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Obesity is associated with an accumulation of macrophages in adipose tissue.This inflam-
mation of adipose tissue is a key event in the pathogenesis of several obesity-related
disorders, particularly insulin resistance. Here, we summarized existing model systems
that mimic the situation of inflamed adipose tissue in vitro, most of them being murine.
Importantly, we introduce our newly established human model system which combines
the THP-1 monocytic cell line and the preadipocyte cell strain Simpson–Golabi–Behmel
syndrome (SGBS). THP-1 cells, which originate from an acute monocytic leukemia, differ-
entiate easily into macrophages in vitro. The human preadipocyte cell strain SGBS was
recently introduced as a unique tool to study human fat cell functions. SGBS cells are char-
acterized by a high capacity for adipogenic differentiation. SGBS adipocytes are capable
of fat cell-specific metabolic functions such as insulin-stimulated glucose uptake, insulin-
stimulated de novo lipogenesis and β-adrenergic-stimulated lipolysis and they secrete
typical adipokines including leptin, adiponectin, and RBP4. Applying either macrophage-
conditioned medium or a direct co-culture of macrophages and fat cells, our model system
can be used to distinguish between paracrine and cell-contact dependent effects. In con-
clusion, we propose this model as a useful tool to study adipose inflammation in vitro.
It represents an inexpensive, highly reproducible human system. The methods described
here can be easily extended for usage of primary human macrophages and fat cells.
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INTRODUCTION
Obesity is characterized by a state of chronic, low-grade inflamma-
tion (Hotamisligil, 2006) with features like an increased produc-
tion of chemokines and inflammatory cytokines including tumor
necrosis factor alpha (TNFα), interleukin-6 (IL6), and mono-
cyte chemoattractant protein-1 (MCP-1; Shoelson et al., 2006).
Another feature is the activation of inflammatory signaling path-
ways including inhibitor of NF-κB kinase beta (IKK-β) and c-Jun
NH2-terminal kinase (JNK; Yuan et al., 2001; Hirosumi et al.,
2002). The leading role for these inflammatory pathways in the
development of obesity-associated insulin resistance was demon-
strated by several loss of function studies (Arkan et al., 2005;
Solinas et al., 2007).

It is evident that macrophages infiltrate human and murine
adipose tissue with increasing body weight (Weisberg et al., 2003;
Xu et al., 2003). Nevertheless, the pathogenic mechanisms lead-
ing to macrophage accumulation in the obese state are still
not completely understood. Several hypotheses arose during the
last decade. Local hypoxia (Hosogai et al., 2007; Halberg et al.,
2009), fat cell apoptosis (Fischer-Posovszky et al., 2011) as well
as adipocyte hypertrophy, oxidative stress, or endoplasmic retic-
ulum stress (Furukawa et al., 2004; Ozcan et al., 2004; Gre-
gor and Hotamisligil, 2007; Skurk et al., 2007; Wood et al.,
2009) might trigger macrophage infiltration into obese adipose
tissue.

Adipose tissue macrophages secrete inflammatory cytokines
thereby inducing local and systemic inflammation. Furthermore,
they stimulate expression and secretion of inflammatory cytokines
in fat cells. Therefore, adipocytes themselves, in addition to
macrophages, are involved in obesity-induced inflammation and
insulin resistance.

Understanding how adipocytes and macrophages interact on a
cellular and molecular level will contribute to shed light on adipose
tissue inflammation. Furthermore, it will extend the knowledge
about insulin resistance in adipocytes and might help to uncover
new pharmacological targets for treatment options. For this pur-
pose, cell culture techniques offer almost unlimited possibilities
and help to gain first insights into interaction and underlying
molecular mechanisms. Moreover, they may be perfectly suited to
highlight species differences observed between rodents and man.
This review shortly summarizes existing in vitro model systems
for the inflamed adipose tissue, most of them being murine, and
introduces a new human model system, i.e., THP-1 macrophages
and the unique Simpson–Golabi–Behmel syndrome (SGBS) cell
strain.

