameters
have been used to represent postural body sway [17], which
parameters provide the most relevant information about
normal postural control and which kinematic parameters
better identify neurodegenerative diseases such asAD are still
yet undetermined. We advocate that a complementary tool
that makes use of kinematic postural data for the diagnosis of
AD would be extremely helpful and valuable for clinicians.

To the best of our knowledge, the use ofmachine-learning
classifiers for the diagnosis of AD based on kinematic
postural sway data has not yet been investigated. With this
in mind, our study has two main goals. First, to validate the
feasibility of the application of machine-learning models in
the diagnosis of AD based on postural kinematic data, col-
lected on different and increasingly difficult postural balance
tasks. Second, to compare different classifier models—SVM,
MLP, RBN, and DBN—with respect to their discriminative
performance.

The remainder of the paper is structured as follows. In
Section 2 we explain the materials and methodology used
for collecting the data, feature reduction, and implementation
of the three dataset models, subsequently used for training,
testing, and comparing the different classifiers models. Sec-
tion 3 gives a brief description on how we implemented the
classifiers’ models. Section 4 presents results of performance
for the different classifiers in the different dataset models. In
Section 5 a detailed discussion ismade such that, in Section 6,
some conclusions can be drawn about the potential use of the

tested classifiers in future automatic diagnostic tools for AD
based on kinematic postural sway data.

2. Materials and Methodology
for Data Collection

2.1. Study Population. The study population was recruited
from our hospital outpatient neurology department. Patients
with probable AD, according to Diagnostic and Statistical
Manual of Mental Disorders- IV (DSM-IV) and National
Institute of Neurological and Communicative Disorders and
Stroke/Alzheimer’s Disease and Related Disorders Associa-
tion (NINCDS/ADRDA) criteria [18], on a stage of 1 on the
Clinical Dementia Rating Scale, were consecutively recruited
for the study. The control group included age-matched care-
givers of patients that had no history of falls or of neurological
or psychiatric disease. Patients or controls were excluded if
there was a history of orthopedic, musculoskeletal, vestibular
disorder, or alcohol abuse. Demographic, anthropometric,
and MoCA data, normalized to the Portuguese population
[19], were collected in both groups. Local hospital ethics
committee approved the protocol of the study, submitted by
ICVS/UM and Center Algoritmi/UM. Written consent was
obtained from all subjects or their guardians.

We included 36 AD patients (24 females/12 males, with
a mean age of 76 ± 7 years) and 36 healthy controls (15
females/21 males, with a mean age of 70±8 years) (AD versus
C,𝑝 = 0.003). Concerning demographic and anthropometric
data, the two groups displayed the following: education (AD:1 ± 0.58; control: 2 ± 1.19; 𝑝 = 0.008); MoCA (AD: 11 ± 5.10;
control: 25 ± 3.87; 𝑝 < 0.001); weight (kg) (AD: 65.60 ±10.28; control: 75.24 ± 12.11; 𝑝 = 0.001); height (m) (AD:1.54±0.08; control: 1.63±0.106; 𝑝 < 0.001); bodymass index
(kg/m2) (AD: 27.58 ± 4.12; control: 28.24 ± 3.79; 𝑝 = 0.44).
These significant differences between the two groups justified
the adjustment of the kinematic variables to age, education,
height, and weight (please see below).

2.2. Kinematic Acquisition and Assessment System. Five kine-
tic sensing modules harboring 8051 microprocessor embed-
ded in CC2530 Texas Instrument SoC (System on Chip)
[20] and an inertial measurement unit MPU6000 (triaxial
accelerometer and gyroscope), operating with a sample rate
frequency of 113Hz on SD card, were attached to five body
segments: trunk (on the COM, located at 55% of a person’s
height [21]), both legs (middle of ankle-knee), and both
thighs (middle of knee-iliac crest) by Velcro bands. One of
the normal human mechanisms of maintaining balance is
to vary the height of the COM. Therefore, final kinematic
information derived from the IMU on the COM was con-
stantly adjusted to the angle and length of the IMU located
on the thigh and shank. A more detailed description of
our methodology and mathematical formulas for kinematic
acquisition procedure can be consulted at [16].

2.3. Clinical Postural Tasks. Subjects were instructed to per-
form seven different postural tasks with increasing stability
stress: normal stance: standing with the medial aspects of



Computational Intelligence and Neuroscience 3

(a) (b)

Figure 1: Representation of a patient, wearing the safety trunk belt, with the IMUplaced on the center ofmass (55% height), while performing
the tasks: eyes closed with feet together on flat surface (a) and on frontwards platform (b) (other tasks were performed, as further detailed on
the Materials and Methodology for Data Collection).

the feet touching each other with eyes open (EO) and eyes
closed (EC), and standing with the medial aspects of the feet
touching each other with EO and EC on a ramp with 15
degrees’ inclination in a backwards position (EOBP, ECBP)
and frontwards position (EOFP, ECFP) [22]. A representation
of a patient, wearing the safety trunk belt, with the IMU
placed on the center of mass while performing the tasks
mentioned, can be seen in Figure 1. Tasks with kinematic
capture were performed for 30 seconds [23], with subjects
standing quiet, their arms hanging at their sides, and their
head in a normal forward-looking position to a visual eye
target height approximately 2 meters away. Balance is a
complex process of coordination of multiple body systems—
including the vestibular, auditory, visual, motor, and higher
level premotor systems—that generates appropriate synergic
postural muscle movements of the head, eye, trunk, and
limbs tomaintain posture [24].This is achieved by sustaining,
achieving, or restoring the body COM relative to the base
of support or, more generally, within the limits of stability
withminimal sway [25]. Visual suppressionmakes the human
body more dependent on vestibular and proprioceptive
systems, consequently increasing sway [26]. On an inclined
or tilting support surface, postural control is mainly achieved
with the help of visual, vestibular, and proprioceptive affer-
ents. The investigation of postural stability under dynamic
conditions, either continuous or predictable perturbations of
the supporting platform, has been used to study anticipatory
adjustments and sensory feedback [24].Thiswas the rationale
in our study to use different and increasing difficulty postural
stability tasks, changing kinematic variables, in order to
obtain more information for machine-learning analysis and
discrimination between patients and healthy subjects.

