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Abstract: Postbiotics, including bacterial lysates, are considered alternatives to probiotics. The aim of
the current study was to investigate the effect of bacterial lysates (BLs) extracted from Pediococcus
acidilactici K10 (K10 BL) and P. acidilactici HW01 (HW01 BL) on the differentiation of 3T3-L1 pre-
adipocytes. Both K10 and HW01 BLs significantly reduced the accumulation of lipid droplets and
the amounts of cellular glycerides in 3T3-L1 cells (p < 0.05). However, another postbiotic molecule,
peptidoglycan of P. acidilactici K10 and P. acidilactici HW01, moderately inhibited the accumulation of
lipid droplets, whereas heat-killed P. acidilactici did not effectively inhibit the lipid accumulation. The
mRNA and protein levels of the transcription factors, peroxisome proliferator-activated receptor γ
and CCAAT/enhancer-binding protein α, responsible for the differentiation of 3T3-L1 cells, were
significantly inhibited by K10 BL and HW01 BL (p < 0.05). Both K10 and HW01 BLs decreased
adipocyte-related molecules, adipocyte fatty acid-binding protein and lipoprotein lipase, at the
mRNA and protein levels. Furthermore, both K10 and HW01 BLs also downregulated the mRNA
expression of leptin, but not resistin. Taken together, these results suggest that P. acidilactici BLs
mediate anti-adipogenic effects by inhibiting adipogenic-related transcription factors and their
target molecules.
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1. Introduction

It has been recognized that an essential concept of probiotics is the viability of microbial
cells to ensure beneficial effects for the host. However, recent studies have shown that
microbial viability is not necessary when conferring probiotic effects to achieve health
promotion, because some mechanisms and clinical benefits are not directly associated
with the live microorganisms [1]. In addition, studies have highlighted the limitations
of probiotics such as strain-specific behavior, virulence gene transfer, and opportunistic
infections [2]. Therefore, new terms, such as postbiotics, have emerged, which indicate that
microbial viability is not required for their health-promoting effects [3].

Postbiotics, including cell wall fragments, exopolysaccharides, enzymes, short-chain
fatty acids, and bacterial lysates, refer to soluble factors secreted by live bacteria or released
after bacterial lysis [3,4]. Furthermore, heat-killed bacteria that demonstrate health benefits
also fall into the scope of postbiotics [5]. Several reports have suggested that postbiotic
molecules have various functional properties, such as antimicrobial, antioxidant, anti-
obesogenic, and immunomodulatory activities [6–9]. Among the postbiotic molecules,
bacterial lysates (BLs) of Enterococcus lactis and Lactobacillus acidophilus obtained from their
degradation products by chemical and mechanical treatments alleviated drug-induced
liver injury [10]. Moreover, BLs of L. amylovorus reduced the levels of triglycerides and LDL
cholesterol in obese mice [9].

Adipogenesis is a complex multi-step process of the proliferation and differentiation
of pre-adipocytes into mature adipocytes containing lipid droplets, which contribute to
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obesity [11]. The differentiation of pre-adipocytes into adipocytes is accompanied by spe-
cific transcription factors, including peroxisome proliferator-activated receptor γ (PPARγ),
CCAAT/enhancer-binding proteins (C/EBPs), and sterol regulatory element binding-
proteins 1 (SREBP-1) [12,13]. The differentiation of 3T3-L1 pre-adipocytes into mature
lipid-containing adipocytes is commonly used as an in vitro model to assess the molecular
characteristics of adipogenesis [14]. During the process of pre-adipocyte differentiation, the
temporal expressions of C/EBPβ and C/EBPδ facilitate the expression of the key adipocyte
transcription factors, PPARγ and C/EBPα, which are responsible for the maturation and
differentiation of adipocytes [15,16]. This is then followed by the enhanced expression
of genes that characterize adipogenic phenotypes, including adipocyte-specific fatty acid
binding protein (aP2) and leptin [17].