THE PAST – SUMMARY OF EXISTING MODEL SYSTEMS
The first studies which investigated the effects of macrophage-
secreted factors on adipocyte biology were carried out in the
1980s (Pekala et al., 1983). Back then Pekala et al. (1983) used
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conditioned media from macrophages to stimulate murine 3T3-
L1 cells. Despite its simplicity this powerful and useful cell culture
tool was almost forgotten. In the last decade, however, it became
clear that the obesity-associated macrophage infiltration into adi-
pose tissue contributes to obesity-associated health risks especially
insulin resistance. This new perspective stimulated studies on
the biological interaction of adipocytes and macrophages. Several
research groups rediscovered “the old” experimental setup and
found it very useful to study adipose tissue inflammation in vitro.
A summary of typically used combinations of cellular models is
given in Table 1.

3T3-L1 adipocytes and murine macrophages such as RAW264
or J774 are the most commonly used combinations. Several studies
provided important insights on how macrophages or macrophage-
secreted factors induce insulin resistance in adipocytes on a cellular
level (Constant et al., 2006; Permana et al., 2006). In addition,
these systems helped to identify signaling pathways contribut-
ing to the development of insulin resistance (Lumeng et al.,
2007b; Constant et al., 2008). However, murine 3T3-L1 adipocytes
are aneuploid (Gregoire et al., 1998) and behave different than
human adipocytes in some regards. For instance, murine 3T3-
L1 cells and human SGBS cells show different sensitivity toward

Table 1 | In vitro models (conditioned media, indirect, or direct

co-cultures) for studying the inflammatory process in adipose tissue.

Adipocyte model Macrophage model Reference

Murine 3T3-L1 Murine RAW264 Lumeng et al. (2007b), Mol-

gat et al. (2009), Hirai et al.

(2010)

Murine 3T3-L1 Murine J774.A1 Yarmo et al. (2009), Lu et al.

(2010), Ide et al. (2011), Mol-

gat et al. (2011)

Murine 3T3-L1 Murine C2D Xie et al. (2010)

Murine 3T3-L1 Murine Primary Hirasaka et al. (2007), Sug-

anami et al. (2007a),Toyoda

et al. (2008), Kennedy et al.

(2011)

Murine 3T3-L1 Human THP-1 Unoki et al. (2008), Con-

stant et al. (2008)

Murine 3T3-F442A Murine RAW264 Tanaka et al. (2009)

Murine OP9 Human U937 Xiao et al. (2010)

Murine Primary Murine RAW264 Sakurai et al. (2010), Chang

et al. (2011)

Human Primary Human THP-1 Constant et al. (2006), Bas-

sols et al. (2009), Bouw-

man et al. (2009), Gao

et al. (2010), Miranville et al.

(2010), Yarmo et al. (2010)

Human Primary Human U937 Bumrungpert et al. (2010),

Overman et al. (2010),

Samuvel et al. (2010)

Human Primary Human Primary Lacasa et al. (2007),

Keophiphath et al. (2009),

Chazenbalk et al. (2011)

apoptosis induction. While 3T3-L1 preadipocytes and adipocytes
are sensitive to apoptosis induction by serum deprivation (Magun
et al., 1998), human SGBS preadipocytes and adipocytes and also
human primary adipocytes are characterized by a general resis-
tance to apoptosis stimuli including serum withdrawal (Fischer-
Posovszky et al., 2004). While macrophage-conditioned media
stimulated Akt phosphorylation in 3T3-L1 cells (Molgat et al.,
2011), Akt phosphorylation was inhibited in our human model
system (Keuper et al., 2011) further supporting the differences
between murine and human cells.

Additionally, murine and human macrophages display differ-
ences (Mestas and Hughes, 2004). In particular, expression of
surface molecules is slightly different. In contrast to humans,
murine adipose tissue macrophages are characterized by a low
CD14 expression (Lumeng et al., 2007a). Furthermore, there has
been considerable controversy as to whether human macrophages
express inducible NO synthase (iNOS; Schneemann and Schoe-
don, 2002). Studies suggest different iNOS activity in macrophage
populations in murine versus human models of inflammation
(Zhang et al., 1996; Schneemann and Schoedon, 2002; Lumeng
et al., 2007a).