2.4. Kinematic Collected Variables. We focused on demo-
graphic and biometric data (age, weight, height, and body
mass index) and kinematic parameters (extracted from the
IMU placed at the COM) that emerged from a systematic
review as predictors of falls among older people and AD
patients [26–30]. Kinematic parameters are as follows: total

displacement on the transverse plane (cm); maximal dis-
placement (cm) with respect to the origin; mean distance
(cm) with respect to origin on transverse plane; dispersion
radius (average distances relative to average point); maximal
and mean linear velocity (cm/s); positioning (cm) on 𝑥-axis
(maximal, mean, and range) and 𝑦-axis (maximal, mean, and
range); roll angle (degrees) (maximal, minimum, and mean);
and pitch angle (degrees) (maximal, minimum and mean).
These 18 kinematic measurements, captured on each task,
were further averaged summarizing the patient’s behavior
throughout the seven different postural tasks. The overlap
between the different kinematic postural features between the
two groups and the different tasks can be seen in Figure 2.

2.5. Feature Extraction and Statistical Significance. There is
still little information about the value of each singular kine-
matic variable, and even less information exists on how these
variables interact among themselves during postural balance.
During data collection on the different postural tasks, there
is substantial overlap of kinematic information, even if we
only consider one particular variable, like displacement on
the 𝑥 and 𝑦-axis (Figure 2). Therefore, the objective of the
feature extraction process is to assess which of the kinematic
variables are statistically significant features that contribute to
an accurate classification of AD patients.

As in [31], all kinematic variables were adjusted for age,
education, height, and weight (as these were found to be
significant factors, with a significance value of 0.05, using the
Mann–Whitney U test and Chi-Square test):

𝐾a = 𝐾ua − 𝐺age (𝐾sAge − 𝐾mAge)
− 𝐺wght (𝐾sWght − 𝐾mWght)
− 𝐺hght (𝐾sHght − 𝐾mHght)
− 𝐺Edu (𝐾sEdu − 𝐾mEdu) ,

(1)

where 𝐾a is the adjusted kinematic feature; 𝐾ua is the unad-
justed kinematic feature;𝐾sAge, 𝐾sWght, 𝐾sHght, and𝐾sEdu are
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Figure 2: Representation of the substantial overlap on the different kinematic postural features, on an orthogonal projection, between the
two groups and the different tasks, (a) EO, (b) EOFW, (c) EOBW, (d) EC, (e) ECFW, and (f) ECBW, with increasing difficulty of postural
stability.
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Figure 3: Methodological flowchart of the classification approach.

the subject’s age, weight, height, and years of education, resp-
ectively; 𝐾mAge, 𝐾mWght, 𝐾mHght and 𝐾mEdu are the corre-
sponding means for all subjects. The gradients 𝐺age, 𝐺wght,𝐺hght, and 𝐺Edu are the slopes of a region specific regression
line against subject age, weight, height, and education of
all participants. This process of adjustment guarantees that
the regression is not influenced by the classification of each
variable in particular.

Data is then preprocessed by a min–max normalization
method (see, e.g., [32]):

𝑥 = (𝑥 −min (𝑔)) ∗ (new max (𝑔) − new min (𝑔))
(max (𝑔) −min (𝑔))

+ new min (𝑔)
(2)

and that, in our case, transformed data into a range of val-
ues between −1 and 1. Thus, new max(𝑔) and new min(𝑔)
were set to 1 and −1, respectively, and max(𝑔) and min(𝑔)
are the maximum and minimum values of the attribute,
respectively. Afterwards, a nonparametric statistical analysis
(Mann–Whitney U test) is implemented to determine the
rank and significance, of each variable, in the classification
outcome of the two groups, following one branch considering
solely the 18 kinematic variables, and the second branch
including the MoCA score as to form a 19-variable vector for
each subject.

2.6. Variable Selection Using Error Incremental Analysis. As
per [10], the ranking of the statistically significant variables
provides an insight on the discriminative power of each
variable for each classifier. Selecting the optimal number
of top-ranked variables can be considered a dimensionality
reduction problem which is performed using error incre-
mental analysis: starting from the top-ranked variable and

incrementally adding the next best ranked variable until all
significant variables are included.Themethodology followed
in this study is presented in Figure 3.

3. Machine-Learning Classifiers

The selection of the best classifier for diagnosis is an open
problem. In addition, the advantage of usingmultiple classifi-
cation models over a single model has been suggested [32].
Hence, we compare four different classifier models: SVM,
MLP, RBN, and DBN. With the purpose of facilitating and
streamlining the work, we developed a custom-made soft-
ware application on MATLAB� (version R2014a), which
implements an automatic grid-search (i.e., automatically and
systematically tests different configurations and performance
of the different machine-learning models).