Several in vitro studies have shown that live bacteria and postbiotic molecules from
Lactobacillus have anti-adipogenic effects [18–21]. Exopolysaccharides isolated from L. rham-
nosus GG inhibit the differentiation of 3T3-L1 pre-adipocytes [19]. Cell extracts from L. plan-
tarum KY1032 reduce lipid accumulation in 3T3-L1 cells and downregulate adipogenic-
related genes, including PPARγ and C/EBPα [20]. Pediococci are Gram-positive lactic
acid bacteria commonly found in fermented vegetables, dairy products, and meats [22,23].
Pediococcus acidilactici is a potential probiotic that has antimicrobial, antioxidant, and im-
munomodulatory activities [24–26]. Although the oral administration of live P. acidilactici
M76 decreased body weight and adipose tissue weight in high fat diet-induced obese mice
as well as reducing total cholesterol and triglycerides [27], the anti-adipogenic effects of
postbiotic molecules from P. acidilactici have not been studied. In addition, the inhibitory
effects of P. acidilactici postbiotic molecules on the differentiation of 3T3-L1 pre-adipocytes
and the associated intracellular mechanisms have not been demonstrated. Therefore, in
this study, we investigated the anti-adipogenic effects of BLs extracted from P. acidilactici
K10 and P. acidilactici HW01 on the differentiation of 3T3-L1 pre-adipocytes. Moreover, the
intracellular mechanisms related to adipogenesis were also investigated.

2. Results and Discussion
2.1. P. acidilactici BLs Reduce Lipid Accumulation and Cellular Triglycerides in 3T3-L1 Cells

As shown in Figure 1A, the lipid accumulation in 3T3-L1 cells was dose-dependently
decreased by the treatment with P. acidilactici K10 BL (K10 BL). The treatment with 5 µg/mL
of K10 BL reduced the lipid accumulation by 16%. A further reduction of lipid accumulation
was observed when the cells were treated with 10 or 20 µg/mL (33% and 62% reduction,
respectively). Similarly, P. acidilactici HW01 BL (HW01 BL) decreased the lipid accumulation
in a dose-dependent manner. The extent of lipid accumulation in 3T3-L1 cells in the pres-
ence of HW01 BL decreased by 39%, 44%, and 64% at concentrations of 5, 10, and 20 µg/mL,
respectively (Figure 1B). The impact of BLs on the reduction of cellular triglycerides was
also determined. Figure 2A shows that the amounts of cellular triglycerides were decreased
in the presence of K10 BL in a dose-dependent manner. At a high concentration of K10 BL
(20 µg/mL), the extent of cellular triglycerides was markedly decreased by 85%. At the
lower concentrations (5 and 10 µg/mL), K10 BL also significantly reduced the amounts
of cellular triglycerides (18% and 55% reduction, respectively). Moreover, HW01 BL also
significantly reduced the amounts of cellular triglycerides (Figure 2B). Almost 46% of
cellular triglycerides were reduced by the treatment with 5 µg/mL of HW01 BL and a
further decrease in cellular triglycerides was observed at 10 and 20 µg/mL of HW01 BL
(both 85% reduction, respectively). These results suggest that P. acidilactici BLs potently
inhibited adipogenesis. Lactic acid bacteria, in particular Lactobacillus, have been studied as
preventive and therapeutic agents against obesity in animal studies and clinical trials [28].
In this study, P. acidilactici BLs effectively inhibited adipogenesis by reducing lipid accumu-
lation and cellular triglycerides. In addition to probiotics, the beneficial effects of lysates
derived from probiotics have been reported. Lysates of L. casei attenuate colitis [29]. The
antitumor activity of L. acidophilus lysates has been also reported [30]. Moreover, cell lysates
from probiotics including lactobacilli lower the cholesterol level, whereas the intact cells
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of these probiotics do not effectively reduce the cholesterol level in comparison with the
cell lysates [31]. Although the beneficial effects of lysates from lactobacilli have been well
documented, the health promoting properties, such as anti-adipogenic effect, of lysates
from P. acidilactici have not been suggested. Furthermore, although a specific component(s)
of P. acidilactici BLs associated with the inhibition of 3T3-L1 cell differentiation has not been
determined in the current study, it can be possibly explained that specific peptide(s) in
P. acidilactici BLs is properly involved in the anti-adipogenic effect. A previous report has
shown that two peptides, LLRLTDL and GYALPCDCL, were revealed to be highly effective
for the inhibition of lipid accumulation in adipocytes [32], suggesting that peptides in
P. acidilactici BLs possibly inhibit 3T3-L1 cell differentiation. Although extensive studies are
required to identify specific component(s) in P. acidilactici BLs that are closely associated
with the anti-adipogenic effect, this study highlights the inhibitory potential of P. acidilactici
BLs in the prevention of adipogenesis.
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Figure 1. Inhibitory effect of P. acidilactici BLs on lipid accumulation in 3T3-L1 cells. Cells were
treated with various concentrations (0, 5, 10, and 20 µg/mL) of P. acidilactici K10 BL (A) or P. acidilactici
HW01 BL (B). At day 12, lipid accumulation in 3T3-L1 cells was assessed by Oil Red O staining.
Representative microscopic images of Oil Red O-stained cells are shown. Data are expressed as the
mean ± standard deviation. Statistical significance between groups was determined by ANOVA
when p < 0.05. Significant differences between treatment with K10 BL or HW01 BL are expressed
with different letters (a, b, c, d).
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Figure 2. Inhibitory effect of P. acidilactici BLs on cellular triglycerides in 3T3-L1 cells. Cells were
treated with various concentrations (0, 5, 10, and 20 µg/mL) of P. acidilactici K10 BL (A) or P. acidilactici
HW01 BL (B). At day 12, the amounts of cellular triglyceride were assessed using a commercial
triglyceride assay kit. Data are expressed as the mean ± standard deviation. Statistical significance
between groups was determined by ANOVA when p < 0.05. Significant differences between treatment
with K10 BL or HW01 BL are expressed with different letters (a, b, c, d).
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2.2. P. acidilactici PGN and Heat-Killed P. acidilactici Do Not Effectively Reduce Lipid
Accumulation in 3T3-L1 Cells