Experimental alternatives are scarce when it comes to human
physiology. Some groups used human primary adipocytes in
combination with human macrophage cell lines or primary
macrophages. This approach has the advantage of being very close
to human physiology and helps to identify inter-individual varia-
tions. On the other hand, the usage of human primary material has
several limitations. Availability of tissue samples is restricted and
related to ethical issues. Techniques for the preparation of human
preadipocytes/adipocytes are sophisticated and time-consuming.
As a consequence, these cells are expensive when obtained from
a commercial source. Fat cells ex vivo have a limited survival
time, and preadipocytes loose their capacity for adipogenic dif-
ferentiation after only a few passages in vitro. Inter-individual
differences might also be prejudicial for some applications, where
a high reproducibility of results is indispensable. Especially when
needed for instance for large-scale drug testing, human primary
preadipocytes or adipocytes no longer provide a useful model
system.

Therefore we aimed at developing a model system of inflamed
adipose tissue using a human preadipocyte cell strain assuring suf-
ficient starting material, easy handling, and high reproducibility.

In 2001 we introduced the human SGBS cell strain, which
is characterized by a high capacity for in vitro differentiation
(Wabitsch et al., 2001). SGBS preadipocytes are cultured in
DMEM/Ham’s F12 (1:1) containing 33 μM biotin, 17 μM pan-
tothenate, antibiotics (serum-free, basal medium), and 10% FCS
and adipogenic differentiation is induced after reaching near con-
fluence as described previously (Fischer-Posovszky et al., 2006). Up
till generation 50 the cells retain their ability for adipogenic differ-
entiation. Additionally, once they are differentiated they function
and behave as primary isolated human fat cells. They show a
typical fat cell-specific metabolism including insulin-stimulated
glucose uptake, and de novo lipogenesis (Fischer-Posovszky et al.,
2008). Furthermore, β-adrenergic stimuli activate lipolysis and
SGBS adipocytes express and secrete adipokines including leptin,
adiponectin, and RBP4 (Fischer-Posovszky et al., 2008).
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SOME STUDIES ON HUMAN INFLAMED ADIPOSE TISSUE USING SGBS
CELLS
Since the first publication, SGBS cells have been spread to sev-
eral laboratories all over the world. Many successfully published
studies demonstrate the power and utility of the SGBS cell
strain. It provides an almost unlimited source of homogeneous
human preadipocytes with high differentiation capacity (Fischer-
Posovszky et al., 2008). SGBS cells are broadly used to study
adipogenic differentiation or effects of drugs and food com-
pounds on fat cell function. However, few studies have focused
on inflammation.

Permana et al. (2009) used SGBS adipocytes in combination
with human U937 cells. The U937 cell line represents a well charac-
terized model for human macrophages. Expression and secretion
of inflammatory cytokines were highly increased and adiponectin
expression and secretion was reduced, when SGBS cells were
treated with U937–macrophage-conditioned medium (MacCM;
Permana et al., 2009). Additionally, they showed an increased
lipolytic activity of adipocytes after exposure to macrophage-
secreted factors (Permana et al., 2009). Lipolysis might locally
aggravate the pro-inflammatory process by releasing FFA which
in turn exert pro-inflammatory effects on macrophages and
adipocytes (Suganami et al., 2007b). These adverse effects of
macrophage-secreted factors on fat cells were ameliorated or even
diminished by treatment with pioglitazone, an insulin-sensitizing
thiazolidinedione (Permana et al., 2009). SGBS cells in combina-
tion with U937–MacCM were also used to perform microarray
analysis (O’Hara et al., 2009). About 1088 transcripts were up- or
down-regulated by treatment with macrophage-secreted factors
and the authors validated selected genes by real-time PCR (O’Hara
et al., 2009). Several matrix metalloproteinase were up-regulated
including MMP1, MMP3, MMP9, MMP10, MMP12, and MMP19
and also accumulated in the medium supernatants. The authors
concluded from this study that macrophages contribute to tis-
sue remodeling processes in obese adipose tissue (O’Hara et al.,
2009).

Another possibility is the usage of human primary
macrophages isolated from blood. Even more elegantly, Went-
worth et al. (2010) isolated macrophages from human adipose tis-
sue samples. They performed collagenase digestion to isolate stro-
mal vascular cells from adipose tissue and then used a flow cytom-
etry cell sorting strategy to collect CD11+–macrophages. The ex
vivo culture of human adipose tissue macrophages is certainly very
close to human physiology and well suited to identify patient-
specific characteristics. Using this strategy, the authors found
that only CD11c+–macrophages and not CD11c−–macrophages
induce insulin resistance in SGBS fat cells (Wentworth et al.,
2010).