All the experiments were based on a threefold cross vali-
dation,meaning that the subjects were divided into three sets:
training (50%), test (40%), and validation (10%) [33]. To limit
the potential data partitioning error induced by random data
assignment and cross validation, the same experiment was
repeated 50 times and the average performancewas recorded.
We opted for an output layer composed of two neurons,
one representing AD patients and the other healthy/control
subjects, as thismodel would better replicate clinical practice.

3.1. Support Vector Machines (SVMs). The learning mechan-
ism of a SVM considers distinct classes of examples as being
divided by geometrical surfaces, separating hyperplanes,
whose optimal behavior is determined by an extension of
the method of Lagrange multipliers. The support vector
classifier chooses the classifier that separates the classes with
maximal margin [34]. Our implementation of SVM follows
the MATLAB Documentation and [35].
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We provide a brief description, but for more detailed
information refer to the respective references.

Let us assume that the dataset is of the form

𝐷 = {x𝑘, 𝑜𝑘}𝑘=𝑚𝑘=1 , (3)

where x𝑘 ∈ R𝑚 is the 𝑘th input vector of dimension𝑚 and 𝑜𝑘
is the corresponding binary category, 𝑜𝑘 ∈ {−1, 1}.

The equation that defines the hyperplane is

⟨V, x𝑘⟩ + 𝑏 = 0, (4)

where v ∈ R𝑚 is the vector normal to the hyperplane, ⟨⋅⟩
represents the inner product, and b, a real number, is the bias.

In order to define the best separating hyperplane one
needs to find v and 𝑏 that minimize ‖v‖ subject to

𝑜𝑘 (⟨V, x𝑘⟩ + 𝑏) ≥ 1. (5)

In order to simplify themath, the problem is usually given
as the equivalent of minimizing ⟨V, v⟩/2.

Once the optimal v and 𝑏 are found, one can classify a
given vector, z, as follows:

𝑦𝑧 = ⟨V, z⟩ + 𝑏, (6)

where 𝑦𝑧 is the binary category in which z is inserted. This
is considered to be the primal form of the classification
problem.

In order to attain the dual form of the classification
problem, one needs to take the Lagrange multipliers, 𝛼𝑘,
multiplied by each constraint and subtract from the objective
function:

𝐿𝑝 = 12 ⟨v, v⟩ − 𝑁∑
𝑘=1

𝛼𝑘 (𝑜𝑘 (⟨V, x𝑘⟩ + 𝑏) − 1) , (7)

where𝑁 is the size of the training data.
The first-order optimal conditions of the primal problem

are obtained by taking partial derivatives of 𝐿𝑝 with respect
to the primal variables and then setting them to zero:

𝜕𝐿𝑝𝜕v = 0 → v = 𝑁∑
𝑘=1

𝛼𝑘𝑜𝑘x𝑘. (8)

The dual form of the classification problem is obtained as
follows:

𝐿𝐷 = 𝑁∑
𝑘=1

𝛼𝑘 − 12
𝑁∑
𝑘=1

𝑁∑
𝑗=1

𝛼𝑘𝛼𝑗𝑜𝑘𝑜𝑗 ⟨x𝑘,x𝑗⟩ (9)

subject to constraints

𝑁∑
𝑗=1

𝛼𝑘𝑜𝑘 = 0, 0 ≤ 𝛼𝑘 ≤ 𝑐, (10)

where 𝑐 is considered a constraint value that keeps the
allowable values of the Lagrangemultipliers, 𝛼𝑘, in a bounded
region.

Some classification problems cannot be solved with the
linear methods explained above because they do not have
a simple hyperplane as a separating criterion. For those
problems, one needs to use a nonlinear transformation, and
that is achievable through the use of kernels [34].

Assuming𝐹 is a high-dimensional feature space and𝜑 is a
function that maps x𝑘 to 𝐹, the kernel has the following form:

𝐾(x𝑘,x𝑗) = ⟨𝜑 (x𝑘) , 𝜑 (x𝑗)⟩ . (11)

In our implementation we used the Gaussian kernel
function defined as follows:

𝐾(x𝑘,x𝑗) = ⟨𝜑 (x𝑘) , 𝜑 (x𝑗)⟩ = 𝑒−⟨(x𝑘−x𝑗),(x𝑘−x𝑗)⟩/2𝜎2 , (12)

where 𝜎 is a positive number.
Applying the kernel to the dual form of the classification

problem, one obtains

𝐿𝐷 = 𝑁∑
𝑘=1

𝛼𝑘 − 12
𝑁∑
𝑘=1

𝑁∑
𝑗=1

𝛼𝑘𝛼𝑗𝑜𝑘𝑜𝑗𝐾(x𝑘,x𝑗) (13)

subject to constraints

𝑁∑
𝑗=1

𝛼𝑘𝑜𝑘 = 0, 0 ≤ 𝛼𝑘 ≤ 𝑐. (14)

3.2. Multiple Layer Perceptrons (MLPs). We have previously
detailed our MLP model [36], where computation of the
output of neuron 𝑦𝑗 was based on the following:

𝑦𝑗 = 𝑔( 𝑁∑
𝑖=0

𝑤(𝑙)𝑗𝑖 (𝑛) 𝑦(𝑙−1)𝑖 (𝑛)) ,
𝑔 (V𝑗) = 11 + 𝑒−V𝑗 ,

(15)

where 𝑦(𝑙−1)𝑖 (𝑛) is the output of neuron 𝑖 in the previous layer𝑙 −1 at iteration 𝑛 and𝑤(𝑙)𝑗𝑖 is the synaptic weight from neuron𝑖 in layer 𝑙 − 1 to neuron 𝑗 in layer 𝑙. The synaptic weight𝑤(𝑙)𝑗0 equals the bias, 𝑏𝑗, applied to neuron 𝑗 [34]. We used a
sigmoidal logistic activation function, 𝑔(V𝑗), to represent the
nonlinear behavior between the inputs and outputs, where V𝑗
is the net internal activity level of neuron 𝑗 (i.e., the weighted
sum of all synaptic inputs plus bias).