To further examine whether other postbiotic molecules, P. acidilactici PGN, a major
cell wall component, and heat-killed P. acidilactici, have anti-adipogenic effects, the lipid
accumulation in 3T3-L1 cells treated with P. acidilactici PGN or heat-killed P. acidilactici was
measured using Oil Red O staining. Figure 3A shows that the treatment with P. acidilactici
K10 PGN (K10 PGN) (10 and 20 µg/mL) reduced the lipid accumulation in 3T3-L1 cells
by 23% and 18%, respectively. P. acidilactici HW01 PGN (HW01 PGN) also decreased the
lipid accumulation in 3T3-L1 cells by 39% and 30% at concentrations of 10 and 20 µg/mL
(Figure 3B). However, P. acidilactici PGN did not dose-dependently reduce the lipid accu-
mulation. In a separate experiment, 108 colony forming unit (CFU) per mL of heat-killed
P. acidilactici K10 moderately inhibited the lipid accumulation, whereas 107 CFU/mL of
heat-killed P. acidilactici K10 failed to inhibit the lipid accumulation (Figure 3C). Similarly,
heat-killed P. acidilactici HW01 inhibited the lipid accumulation at 108 CFU/mL, but not
at 107 CFU/mL (Figure 3D). Although P. acidilactici PGN and heat-killed P. acidilactici
reduced the lipid accumulation, the inhibitory effects of both postbiotic molecules, PGN
and heat-killed bacteria, were not as effective compared with BLs.
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Figure 3. Effect of P. acidilactici PGNs and heat-killed P. acidilactici on lipid accumulation in 3T3-L1 cells.
Cells were treated with various concentrations (0, 10, and 20 µg/mL) of P. acidilactici K10 PGN (A) or
P. acidilactici HW01 PGN (B). Cells were treated with various concentrations (0, 107 and 108 CFU/mL)
of heat-killed P. acidilactici K10 (C) or P. acidilactici HW01 (D). At day 12, lipid accumulation in 3T3-L1
cells was assessed by Oil Red O staining. Data are expressed as the mean ± standard deviation.
Statistical significance between groups was determined by ANOVA when p < 0.05. Significant
differences between treatment with P. acidilactici PGN (A,B) or heat-killed P. acidilactici (C,D) are
expressed with different letters (a, b, c).

