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Single-cell and spatial transcriptome analysis reveals
the cellular heterogeneity of liver metastatic
colorectal cancer
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In this study, we comprehensively charted the cellular landscape of colorectal cancer (CRC) and well-matched
liver metastatic CRC using single-cell and spatial transcriptome RNA sequencing. We generated 41,892 CD45−

nonimmune cells and 196,473 CD45+ immune cells from 27 samples of six CRC patients, and found that
CD8_CXCL13 and CD4_CXCL13 subsets increased significantly in liver metastatic samples that exhibited high
proliferation ability and tumor-activating characterization, contributing to better prognosis of patients. Distinct
fibroblast profiles were observed in primary and liver metastatic tumors. F3+ fibroblasts enriched in primary
tumors contributed to worse overall survival by expressing protumor factors. However, MCAM+ fibroblasts en-
riched in liver metastatic tumors might promote generation of CD8_CXCL13 cells through Notch signaling. In
summary, we extensively analyzed the transcriptional differences of cell atlas between primary and liver met-
astatic tumors of CRC by single-cell and spatial transcriptome RNA sequencing, providing different dimensions
of the development of liver metastasis in CRC.
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INTRODUCTION
Colorectal cancer (CRC) is the third most common malignant
tumor worldwide (1). About 21 to 26% of patients present with syn-
chronous metastatic diseases (2), in which 14.5 to 17.5% of patients
develop liver metastases (3, 4). Metastatic CRCs are associated with
poor survival rates, and CRC-derived liver metastasis (CRCLM)
leads to a great clinical challenge (3).

The metastatic process is a multistep event that entails cancer
cells to escape from the primary site, survive in circulation, seed
at distant sites, and grow (5, 6). It is well established that metastatic
spread is promoted by communication between cancer cells and
stromal cells via secretion of cytokines, growth factors, and proteas-
es that remodel the tumor microenvironment (TME) (7). The cel-
lular compositions of TME is highly complex, including diverse
populations of fibroblasts and immune cells that play important
roles in cancer evasion, metastasis, and responses to treatment (8,
9). Cancer-associated fibroblast (CAF) is a predominant stromal
cellular component in many types of malignancies including
CRCs, breast cancers, and pancreatic cancers (10–12). Several
subsets of CAFs with different functions have been identified in a
variety of tumors. CD10+GPR77+ CAFs can promote breast and

lung cancer chemoresistance and tumor formation by providing a
survival niche for cancer stem cells (13). There are also antigen-pre-
senting CAFs, which can activate CD4+ T cells in an antigen-specif-
ic fashion (14). The tumor immune microenvironment (TIME) is
composed of diverse populations of lymphocytes and myeloid cells.
CD8+ T cells have been proven as formidable “soldiers” in antitu-
mor immune responses. The infiltration of CD8+ T cells in solid
tumors predicts a favorable prognosis (15). The immune milieu of
primary CRCs has been described by single-cell RNA sequencing
(scRNA-seq) (16, 17), but the global cellular landscape of
CRCLM and the interaction network differences between primary
and metastatic CRC are rarely reported.

To comprehensively chart the cellular landscape of CRC and
matched liver metastasis, in this study, we generated high-resolution
cell maps using scRNA-seq in conjunction with spatial transcrip-
tome (ST) and immunohistochemistry (IHC) staining as well as
flow cytometry. Different phenotypic profiles and highly variable
frequencies of major cell types, such as CAF, CD8+ T cells, and
tumor-associated macrophages, were observed between CRC
primary tumor and liver metastasis, which would indicate the mo-
lecular heterogeneity within TME and provide potential targets for
future cancer therapy.