We used MLP backpropagation (MLP-BP) and MLP
Scaled Conjugate Gradient (MLP-SCG) training algorithms
[35]. Our custom-made software application automatically
created, trained, and tested different configurations of MLPs,
according to number of hidden layers and number of neurons
in each hidden layer and best performance. The application
begins testing the ANN with the minimum number of
neurons chosen for the first hidden layer (1st hidden layer),
incrementing until it reaches the maximum number of
neurons (100). When this happens, a second hidden layer
(2nd hidden layer) is included, first with one neuron, and a
first hidden layer is set to its initial setup incrementing once
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again till best performance is rendered. This autonomous
process is cyclically repeated with a hypothetical maximum
number of neurons of 100 on 1st hidden layer and 100 on
2nd hidden layer. On each training cycle, the performance of
each neural network is evaluated and stored.The autonomous
creation of networks, MLP-BP or MLP-SCG, was tried with
different error functions (Mean Absolute Error (MAE),Mean
Squared Error (MSE), Sum Absolute Error (SAE), and Sum-
Squared Error (SSE)), until best performance was reached.
In the training process, the best performance is measured
by two parameters that control the terminus of the training:
the number of error checks and the error gradient. The latter
is associated with the training performance: the lower its
value, the better the training performance; and the first is
incremented each time the error value in the validation set
rises. These parameters were defined through an initial test
with a limited number of neurons in each layer where the
performance was evaluated with different gradient and error
check values.

3.3. Radial Basis Function Neural Networks (RBNs). RBNs
are a subtype of an artificial neural network that uses radial
basis functions as activation functions [37]. They consist of
three layers: an input layer, a hidden radial basis neuron
layer, and a linear neuron output layer. The output units
implement a weighted sum of hidden-unit outputs. In RBNs,
the transformation from the input space to the hidden-
unit space is nonlinear whereas the transformation from the
hidden-unit space to the output space is linear.When an input
vector x is presented to such a network, each neuron’s output
in the hidden layer is defined by

𝜑𝑖 (x) = 𝑒−‖x−c𝑖‖2/2𝜎2𝑖 , (16)

where c𝑖 = [𝑐𝑖1, 𝑐𝑖2, . . . , 𝑐𝑖𝑚] 𝑇 ∈ R𝑚 is the center vector of
neuron 𝑖 and 𝜎𝑖 is the width of the 𝑖th node. The response of
each neuron in the output layer is computed according to

𝑦𝑗 = 𝑁∑
𝑖=1

𝑤𝑖𝑗𝜑𝑖 (x) + 𝑏𝑗 with 𝑗 = 1, 2, (17)

where 𝑤𝑖𝑗 represents the synaptic weight between neuron 𝑖
in the hidden layer and neuron 𝑗 in the output layer and 𝑏𝑗
represents the bias applied to the output neuron 𝑗. For more
details, refer to the relevant MATLAB Documentation.

In the training process, in each iteration, two parameters
were changed: the Sum-Squared Error goal and the spread
value (or neuron radius) until a designated maximum value
is achieved (the error goal from 1𝑒−8 to 1 and the spread value
from 0.01 to 10).

3.4. Deep Belief Networks (DBNs). A DBN is a generative
graphical model with many layers of hidden causal variables
along with a greedy layer-wise unsupervised learning algo-
rithm. These networks are built in two separate stages. In
the first stage, the DBN is formed by a number of layers of
Restricted Boltzmann Machines (RBMs), which are trained
in a greedy layer-wise fashion. In order to use the DBN

for classification, the second stage uses the synaptic weights
obtained in the RBM stage to train the whole model, in a
supervised way, as a feed-forward-backpropagation neural
network. For the implementation of DBNs, we used a MAT-
LAB Toolbox developed by Palm [38].

RBMs have binary-valued hidden and visible units. If one
defines the visible input layer as x, the hidden layer as h,
and weights between them as W, the model that defines the
probability distribution according to [39] is

𝑃 (x, h) = 𝑒−𝐸(x,h)𝑍 (x, h) , (18)

where 𝑍(x, h) is a partition function given by summing over
all possible pairs of visible and hidden vectors:

𝑍 (x, h) = ∑
x,h
𝑒−𝐸(x,h). (19)

𝐸(x, h) is the energy function, analogous to the one used
on a Hopfield network [40], defined as

𝐸 (x, h) = − ∑
𝑖∈visible

𝑏(1)𝑖 𝑥𝑖 − ∑
𝑗∈hidden

𝑏(2)𝑗 ℎ𝑗 −∑
𝑖,𝑗

𝑥𝑖ℎ𝑗𝑤𝑖𝑗, (20)

where 𝑥𝑖 and ℎ𝑗 are the binary states of visible unit 𝑖 and
hidden unit 𝑗 and 𝑏(1)𝑖 and 𝑏(2)𝑗 are the bias values of the visible
and hidden layer units, respectively.