2.3. P. acidilactici BLs Downregulate PPARγ and C/EBPα during the Adipogenesis of 3T3-L1 Cells

Because the differentiation of 3T3-L1 cells is associated with the activation of tran-
scription factors, including PPARγ, C/EBPα, C/EBPβ, and SREBP-1c, the regulation of
these transcription factors by treatment with P. acidilactici BLs was examined. The mRNA
expressions of the Pparg and Cebpa genes were significantly inhibited in the presence of
K10 or HW01 BLs (p < 0.05), whereas the mRNA expressions of the Cebpb and Srebf1 genes
were not inhibited in the presence of K10 or HW01 BLs (p > 0.05) at day 3 (Figure 4A).
A similar phenomenon was observed on day 12. Both K10 and HW01 BLs significantly
inhibited the mRNA expressions of the Pparg and Cebpa genes (p < 0.05) but did not inhibit
the mRNA expressions of the Cebpb and Srebf1 genes (p > 0.05) (Figure 4B). Furthermore,
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exposure to the K10 and HW01 BLs markedly reduced the protein levels of PPARγ and
C/EBPα at day 3 and day 12 (p < 0.05) (Figure 4C,D, respectively). These results suggest
that P. acidilactici BLs inhibit the differentiation of 3T3-L1 cells by downregulating two
transcription factors, PPARγ and C/EBPα. During adipogenesis, C/EBPβ and C/EBPδ
are expressed to induce PPARγ and C/EBPα [15,33]. Although C/EBPβ and C/EBPδ
are necessary for the development of adipogenesis, the roles of these two transcription
factors have not been fully elucidated [34]. The current study indicated that C/EBPβ
was not regulated by P. acidilactici BLs. However, PPARγ and C/EBPα were considerably
diminished at the mRNA and protein levels. It is generally accepted that PPARγ and
C/EBPα are the master regulators of adipogenesis according to extensive studies using
in vitro and in vivo models [35–37]. Consistent with previous studies, P. acidilactici BLs also
downregulated PPARγ and C/EBPα, which may lead to the inhibition of adipogenesis.
C/EBPβ is known to be transiently induced at the early stage of adipocyte differentiation
that leads to the upregulation of late adipogenic transcription factors, such as PPARγ and
C/EBPα [12]. A previous report showed that the treatment of 3T3-L1 cells with all-trans
retinoic acid significantly suppresses mRNA expressions of PPARγ and C/EBPα, but not
C/EBPβ. However, mRNA expression of C/EBPβ in 3T3-L1 cells after treatment with
all-trans retinoic acid is transiently downregulated [38]. Moreover, the gene expression of
PPARγ is inhibited, whereas that of C/EBPβ is rather enhanced in 3T3-L1 cells treated by
6-ehtoxyzolamide [39]. This can be possibly explained by C/EBPβ being regulated at the
very early stage of 3T3-L1 cell differentiation. SREBP-1c is another important transcription
factor that induces adipogenesis and can regulate the expressions of several genes involved
in lipid metabolism [40]. Despite the importance of SREBP-1c for the development of
adipogenesis, SREBP-1c did not seem to be involved in the inhibition of adipogenesis by
P. acidilactici BLs in the current study. Overall, our results demonstrated that P. acidilactici
BLs downregulated the expressions of PPARα and C/EBPα at the early and late stages of
adipogenesis, contributing to the inhibition of 3T3-L1 cell differentiation.