Overnutrition and hypoxia were discussed as factors initiat-
ing macrophage infiltration into adipose tissue in the obese state
(Trayhurn and Wood, 2004; Hosogai et al., 2007). Both processes
were studied in the SGBS cell system. High doses of glucose or sat-
urated fatty acids were reported to induce expression of chemoat-
tractants like serum amyloid A (SAA) or MCP-1 (Yeop Han et al.,
2010). Hypoxia led to robust changes in mRNA expression in SGBS
adipocytes (Geiger et al., 2011).

THE PRESENT – ESTABLISHING A HUMAN SYSTEM WITH
HIGH REPRODUCIBILITY AND ALMOST UNLIMITED
AVAILABILITY
EXPERIMENTAL SETUP FOR A HUMAN IN VITRO MODEL SYSTEM OF
INFLAMED ADIPOSE TISSUE
We tested three different, human monocytic cell lines (U937,
MonoMac6, THP-1). The THP-1 cell line was most suitable due
to easy handling and a macrophage-like phenotype after in vitro
differentiation presumably very similar to human adipose tissue
macrophages in vivo. THP-1 is a well described cell line and com-
monly used as a model for human macrophages (Tsuchiya et al.,
1980). THP-1 cells are cultured in RPMI containing 100 μM non-
essential amino acids, 2 mM l-glutamine, 1 mM sodium pyruvate,
antibiotics (basal medium), and 10% FCS. We induced differ-
entiation of THP-1 cells into macrophages by incubation with
125 ng/ml phorbol myristate acetate (PMA) for 48 h in serum-
free basal medium. We characterized the differentiation process
in extenso. For example, the expression of macrophage-specific
surface molecules such as CD11c, CD54, CD86 as well as pro-
duction and secretion of inflammatory cytokines is dramatically
increased after differentiation into macrophages (Tsuchiya et al.,
1982; Keuper et al., 2011). Most conveniently, the differentia-
tion from monocytes to macrophages goes along with a marked
change in morphology. While THP-1 monocytes grow in suspen-
sion, THP-1 macrophages adhere to the culture dishes and remain
adherent. Thus, the differentiation process can be easily controlled
and monitored.

Combining SGBS cells with THP-1 cells creates a perfect human
model system with unlimited availability. Both cell types can be
used as precursors (monocytes, preadipocytes) or differentiated
into their final phenotype (macrophages, adipocytes; Figure 1A).
This system can be used to study endocrine effects by using just
the conditioned medium or a transwell co-culture system. Cellu-
lar interactions can be monitored by a direct co-culture system
(Figure 1B). For the use of conditioned media, in vitro differ-
entiated THP-1 cells (106/ml) were incubated with serum-free
basal medium to achieve chemically well-defined conditions. In
addition, 0.5% bovine serum albumin (BSA) is added to stabi-
lize macrophage-secreted factors. Macrophage-conditioned media
(MacCM) were collected after 48 h and cleared by centrifugation.
For a direct co-culture system, THP-1 macrophages were added
directly to cultures of SGBS cells at increasing rates (THP-1:SGBS
1:10, 1:2, 1:1, 2:1). SGBS cells and THP-1 cells show optimal growth
in distinct cell culture media (THP-1: RPMI, SGBS: DMEM-F12).
To exclude effects caused by the cell culture medium, we used
serum-free THP-1 medium containing 0.5% BSA in correspond-
ing concentrations as vehicle control for the cell-free as well as the
direct co-culture system.

FUNCTIONAL CHARACTERIZATION OF THE MODEL SYSTEM
Adipose tissue inflammation is one of the key elements in the
pathogenesis of obesity-related insulin resistance. This has been
shown by several animal and human studies including in vivo
and in vitro investigations (Yuan et al., 2001; Hirosumi et al.,
2002; Arkan et al., 2005; Solinas et al., 2007). Macrophages or
macrophage-secreted factors inhibit several insulin-stimulated
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FIGURE 1 | Experimental setup. (A) We designed an experimental setup
to mimic adipose tissue inflammation in vitro. Human THP-1 cells were
either used as monocytes or differentiated into macrophages by incubation
with 125 ng/ml PMA (phorbol-12 myristate 13-acetate). We used
monocyte-conditioned (MonCM) and macrophage-conditioned media
(MacCM) which were collected for 48 h in serum-free medium. In a direct
co-culture system (CoCult) macrophages were directly added to cultures of
human SGBS preadipocytes and adipocytes. (B) Immunofluorescence of
SGBS control cultures and co-cultures of SGBS and THP-1 macrophages
stained with CD11c-PE, BODIPY, and DAPI.