Taking into account (18) and given that there are no direct
connections between hidden units in a RBM, the probability
of a single neuron state in the hidden layer, ℎ𝑗, to be set to one,
given the visible vector x, can be defined as

𝑃 (ℎ𝑗 = 1 | x) = 1
1 + 𝑒−(𝑏(2)𝑗 +∑𝑖 𝑥𝑖𝑤𝑖𝑗) . (21)

In the same way, one can infer the probability of a single
neuron, 𝑥𝑖, in the visible layer, binary state being set to one
given the hidden vector h:

𝑃 (𝑥𝑖 = 1 | h) = 1
1 + 𝑒−(𝑏(1)𝑖 +∑𝑗 𝑥𝑗𝑤𝑖𝑗) . (22)

In the training process the goal is to maximize the log
probability of the training data or minimize the negative log
probability of the training data.

Palm’s algorithm [38], instead of initializing the model
at some arbitrary state and iterating it 𝑛 times, initializes it
with contrastive divergence algorithm introduced in [39]. For
computational efficiency reasons, this training algorithmuses
stochastic gradient descent instead of a batch update rule.The
Restricted Boltzmann Machines (RBM) learning algorithm,
as defined in [38], can be seen as follows (see [39]):

for all training samples as 𝑡 do
𝑥(0) ← 𝑡
ℎ(0) ← sigm(𝑥(0)𝑊+ 𝑐) > rand()
𝑥(1) ← sigm(ℎ(0)𝑊+ 𝐵) > rand()
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ℎ(1) ← sigm(𝑥(1)𝑊+ 𝑐) > rand()
𝑊 ← 𝑊 + 𝛼 sigm(𝑥(0)ℎ(0) − 𝑥(1)ℎ(1))
𝑏 ← 𝑏 + 𝛼(𝑥(0) − 𝑥(1))
𝑐 ← 𝑐 + 𝛼(ℎ(0) − ℎ(1))
end for

where 𝛼 is a learning rate and rand() produces random
uniform numbers between 0 and 1.

Our algorithm, which uses the implementation above,
trains several DBNs consecutively, varying the number of
hidden neurons of the RBM and of the feed-forward neural
network to a maximum of 100 hidden neurons in each of the
two layers. Each RBM is trained in a layer-wise greedy man-
ner with a learning rate of 1 for the duration of 100 epochs.
After this training, the synapticweights are subsequently used
to initialize and train a backpropagation feed-forward neural
network with optimal tangency activation function (11) for
the hidden layers and sigmoid logistic activation function (12)
for the output layer:

𝑔 (V𝑖) = tanh (V𝑖) , (23)

𝑔 (V𝑗) = 11 + 𝑒−V𝑗 , (24)

where V𝑖, in (23), is the weighted sum of all synaptic inputs
of neuron 𝑖 plus its bias and V𝑗 is the weighted sum of all
synaptic inputs of the output neuron 𝑗 plus its bias. In each
training cycle the performance of each network is evaluated
and stored.

3.5. Quantitative Measurements for Performance Evaluation.
To evaluate the performance of the different classifiers we
calculated accuracy, sensitivity, and specificity. A true positive
(TP) was considered when the classifier output agreed with
the clinical diagnosis of AD. A true negative (TN) was
considered when the classifier output correctly excluded
AD. Meanwhile, a false positive (FP) indicated that the
classifier output incorrectly classified a healthy person with
AD.The last case was a false negative (FN) when the classifier
output missed AD and incorrectly classified an AD patient
as a healthy person. Classification accuracy is calculated as
follows:

Accuracy = TP + TN
TCT

, (25)

where TCT (= TP + TN + FP + FN) is the total number of
classification tests.

Sensitivity (true positive rate) and specificity (true nega-
tive rate) are calculated as follows:

Sensitivity = TP
TP + FN

,
Specificity = TN

TN + FP
.

(26)

4. Results

In this work, classifiers’ performance is evaluated using the
quantitative measures presented in Section 3.5.

Table 1: Ranking of the 19 variables in the input vector, Alzheimer’s
disease versus controls groups.

Variable Rank
MoCA 1
Distance covered 2
Y range 3
X range 4
Maximum distance 5
Y maximum 6
Maximum Pitch 7
Mean distance 8
Y mean 9
X maximum 10
Radius of dispersion 11
Mean velocity 12
X mean 13
Maximum Roll 14
Mean pitch angle 15
Maximum velocity 16
Mean roll angle 17
Minimum Roll 18
Minimum Pitch 19

4.1. Rank of Variables. Based on the methodology described
in Section 2.6, variables found with significance level below
0.05 are ranked as shown in Table 1. In this step only the
training data was used to assert the statistical significance of
each feature. A box-plot is presented in Figure 4 in order to
show that even when data was normalized and adjusted for
biometric data, with the exception of MoCA score, there is
substantial overlap. This highlights the challenge for disease
classification based onmachine learning. In order to evaluate
the rank reliability of the features, which might be dependent
on the dataset size, a test was conducted by randomly
reducing the dataset to 80% and 50% of its original size.
The rank of variables was then conducted in 100 random
repetitions and the ranks were summed and averaged to get
the rank expectation.The final rank was calculated by sorting
the rank expectation of all features from low to high and
the top three variables were recorded and shown in Table 2,
demonstrating that the rank does not change even when
the dataset size is reduced 80% and 50%. This is a good
indication that the set of variables found and used in this
study is reliable, reproducible, and statistically meaningful
even under a smaller subset of the data.