2.4. P. acidilactici BLs Suppress Adipocyte-Specific Genes in 3T3-L1 Cells

PPARγ and C/EBPα coordinately facilitate the expression of adipocyte-specific factors,
such as aP2 and lipoprotein lipase (LPL), which are associated with lipid metabolism [41].
Thus, the inhibition of ap2 and LPL mRNA expressions in the presence of P. acidilactici
BLs was examined. As shown in Figure 5A, the mRNA expression of Fabp4 gene was
significantly decreased (p < 0.05) when 3T3-L1 cells were treated with 20 µg/mL of K10
or HW01 BL. Moreover, both K10 and HW01 BL (20 µg/mL) significantly downregulated
Lpl gene expression in 3T3-L1 cells (p < 0.05) (Figure 5B). We further examined the protein
levels of ap2 and LPL in 3T3-L1 cells after treatment with P. acidilactici BLs. As expected,
the protein levels of aP2 and LPL were markedly reduced by treatment with K10 or HW
BL (20 µg/mL) (Figure 5C). aP2, also known as fatty acid-binding protein 4, is involved in
the intracellular transport and metabolism of fatty acids during adipogenesis [42]. Triglyc-
erides are hydrolyzed by LPL, promoting the uptake of fatty acids by the surrounding
tissues [43]. Previous studies showed that the reduced expression of PPARγ resulted in
the decreased mRNA and protein levels of aP2 and LPL [14,44]. Consistently, our findings
also demonstrated that P. acidilactici BLs suppressed the expressions of aP2 and LPL by
regulating PPARγ and C/EBPα. These results suggest that P. acidilactici BLs reduced aP2
and LPL expressions, which may impair lipid accumulation during the differentiation of
3T3-L1 cells.
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Figure 4. Inhibitory effect of P. acidilactici BLs on the expressions of adipogenic transcription factors
in 3T3-L1 cells. Cells were treated with 20 µg/mL of P. acidilactici K10 BL (A) or P. acidilactici HW01
BL (B). At days 3 and 12, the mRNA expressions of Pparg, Cebpa, Cebpb, and Srebf1 genes were
measured by real-time quantitative reverse-transcription PCR. Cells were treated with 20 µg/mL of
P. acidilactici K10 BL (C) or P. acidilactici HW01 BL (D). At days 3 and 12, cell lysates were collected and
subjected to Western blot analysis to determine the protein levels of PPARγ and C/EBPα. Data are
expressed as the mean ± standard deviation. Statistical significance between groups was determined
by ANOVA when p < 0.05. Significant differences between treatment with K10 BL or HW01 BL are
expressed with different letters (a, b, c). NT denotes not treated.
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Figure 5. Inhibitory effect of P. acidilactici BLs on aP2 and LPL in 3T3-L1 cells. Cells were treated with
20 µg/mL of P. acidilactici K10 BL or P. acidilactici. At day 12, the mRNA expressions of Fabp4 (A)
and Lpl (B) genes were measured by real-time quantitative reverse-transcription PCR. (C) At day 12,
cell lysates were collected and subjected to Western blot analysis to determine the protein levels of
aP2 and LPL. Data are expressed as the mean ± standard deviation. Statistical significance between
groups was determined by ANOVA when p < 0.05. Significant differences between treatment with
K10 BL or HW01 BL are expressed with different letters (a, b). NT denotes not treated.