processes of preadipocytes and adipocytes. The inhibition of adi-
pogenic differentiation was demonstrated in the above mentioned
murine model system as well as in primary isolated preadipocytes
(Constant et al., 2006; Yarmo et al., 2010). As this effect was
well characterized, we used it as a positive control for the ini-
tial characterization of our SGBS/THP-1 system. We differentiated
SGBS cells for 10 days in the presence of MacCM or vehicle.
Fresh MacCM was added to the differentiation medium with each
medium change. Analyzing the lipid content of the resulting cell
cultures, we found a complete inhibition of adipogenic differen-
tiation as judged morphologically by the absence of intracellular
lipid droplets (Figure 2A). A Nile Red staining confirmed this
finding (Figure 2B). In parallel, the expression of the adipocyte
marker gene PPARγ was diminished as assessed by quantitative
real-time PCR (Figure 2C). For the co-culture system, in vitro
differentiated THP-1 macrophages supplied in adipogenic differ-
entiation medium were added directly to cultures of SGBS cells.
In line with findings from MacCM, the direct co-culture system
resulted in a dose-dependent inhibition of the adipogenic differen-
tiation process (Figures 2D,E) The ratio of one macrophage to 10
SGBS cells is well achievable in the in vivo situation. Around 10%
macrophages were detected in human adipose tissue samples of
obese subjects by immunohistochemistry (Harman-Boehm et al.,
2007). Notably, macrophages accumulate around dead, apoptotic
fat cells suggesting a locally increased macrophage:fat cell ratio
(Cinti et al., 2005; Alkhouri et al., 2010; Keuper et al., 2011).

Also other insulin-dependent functions of the fat cell were char-
acterized. As such, we showed in a previously published paper
that macrophage-secreted factors inhibit insulin-stimulated glu-
cose uptake by 65% (Keuper et al., 2011). Likewise, the de novo
generation of triglycerides from glucose was decreased by 4.5-fold
in the presence of macrophage-secreted factors. On the molecular

FIGURE 2 | Effect of macrophage-conditioned medium (MacCM) and

co-culture on adipogenic differentiation. (A) SGBS preadipocytes were
incubated with MacCM (10, 20, 50%) or vehicle during adipogenic
differentiation. At day 10 cells were analyzed. (B) Lipid accumulation was
assessed by staining the cells with the lipophilic dye Nile Red. (C) mRNA
expression of PPARγ was analyzed by qPCR and normalized to succinate
dehydrogenase complex subunit A (SDHA) and related to control using the
ΔΔCt method. (D) In vitro differentiated THP-1 macrophages were added
to cultures of SGBS preadipocytes at increasing rates (THP-1:SGBS 1:10,
1:2, 1:1) during adipogenic differentiation. (E) Lipid accumulation was
assessed by staining the cells with Nile Red. Nile Red signals of
macrophage cultures were subtracted as background. Data are presented
as mean + SEM of three independent experiments. *p < 0.05.

level, macrophage-secreted factors caused a decrease in Akt phos-
phorylation, one of the key players in insulin signal transduction
(Keuper et al., 2011).

Taken together, our human model system of inflamed adipose
tissue showed the expected characteristics in terms of insulin sen-
sitivity, i.e., an inhibition of adipogenic differentiation, a decrease
in glucose uptake and lipogenesis and reduced phosphorylation
of Akt.