4.2. Error Incremental Analysis Results. The objective of the
incremental error analysis is to determine the number of
top-ranked variables one should use in order to produce the
best classification results. As in [10], the classification of AD
was performed starting from the top-ranked variable and
incrementally adding the next best ranked variable until all
significant variables were included. The results are depicted
in Figure 5. In this step the test dataset was used to estimate
the accuracy values. As one can observe, all the classifiers
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Figure 4: Box-plot representation of raw versus adjusted and normalized data of MoCA, total distance covered, and range of sway on 𝑦-axis
in controls and Alzheimer’s disease (AD) groups. There were significant differences between the two groups in raw data (MoCA, 𝑝 < 0.001;
distance covered, 𝑝 < 0.001; 𝑦-axis range, 𝑝 = 0.022) and after data was adjusted for age, education, height, and weight, followed by a
normalization process (MoCA, 𝑝 < 0.001; distance covered, 𝑝 = 0.002, 𝑦-axis range, 𝑝 = 0.05). Despite these statistical differences, especially
in unadjusted raw data, it is important to note the significant overlap between the different individuals in the kinematic postural variables,
highlighting the challenge of classification based on machine learning.

Table 2: Summary of top-ranked variables with varying dataset size.

Dataset size Rank of variables

100%
MoCA

Distance covered
Y range

80%
MoCA

Distance covered
Y range

50%
MoCA

Distance covered
Y range

benefited from the addition of kinematic variables, having in-
creasingly higher accuracy values until the maximum accu-
racy values were achieved. These values are displayed in
Table 3. Figures 6 and 7 allow inferring that AD and CN
groups are generally separable as they tend to form two dis-
tinct clusters.

4.3. General Classification Performance. Overall, MLP ach-
ieved the highest scores with accuracy ranging from 86.1%,
without MoCA, to 96.6% when kinematic postural variables
were combined with MoCA. When trained with datasets
combining the MoCA variable and kinematic variables,
all machine-learning models showed a good classification
performance, with superiority for MLP (achieving accuracy
of 96.6%), followed by DBN (accuracy of 96.5%), RBN
(accuracy of 92.5%), and SVM classifiers (accuracy of 91%).
MLP also achieved higher sensitivity, which is also beneficial
reducing the cost ofmisdiagnosing anADpatient as a healthy
subject [41, 42]. MLP was also less susceptible to the different
training iterations presenting lower standard deviation when

compared to the other classifiers. Withdrawing the MoCA
variable, the machine-learning classifiers also displayed a
reasonably good accuracy, with results above 71%, with MLP
achieving an 86.1% of accuracy rating. These results were
followed by the DBN classifier with 78% accuracy rating the
RBN model with 74% accuracy and lastly the SVM model
achieving 71.7% accuracy rating.

5. Discussion

Postural control and sensory organization are known to be
critical for moving safely and adapting to the environment.
The investigation of postural stability under dynamic con-
ditions, either continuous or on predictable perturbations
of the supporting platform, has been used to study the
complexity of balance process, which coordinates visual,
vestibular, proprioceptive, auditory, andmotor systems infor-
mation [24, 27]. Visual suppression makes the human body
more dependent on vestibular and proprioceptive systems,
consequently increasing postural sway [27. Moreover, there
is growing evidence that executive function and attention
have an important role in the control of balance during
standing and walking, as other higher cognitive processing
shares brain resources with postural control [43]. Thereby,
individuals who have limited cognitive processing due to
neurological impairments, such as in AD, when using more
of their available cognitive resources on postural control, may
inadvertently increase their susceptibility to falls [44].

Having the above in context, it is not surprising that
hundreds of kinematic parameters can be extracted from the
IMU and each parameter can individually or in correlation
represent postural body sway. While the discriminatory role
of each kinematic postural variable per se is not clear, the
rationale in our study was to use different and increasing
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Figure 5: Incremental error analysis performance of accuracy with standard deviation indicated as error bar for SVM (a), MLP-BP (b), RBN
(c), and DBN (d). The orange curve represents the datasets with the MoCA variable and the blue curve the datasets with only kinematic
variables.

difficulty balance tasks (manipulating vision and inclination),
so as to increase discriminative kinematic information.

In our studywehave shown that there is high intercorrela-
tion between the different proposed kinematic variables, and
even when data was normalized and adjusted for biometric
characteristics, there is substantial overlap between healthy
subjects andADpatients (Figures 2 and 4), which highlighted
the challenge and added value on using machine-learning
classifiers. As the problem being handled in this study is a
classification problem, three important questions have arisen,
the sample size, the number of variables per patient, and
which variables compose the ideal dataset that yields the best
accuracy. A small size sample has been proved to limit the
performance ofmachine-learning accuracy [45, 46]. Also, too
many variables relative to the number of patients potentially
leads to overfitting, a consequence of the classifier learning
with the data instead of learning the trend that underlies
the data [47]. As a rule of thumb, more than 10 “events”
are needed for each attribute to result in a classifier with
reasonable predictive value [48]. Ideally, similar numbers
of “healthy” and “unhealthy” subjects would be used in a
training set, resulting in a training set that is more than 20
times the number of attributes. Since most medical studies
typically involve a small number of subjects and there are
essentially unlimited numbers of parameters that can be
used, the possibility of overfitting has to be acquainted [49].
On one neuroimaging study, with a relatively small sample,
14 AD patients versus 20 healthy subjects, SVM reached a
discriminating power of 88.2% [50]. In another study a com-
bined approach of a genetic algorithmwithANNonEEG and

neuropsychological examination of 43 AD patients versus 5
healthy subjects returned an accuracy of 85% [51].