2.5. P. acidilactici BLs Reduces Adipokines in 3T3-L1 Cells

Adipokines, such as resistin and leptin, are cytokines secreted from adipocytes [45].
Resistin is preferentially expressed in adipose tissue and is associated with type 2 dia-
betes and metabolic syndrome [46,47]. Thus, we also examined whether P. acidilactici
BLs inhibited mRNA expression in 3T3-L1 cells. Although K10 BL slightly inhibited the
mRNA expression of the resistin gene (Retn), the inhibition by K10 BL was not statistically
significant (p > 0.05). Similarly, HW01 BL did not inhibit the mRNA expression of Retn
gene (Figure 6A). However, when 3T3-L1 cells were treated with K10 or HW01 BLs, the
mRNA expression of Lep gene was significantly inhibited (p < 0.05) (Figure 6B). Leptin can
induce the formation of lipid droplets, accelerating the differentiation of 3T3-L1 cells [48].
Thus, leptin is highly associated with obesity [49]. Accordingly, it can be assumed that the
decreased leptin expression through the inhibition of PPARγ by P. acidilactici BLs could
inhibit the differentiation of 3T3-L1 cells.
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Figure 6. Inhibitory effect of P. acidilactici BLs on the mRNA expressions of adipokines in 3T3-L1
cells. Cells were treated with 20 µg/mL of P. acidilactici K10 BL or P. acidilactici HW01 BL. At day 12,
the mRNA expressions of Retn (A) and Lep (B) genes were measured by real-time quantitative reverse-
transcription PCR. Data are expressed as the mean ± standard deviation. Statistical significance
between groups was determined by ANOVA when p < 0.05. Significant differences between treatment
with K10 BL or HW01 BL are expressed with different letters (a, b). NT denotes not treated.
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3. Materials and Methods
3.1. Microorganisms and Sample Preparation

P. acidilactici K10 and P. acidilactici HW01 were isolated from kimchi and malt, respec-
tively [50,51]. The bacteria were cultured in Man-Rogosa-Sharpe (MRS) (Neogen, Lansing,
MI, USA) at 37 ◦C for 24 h. In order to extract BLs, bacterial pellets were collected after
centrifuging at 6000× g for 10 min and washed twice with phosphate-buffered saline (PBS).
Then, the bacterial pellets were suspended in extraction buffer (50 mM Trizma base, 0.1 mM
EDTA, and 1 mM 2-mercaptoethanol, pH 7.5), transferred to a tube containing zirconium
beads (Benchmark Scientific, Sayreville, NJ, USA) and homogenized at 4 ◦C for 100 s
using a benchtop homogenizer (BeadBugTM 3, Benchmark Scientific). The supernatants
were collected by centrifuging at 20,000× g for 30 min and filtered through a syringed
filter (0.2 µm). The concentration of BLs was determined by bicinchoninic acid (BCA)
protein assay (Thermo Fisher Scientific, Rockford, IL, USA). Crude PGN of P. acidilactici
was prepared as described previously with minor modifications [52]. After culturing and
harvesting P. acidilactici, bacterial pellets were washed with 1 M NaCl and homogenized in
a tube containing zirconium beads as described above. The supernatants were discarded,
and the remaining pellets were incubated with 0.5% sodium dodecyl sulfate in PBS at
60 ◦C for 30 min. Then, the resulting cell walls were extensively washed with distilled
water five times and incubated in 50 mM Tris-HCl (pH 7.0) containing 50 µg DNase and
250 µg RNase at 37 ◦C for 2 h to remove residual nucleic acids followed by the addition of
50 mg MgCl2 and 1 mg trypsin and further incubation at 37 ◦C for 24 h to remove residual
nucleic acids and cell wall bound proteins. After centrifugation at 19,000× g for 10 min,
the cell walls were incubated in 48% hydrofluoric acid at 4 ◦C overnight to remove wall
teichoic acids. After extensively washing with distilled water, insoluble crude PGN was
collected and lyophilized. To prepare soluble crude PGN, 100 µg insoluble crude PGN was
incubated with 50 U mutanolysin in endotoxin-free water at 37 ◦C for 24 h. The enzyme
was inactivated by boiling for 10 min. To prepare heat-killed bacteria, P. acidilactici was
grown in MRS broth at 37 ◦C for 24 h and harvested by centrifuging. The bacterial pellets
were washed three times with PBS and killed by heating at 80 ◦C for 2 h. To ensure that
the bacteria were completely killed, the heat-treated bacteria were plated on MRS agar and
cultured at 37 ◦C for 24 h.