RESULTS
Global single-cell transcriptome map of CRC primary
tumors and CRC-derived liver metastatic tumors
To elucidate the cellular heterogeneity of CRC primary tumors and
CRC-derived liver metastatic tumors, CD45− nonimmune cells and
CD45+ immune cells were collected from primary colorectal cancer
(CC), adjacent normal colorectal mucosa (CN), liver metastasis
(LM), adjacent normal liver tissue (LN), and peripheral blood
(PB) from six patients with CRC for single-cell transcriptome anal-
ysis (Fig. 1A). After quality control and filtration, we obtained
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41,892 CD45− nonimmune cells and 196,473 CD45+ immune cells
from 27 samples and identified 23 clusters of nonimmune cells and
41 clusters of immune cells. With marker-based annotations, tumor
cells (EPCAM and SOX9), fibroblasts (COL1A1 and COL1A2), and
endothelial cells (PECAM1 and CD34) were identified from nonim-
mune cells (fig. S1A), while T cells (CD3. pAbO), natural killer
(NK) cells (CD56. pAbO), B cells/plasma cells (CD19. pAbO),
monocytes/macrophages (CD14. pAbO), dendritic cells (DCs)
(HLA.DRA), and mast cells (TPSAB1) were identified from

immune cells (fig. S1B). Each subset had a distinct gene expression
pattern (fig. S1, C and D).

Further unsupervised clustering in the major population of non-
immune cells gave rise to 11 tumor cell clusters, 8 fibroblast clusters,
and 6 endothelial cell clusters (Fig. 1B). CA2 and F2_MCAM were
enriched in LM. F4_F3 and F5_CCL11 were significantly enriched
in CC (Fig. 1C and fig. S1E). On the basis of the expression of
known markers, the immune cells were divided into 41 populations
(Fig. 1D). In the primary TME, the percentages of regulatory T cells

Fig. 1. Global cellular landscape in CRC liver metastasis. (A) Schematic overview of the experimental design and analytical workflow. (B) UMAP visualization of non-
immune cell clusters. (C) Volcano plot comparing cell type relative abundance of nonimmune cell clusters in CC versus LM (n = 5 patients). The x axis represents the log2
fold change, and the y axis represents the −log10 P value according to Mann-Whitney U test. Each dot represents a cell type. (D) UMAP visualization of immune cell
clusters. (E) Volcano plot comparing cell type relative abundance of immune cell clusters in the tumors versus the paratumors (n = 6 patients). x and y axes represent the
log2 fold change according to Mann-Whitney U test. Each dot represents a cell type.
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(Tregs) and macrophages were higher compared with those in the
CN control. Although monocytes, NK cells, and mucosal-associated
invariant T (MAIT) cells were predominant in LN, TIME was re-
modeled by metastatic tumor cells with significant up-regulation
of Tregs and macrophages (Fig. 1E and fig. S1F). In summary, we
identified multiple cell populations with distinct distribution pat-
terns in different tissues of CRCLM.

Spatial distribution profile of CRC primary tumors and CRC-
derived liver metastatic tumors
To comprehensively analyze the spatial distribution profile of CRC
primary tumors and CRC-derived liver metastatic tumors, we col-
lected six tissue specimens from six patients including four cases of
CRC primary tumors (C1 to C4) and two cases of liver metastatic
tumors (L1 and L2). The tumor area (T) and paratumor area (PT)
were identified by hematoxylin and eosin (H&E) staining and gene
expression features of each sample (Fig. 2A and fig. S2). Compared
with paratumor tissues, tumor tissues were enriched with cell cycle–
related pathways, such as G2-M checkpoint, E2F targets, and mitotic
spindle (Fig. 2B). According to the gene expression profiles, tumor
tissues and paratumor tissues were divided into different regions
(Fig. 2A). Considering that each spot contained multiple cells, we
adopted a signature-based strategy, which integrated the ST and
scRNA-seq data to estimate the proportions of different cell types
for each captured spot (18). B cells, T cells, NK cells, plasma cells,
myeloid cells, tumor cells, fibroblasts, and endothelial cells were
identified in the ST tissues. The proportions and scores of these
cell clusters varied in each region. The ratios of plasma cells de-
creased in tumor tissues compared with those in paratumor
tissues of C1, C3, and C4 (Fig. 2, C and D, and fig. S3).