Feature reduction can be a viable solution to tackle this
problem. Besides speeding up the process of classification, it
also reduces the required sizes of the training sets, therefore
avoiding overfitting. Moreover, it is a way to avoid the so-
called curse of dimensionality, which is the difficulty for
the classifiers to learn effective models in spaces of high-
dimensionality (many features) when the number of samples
is limited.High dimensionality leads to overparameterization
(the complexity is too high to identify all the coefficients
of the model) or to poor performance of the classifiers
[52]. Feature reduction can be accomplished by combining
linear with nonlinear statistical analyses and/or by reducing
the number of attributes. In this regard, it may contribute
to simplifying the medical interpretation of the machine-
learning process, by directing attention to practical clinically
relevant attributes. However, choosing attributes in this ret-
rospective manner introduces a post hoc subjective element
into analyses [53]. Previous works have shown that feature
reduction/selection methods have a positive effect on the
classifiers’ performance [10, 54–57].

Using the error incremental analysis method one was
able to determine the optimal decisional space in which the
classification of AD versus controls is carried out. By testing
the variable’s ranks with reduced datasets (80% and 50%) one
verified that the rank of the top variables did not change,
indicating that the combination of features suggested in this
study is reliable and statistically relevant. As also indicated
in [10], it can be argued that incremental error analysis does
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Table 3: Best results obtained with each classifier trained with datasets with and without the MoCA variable. Between parentheses are the
minimum and maximum values obtained. All results are in percentage.

Accuracy Sensitivity Specificity Best decisional space
SVM with MoCA 91 (75–96.4) 89.3 (64.3–100) 92.7 (71.4–100) Top 10 features
SVM without MoCA 71,7 (53.6–92.9) 65 (35.7–92.9) 78.4 (35.7–100)
MLP with MoCA 96.6 (96.5–100) 100 (100–100) 94.9 (94.7–100) Top 11 features and top 15

featuresMLP without MoCA 86,1 (79.3–86.2) 78.5 (77.8–78.6) 93.1 (81.8–93.3)
RBN with MoCA 92,5 (75–100) 90.4 (71.4–100) 94.5 (78.6–100) Top 15 features
RBN without MoCA 74,0 (53.6–82.1) 71.3 (50–100) 76.7 (42.9–100)
DBN with MoCA 96,5 (89.3–100) 95.3 (85.7–100) 97.7 (85.7–100) Top 15 features
DBN without MoCA 78,0 (57.1–92.9) 79 (14.3–100) 77 (21.4–100)

not cover all the possible combinations of features. Assessing
all the combinations of variables, besides being exhausting
and extremely time-consuming, is unnecessary due to the
ranking of variables done in the beginning of the study.

Several biomarkers, such as demographic, neuropsycho-
logical assessment, MRI imaging, and genetic and fluid
biomarkers, have been used in the diagnosis of AD [58].
Even though neuroimaging biomarkers, such as normalized
hippocampus volume, have reachedhigh accuracy rates in the
diagnosis of AD, they are a structural anatomical evaluation
of the brain and not its function. Patients with higher
cognitive reserve, due to education and occupational attain-
ment, can compensate their deficits and be more resilient
to structural pathological brain changes [59]. As such, neu-
ropsychological test, a functional cognitive assessment, can
outperform MRI imaging, in the diagnosis of AD or even
in the differential diagnosis with other dementias [60]. In
our study, in general, all classifiers—SVM, MLP, RBN, and
DBN—have presented very satisfying results: MLP classifier
model had the highest performances, being more consistent
between the different training iterations. As expected, adding
MoCA scores yielded higher accuracy rates, with above 90%
accuracy rates for all classifiers. As the diagnosis of AD is
supported on cognitive evaluation, including theMoCA eval-
uation score into the dimensional space has to be considered
with caution, as it can result in biased accuracy estimates.
Nevertheless, relying solely on kinematic data, we achieved
performance rates ranging from 71.7 to 86.1%. Interestingly,
our results are in contrast to other studies where the combi-
nation of biomarkers, MRI imaging and neuropsychological
assessment, had a detrimental effect of classification accuracy
rates, probably as a consequence of redundancy between
these variables that represent the same dysfunction [60]. Even
though further studies are needed to elucidate the correlation
between postural control and cognition, we have shown
that the combination of neuropsychological assessment and
postural control analysis are complementary in the diagnosis
of AD. Our results are consistent with other studies where
performances within 88% [6, 61] and 92% [12] were achieved
using neural networks. DBNs have also displayed very good
performances, which are compatible to the performance
records of classifying AD based on neuroimaging data [14,
41, 62]. SVM is considered useful for handling high-dimen-

sional data [53], as it efficiently deals with a very large number
of features due to the exploitation of kernel functions. This
is particularly useful in applications where the number of
attributes is much larger than the number of training objects
[63]. However, we did not find SVM to be the superior
classifier. A drawback of SVM is that the problem complexity
is not of the order of the dimension of the samples, but of the
order of the samples.