Furthermore, the inflammatory micro-environment mimicked
by MacCM induced a shift toward a pro-inflammatory adipocyte
secretion profile. SGBS adipocytes were treated with MacCM or
vehicle. After 24 h total mRNA was prepared and the expression of
several target genes was analyzed by qPCR. The mRNA expression
of adiponectin expression was robustly reduced (Figure 3A), while
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FIGURE 3 | Macrophage-conditioned medium (MacCM) differentially

regulates adipokine expression. SGBS adipocytes were incubated with
medium, vehicle control, or 50% MacCM. After 24 h total RNA was
prepared and reversely transcribed. Expression of adiponectin (A),
monocyte chemoattractant protein-1 (MCP-1) (B), interleukin-6 (IL6) (C),
interleukin-8 (IL8) (D), and interleukin-1beta (IL1β) (E) was analyzed by
qPCR. The mRNA levels of target genes were normalized to those of
succinate dehydrogenase complex subunit A (SDHA) using the ΔCt method
and related to vehicle control using ΔΔCt method. Data are presented as
mean + SEM of three independent experiments. *p < 0.05.

production of inflammatory chemokines and cytokines including
MCP-1 (Figure 3B), interleukin-6 (IL6; Figure 3C), interleukin-
8 (IL8; Figure 3D), and interleukin-1beta (IL1β; Figure 3E) was
strongly increased.

THE FUTURE – POSSIBILITIES TO EXPAND AND USE THE
NEW HUMAN IN VITRO SYSTEM
Our model system of human adipose tissue inflammation has been
well characterized, but future efforts will help to further improve
it. For example, cells lines could be replaced by primary cells if the
identification of variations between patients is the main goal. As
mentioned above SGBS cells were already successfully combined
with primary isolated macrophages (Wentworth et al., 2010).

Additionally, model system like ours could be expanded with
other important cell types found in obese adipose tissue. Interest-
ingly, a close connection of T cells and the inflammatory process
was reported. CD11c+ cells are responsible for the T cell infiltra-
tion and activation (Wu et al., 2007). The CD8+ T cell infiltration
is linked to insulin resistance and obesity-associated inflamma-
tion (Kintscher et al., 2008; Nishimura et al., 2009). Recently, an
important role for CD4+ T cells in the regulation of body weight,
glucose tolerance, and insulin resistance was added to this picture
(Winer et al., 2009). Since these studies implicate an important
role for T cells in disease progression during diet-induced obe-
sity, adding this cell type to our model might further enhance
the system and the knowledge about their cellular and molecular
interactions. Studies of murine CD8+ T cells in co-culture with
adipocytes and macrophages showed an important role for CD8+
T cells in macrophage differentiation, migration, and activation
(Nishimura et al., 2009). However, since we observed crucial dif-
ferences between murine and human adipocytes this interplay has
to be verified in a human model system.

Obesity is associated with endothelial dysfunction, a key early
event in the initiation and progression of atherosclerosis (Stein-
berg et al., 1996). Endothelial dysfunction accompanies many of
the obesity-associated disorders and is a predictor of future adverse
cardiovascular events (Williams et al., 2005). Furthermore obesity
is associated with dysregulated angiogenesis within the expand-
ing adipose tissue (Halberg et al., 2009) suggesting a critical role
for endothelial cells in this context. Endothelial cells isolated from
human adipose tissue stimulate preadipocyte proliferation (Hut-
ley et al., 2001). By incorporating endothelial cells into our sys-
tem, interactions between human adipocytes and endothelial cells
could be further elucidated and investigated in an inflammatory
environment.

Importantly, SGBS adipocytes are suitable for culture in 96-
well plates as well as 384-well plates allowing large-scale drug
testing. As such, the SGBS:THP-1 co-culture system was success-
fully applied to study the effects of aleglitazar in a context of
inflamed adipose tissue (Dzyakanchuk et al., 2010). Aleglitazar is a
balanced dual peroxisome proliferator-activated receptor (PPAR)
alpha/gamma agonist, designed to optimize lipid and glycemic
benefits (Dzyakanchuk et al., 2010).

CONCLUSION
Taken together, our data suggest that THP-1 macrophages are
able to create an inflammatory micro-environment very similar
to the one found in vivo. SGBS adipocytes develop a phenotype
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of insulin resistance and their secretion profile undergoes a pro-
inflammatory shift when exposed to this inflammatory environ-
ment. Therefore, we propose that this model system represents an
excellent and easy-to-use opportunity to study molecular as well
as cellular changes and effects in adipocytes in the context of an
inflamed adipose tissue. Notably, this system also allows large-scale
drug screening which might be very useful to find new compounds
that ameliorate adipose tissue inflammation and/or restore normal
adipocyte function despite inflammation.
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