Transcriptomic heterogeneity of tumor cells between
primary and liver metastatic tumors
Studies have revealed that human colorectal tumor cells contain
multiple cell types whose transcriptional characteristics mirror
that of the normal colorectal epithelium (19). Stem-like/transit am-
plifying cells, colonocytes, goblet cells, and tuft cells have been iden-
tified in the normal epithelium (16). Thus, subclustering analysis
was performed and revealed divergent differentiation lineages of
tumor cells, namely, CA1 to CA11 (fig. S4A). The differentiation
marker genes of tuft cells, such as LRMP and TRPM5, were identi-
fied in CA8. CA9 showed higher expression of MUC2, a marker for
goblet cells (fig. S4B). The heterogeneity of tumor cell populations
suggests the differentiation potential of tumor cells. It has been re-
ported that tumor tissues generated from a single tumor cell can re-
capitulate the cellular diversity of the parental tumors (19). The
population diversity of tumor cells in LM was similar to that of
CC (Fig. 1C and fig. S4C). To further investigate the functional
pathways and transcriptional programs of different tumor cell clus-
ters, we performed gene set variation analysis (GSVA) and tran-
scription factor (TF) analysis. The results showed that CA2 was
enriched with Wnt–β-catenin signaling, and the TF LEF1, which
plays an important role in the Wnt–β-catenin signaling pathway,
was up-regulated in CA2. Furthermore, CA2 exhibited the up-reg-
ulation of the somatic stem cell division pathway (fig. S4D). Consis-
tently, CA2 had the highest expression level of LGR5, a marker of
intestinal stem cells. These results indicated that CA2 might be the
stem cell subset in TME. In addition, CA2 had high expression
levels of EPCAM, CDH1, and PRSS2, facilitating the adhesion and

colonization of tumor cells (fig. S4, B and E). Collectively, cluster
identification and characterization analysis demonstrated the func-
tional diversification of tumor cells, and metastatic tumors can re-
capitulate the cellular diversity of the parental tumors.

TME reshapes the composition of myeloid cells
Myeloid cells are heterogeneous subsets in TME, and three kinds of
myeloid cells were identified: monocytes/macrophages, DCs, and
mast cells. Using subclustering analysis, we identified eight clusters
of monocytes/macrophages and three clusters of conventional DCs
(cDCs) (Fig. 3A), and each subset had a distinct gene expression
pattern (fig. S5, A and B). There were distinct distribution patterns
of myeloid cells in each site (Fig. 3B), demonstrating the organ-spe-
cific characterization. CD14+ monocyte was the most enriched
subset in PB (fig. S5C). Compared with those in the paratumors,
the Mac_SPP1 subset was enriched in the tumors, and most of
the cells in the Mac_SPP1 subset were from the primary tumors.
In addition, the proportion of Mac_CXCL9 was significantly in-
creased in LM (Fig. 3C and fig. S5D), which had high expression
level of CXCL9, suggesting that this subset could recruit CXCR3-
positive effector T cells into tumors. Genes involved in recruiting
myeloid cells especially granulocytes, such as CXCL3, were enriched
in the Mac_SPP1 subset (Fig. 3D). Myeloid-derived suppressive
cells can express high level of CXCR2, which is the receptor of
CXCL3 (20) and can suppress the CD8+ T cells by expressing argi-
nase and inducible nitric oxide synthase (iNOS) (21). GSVA analy-
sis showed that the Mac_SPP1 subset was engaged in the pathway
related to inflammatory response. However, the Mac_CXCL9 subset
was enriched in the interferon-γ (IFN-γ) response and T cell acti-
vation pathways (Fig. 3E). The trajectory analysis showed that both
the Mac_CXCL9 and Mac_SPP1 subsets were terminally differenti-
ated, indicating that they were tumor-activated subsets (Fig. 3F).