3.2. Cell Culture and Differentiation of 3T3-L1 Cells

Murine 3T3-L1 pre-adipocytes were purchased from the Korean Cell Line Bank (Seoul,
Korea) and grown in Dulbecco’s modified Eagle’s medium (DMEM; Welgene, Gyeongsan,
Korea) supplemented with 10% bovine calf serum, 100 U/mL penicillin, and 100 µg/mL
streptomycin (HyClone, Logan, UT, USA) at 37 ◦C in a 5% CO2-humidified incubator. To
differentiate 3T3-L1 pre-adipocytes, the cells were seeded in a 6-well culture plate and
incubated until the cells were fully confluent. At 2 days after confluence (day 0), the culture
medium was changed to differentiation medium (DMEM containing 10% fetal bovine
serum, 5 µg/mL insulin, 0.5 mM 3-isobutyl-1-methylxanthine, and 1 µM dexamethasone)
and incubated with P. acidilactici BLs (0, 5, 10, or 20 µg/mL), P. acidilactici PGN (0, 10, or
20 µg/mL), or heat-killed P. acidilactici (0, 107, or 108 CFU/mL) for 3 days (day 3). The
spent culture medium was discarded, and the 3T3-L1 cells were further incubated with
P. acidilactici BLs (0, 5, 10, or 20 µg/mL), P. acidilactici PGN (0, 10, or 20 µg/mL), or heat-
killed P. acidilactici (0, 107, or 108 CFU/mL) in DMEM containing 10% fetal bovine serum
and 10 µg/mL insulin for 3 days (day 6). The spent culture medium was replaced with
fresh DMEM containing 10% fetal bovine serum and 10 µg/mL insulin every 3 days and
incubated up to day 12.

3.3. Quantification of Lipid Droplets and Triglycerides in 3T3-L1 Cells

After treating 3T3-L1 cells for 12 days, the cells were carefully rinsed with PBS and
fixed with 4% formaldehyde at room temperature for 1 h, followed by washing with 60%
isopropanol. The 3T3-L1 cells were then stained with Oil Red O solution (Sigma-Aldrich,
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St. Louis, MO, USA) at room temperature for 30 min and washed with 60% isopropanol
and distilled water. Stained lipid droplets were quantified at an optical density of 492 nm
using a microtiter plate reader (Allsheng, Hangzhou, China). For the quantification of
cellular triglycerides, a triglyceride assay kit (Abcam, Cambridge, UK) was used. Briefly,
after treating 3T3-L1 cells with BLs (0, 5, 10, or 20 µg/mL), the cells were washed with
PBS and resuspended in 5% NP-40, followed by boiling for 5 min. The cell suspension
was centrifuged at 13,000× g for 2 min and the supernatants were mixed with lipases to
convert triglycerides into glycerol. After adding a triglyceride probe and a triglyceride
enzyme mix, the mixture was incubated at room temperature for 1 h and the optical density
was measured at 570 nm using a microtiter plate reader (Allsheng). The concentration of
triglycerides was determined based on the standard curve of glycerol.

3.4. Quantitative Reverse Transcription Polymerase Chain Reaction

Total RNA was extracted from 3T3-L1 cells treated with or without BLs at day 3 or
12 using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s
instructions and transcribed to complementary DNA (cDNA) using random hexamers
and reverse transcriptase (Promega, Madison, WI, USA) in a total volume of 30 µL. In
order to amplify cDNA, real-time quantitative reverse transcription polymerase chain
reaction (qRT-PCR) was performed with SYBR Green Real-Time PCR master mix (Toyobo,
Osaka, Japan) using the StepOnePlusTM real-time PCR system (Applied Biosystems, Foster
City, CA, USA). The amplification conditions were as follows: an initial denaturation at
95 ◦C for 10 s, and amplification for 40 cycles at 95 ◦C for 5 s, and at 60 ◦C for 31 s. The
sequences of the PCR primers used in this study were as follows: Pparg (PPARγ), forward
5′-AAGGGTGCCAGTTTCGATCC-3′ and reverse 5′-TCCTTGGCCCTCTGAGATGA-3′;
Cebpa (CEBP/α), forward 5′-GAGACCGAGAGACTTTCCGC-3′ and reverse 5′-TCATTTTT
CTCACGGGGCCA-3′; Cebpb (CEBP/β), forward 5′-GCTGAGCGACGAGTACAAGAT-3′