6. Conclusion

Our work shows that postural kinematic analysis has the
potential to be used as complementary biomarker in the
diagnosis of AD.Machine-learning classification systems can
be a helpful tool for the diagnosis of AD, based on postural
kinematics, age, height, weight, education, and MoCA. We
have shown that MLPs, followed by DBN, RBN, and SVM,
are useful statistical tools for pattern recognition on clinical
data and neuropsychological and kinematic postural evalua-
tion. Specifically, in the datasets relying solely on kinematic
postural data (i) MLP achieved a diagnostic accuracy of 86%
(sensitivity: 79%; specificity: 93%); (ii) DBN achieved a diag-
nostic accuracy of 78% (sensitivity: 79%; specificity: 77%);
(iii) RBN achieved a diagnostic accuracy of 74% (sensitivity:
71.3%; specificity: 76.7%); and finally (iv) SVM achieved a
diagnostic accuracy of 71.7% (sensitivity: 65%; specificity:
78.4%).

These results are competitive in comparison to results
reported in other recent studies that make use of other types
of data, such as MRI, PET, EEG, and other biomarkers (see
[10] for a list of performances). These results are also com-
petitive when compared to [10], which also used a neuropsy-
chological variable (minimental state examination) (MMSE)
in combination with MRI, obtaining results of 78.2% and
92.4% accuracy when the SVM is trained with datasets
without and with the MMSE variable, respectively. Crossing
a statistical model (nonparametric Mann–WhitneyU test) to
reduce the number of input variables with machine-learning
models has proved to be an advantageous preprocessing tool
to a certain extent. This is corroborated by observing that the
best results were obtained by the classifiers when trained with
reduced datasets.
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Figure 6: Four specific cases displaying the distribution of the subject population of the testing sets of Support Vector Machines (SVMs),
Multiple Layer Perceptrons (MLPs), Radial Basis Function Neural Networks (RBNs), and Deep Belief Networks (DBNs) in the context of the
top three features. This is a typical case of classification approach for Alzheimer’s disease (AD) versus controls (CN).

Future perspectives of our work are to collect a larger
dataset of AD patients and healthy subjects, so as to better
comprehend the discriminatory role of each kinematic pos-
tural variable per se as well as its interdynamic interaction, in
the process of maintaining balance within the limits of stabil-
ity. Other future step, would be to evolve from a nonstatic to
a dynamic paradigm, that is to say, simultaneously studying
the constant dynamics of postural control and cognition

(e.g., attention) on nonstationary increasingly difficult levels
of balance and cognition tasks.
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Figure 7: One specific case displaying the distribution of the same subject population of the testing of Support Vector Machines (SVMs),
Multiple Layer Perceptrons (MLPs), Radial Basis Function Neural Networks (RBNs), and Deep Belief Networks (DBNs) in the context of the
top three features. This is a typical case of classification approach for Alzheimer’s disease (AD) versus controls (CN).
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neural network for the early identification of cognitive impair-
ment in Alzheimer’s disease,” Functional Neurology, vol. 29, no.
1, pp. 57–65, 2014.

[52] L. Palmerini, L. Rocchi, S. Mellone, F. Valzania, and L. Chiari,
“Feature selection for accelerometer-based posture analysis in
Parkinsons disease,” IEEE Transactions on Information Technol-
ogy in Biomedicine, vol. 15, no. 3, pp. 481–490, 2011.

[53] J. Schmidhuber, “Deep learning in neural networks: an
overview,” Neural Networks, vol. 61, pp. 85–117, 2015.

[54] M.Torabi, R.D.Ardekani, andE. Fatemizadeh, “Discrimination
between Alzheimer’s disease and control group in MR-images
based on texture analysis using artificial neural network,” inPro-
ceedings of the 2006 International Conference on Biomedical and
Pharmaceutical Engineering (ICBPE’06), pp. 79–83, December
2006.

[55] T. Howley, M. G. Madden, M.-L. O’Connell, and A. G. Ryder,
“The effect of principal component analysis on machine learn-
ing accuracy with high-dimensional spectral data,” Knowledge-
Based Systems, vol. 19, no. 5, pp. 363–370, 2006.

[56] M. Ahmadlou, H. Adeli, and A. Adeli, “New diagnostic EEG
markers of the Alzheimer’s disease using visibility graph,”
Journal of Neural Transmission, vol. 117, no. 9, pp. 1099–1109,
2010.

[57] S. I. Pan, S. Iplikci, K. Warwick, and T. Z. Aziz, “Parkinson’s
disease tremor classification—a comparison between Support
Vector Machines and neural networks,” Expert Systems with
Applications, vol. 39, no. 12, pp. 10764–10771, 2012.

[58] Y. Jin, Y. Su, X. Zhou, and S. Huang, “Heterogeneous multi-
modal biomarkers analysis for Alzheimer’s disease via Bayesian
network,” EURASIP Journal on Bioinformatics and Systems
Biology, vol. 12, 2016.

[59] Y. Stern, “Cognitive reserve in ageing and Alzheimer’s disease,”
The Lancet Neurology, vol. 11, no. 11, pp. 1006–1012, 2012.

[60] J.Wang, S. J. Redmond,M. Bertoux, J. R. Hodges, andM.Horn-
berger, “A comparison of magnetic resonance imaging and
neuropsychological examination in the diagnostic distinction
of Alzheimer’s disease and behavioral variant frontotemporal
dementia,” Frontiers in Aging Neuroscience, vol. 8, article 119,
2016.

[61] P. Anderer, B. Saletu, B. Klöppel, H. V. Semlitsch, and H. Wer-
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