and reverse 5′-CAGCTGCTTGAACAAGTTCCG-3′; Srebf1 (SREBP-1c), forward 5′-CTCAG
CAGCCCCTAGAACAAA-3′ and reverse 5′-ATGGTCCCTCCACTCACCA-3′; Fabp4 (adipocyte
fatty acid-binding protein, aP2), forward 5′-GCCCAACATGATCATCAGCG-3′ and reverse
5′-TGGTCGACTTTCCATCCCAC-3′; Lpl (lipoprotein lipase), forward 5′-AACATTCCCTTC
ACCCTGCC-3′ and reverse 5′-GTCTCTCCGGCTTTCACTCG-3′; Retn (resistin), forward
5′-AATCCTCCCTTCTGCAGTTCC-3′ and reverse 5′-AGTCTGGGAGGGAGTCCTAAG-3′;
Lep (leptin), forward 5′-CTATGCCACCTTGGTCACCT-3′ and reverse 5′-ACCAAACCAAG
CATTTTTGC-3′; and ACTB (β-actin), forward 5′-TACAGCTTCACCACCACAGC-3′ and
reverse 5′-GGAAAAGAGCCTCAGGGCAT-3′. The relative mRNA expressions of specific
genes were normalized to β-actin by the 2−∆∆Ct method.

3.5. Western Blot Analysis

Lysates of 3T3-L1 cells treated with or without BLs at day 3 or 12 were obtained using
lysis buffer (1 M HEPES, pH 7.5, 1 M NaCl, 1% IGEPAL®-CA630, 0.75% sodium deoxy-
cholate, 10% glycerol) supplemented with proteinase inhibitors. The protein concentration
of lysates was measured by BCA assay (Thermo Fisher Scientific). Equal amounts of pro-
teins (20 µg) were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis
and transferred to polyvinylidene difluoride (PVDF) membranes (Millipore, Bedford, MA,
USA). After blocking with 5% skimmed milk, the PVDF membranes were probed with
primary antibodies against PPARγ, C/EBPα (Cell Signaling Technology, Danvers, MA,
USA), aP2, LPL, and β-actin (Santa Cruz Biotechnology, CA, USA) at 4 ◦C overnight. The
specific proteins were detected using horseradish peroxidase-conjugated anti-rabbit IgG an-
tibody (Cell Signaling Technology) or anti-mouse IgG antibody (Santa Cruz Biotechnology)
by incubation with the PVDF membranes at room temperature for 1 h. The immunore-
active proteins were visualized with an enhanced chemiluminescence reagent (Dyne Bio,
Seongnam, Korea) and quantified using a C-DiGit Blot scanner (Li-Cor Bioscience, Lincoln,
NE, USA).
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3.6. Statistical Analysis

All data presented in this study were obtained from three independent experiments.
Each experiment was carried out at least three times. The results are expressed as the
mean ± standard deviation. Statistical significance between treatment and control groups
was determined one-way analysis of variance (ANOVA) when p < 0.05 using IBM SPSS
Statistics 23 software (IBM, Armonk, NY, USA).

4. Conclusions

In summary, the current study showed that P. acidilactici BLs reduced the differentia-
tion of 3T3-L1 cells by reducing the formation of lipid droplets and cellular triglycerides.
P. acidilactici BLs also inhibited the master transcription factors responsible for adipogenesis,
PPARγ and C/EBPα, leading to the reduction of 3T3-L1 cell differentiation. In addition, the
expressions of lipogenic genes, such as aP2 and LPL, and adipokines, such as leptin, were
inhibited by P. acidilactici BLs. Although further studies are needed to elucidate whether
P. acidilactici BLs regulate the body weight and body fat mass in vivo models, the current
study provides evidence that P. acidilactici BLs might be potential anti-obesity agents.
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