DCs can be divided into plasmacytoid DCs (pDCs) and cDCs
according to their cytokine expression and function. Different
subsets of cDCs, including cDC1 and cDC2, have been identified
in TME (22). In our data, both cDC1 (cDC_CPNE3) and cDC2
(cDC_CD1c) were identified in CC and LM (Fig. 3A). Moreover,
cDC_LAMP3 was also identified and enriched in LM (Fig. 3C
and fig. S5D). cDC_LAMP3 expressed high levels of CCR7
(Fig. 3G), which is the receptor of CCL19 and CCL21, indicating
that it had migration ability to the lymph node. Furthermore, the
cDC_LAMP3 subset exhibited high expression levels of costimula-
tory molecules CD40, CD80, and CD86, markers for DC maturation
(Fig. 3H). The percentage of the cDC_LAMP3 subset was increased
significantly in LM, indicating the education of tumor cells
on TIME.

CXCL13+ T cells are enriched in liver metastatic tumors
T cells, especially CD8+ T cells and CD4+ T cells, are predominant
in the adaptive immune response. Among T cells, seven clusters of
CD8+ T cells, five clusters of conventional CD4+ T (cCD4) cells, and
two clusters of Tregs were identified. Both CD8+ T cells and CD4+ T
cells included a cluster expressingCXCL13, a chemokine for CXCR5
(Fig. 4, A and B, and fig. S6, A to D). The percentage of the
CD8_CXCL13 cells was significantly increased in LM compared
with those in LN; however, this subset was rarely detected in CN,
LN, and PB (Fig. 4, C and D). In the steady state of the colon,
about 3 to 12% of CD4 cells were CXCL13 positive, which is
denoted as follicular T helper (TFH). In CC, the percentage of
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Fig. 2. Cellular identification in spatial transcriptomic samples. (A) Overview of the spatial transcriptomic sections. H&E staining of spatial transcriptomic sections
(left). Tumor tissue and paratumor tissue identification of each section (middle). Spatial cluster distribution of each section (right). (B) Heatmap showing the enrichment
scores of hallmark gene sets of tumor tissue and paratumor tissue in each section. (C) Cluster identification combined with single-cell RNA expression profiles in primary
CRC sections. Left: SPOTlight deconvolution results, which show the cell cluster proportions in each spot. Middle: Cluster definition of each spot, which is identified as the
most dominant cell cluster there. Right: Proportions of identified cell clusters in different regions, which represent themean proportions of cell clusters in all spots of each
region. (D) Cluster identification combined with single-cell RNA expression profiles in liver metastatic sections.
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Fig. 3. Immune landscape of myeloid cells. (A) UMAP visualization of myeloid cell clusters. (B) Proportions of the myeloid cell clusters in CN, CC, LN, LM, and PB. (C)
Proportions of MAC_SPP1, MAC_CXCL9, and cDC_LAMP3 subsets in myeloid cells. P values were determined by the paired nonparameter test. (D) Volcano plot showing
differentially expressed genes between MAC_CXCL9 and MAC_SPP1 subsets. (E) GSVA analysis showing pathways enriched in MAC_CXCL9 and MAC_SPP1 subsets. (F)
Monocle analysis showing the developmental trajectory of myeloid cells. (G) Feature plots showing expressions of LAMP3 and CCR7 in myeloid cells. (H) Violin plots
showing expressions of CD40, CD80, and CD86 in myeloid cells.
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Fig. 4. Transcriptional reprogramming of tumor-infiltrated T cells. (A) Proportions of the CD8+ T cell clusters in CN, CC, LN, LM, and PB. (B) Proportions of the CD4+ T
cell clusters in CN, CC, LN, LM, and PB. (C) Volcano plot comparing cell type relative abundance of T cell clusters in the tumors versus the paratumors (n = 6 patients). X and
y axes represent the log2 fold change according to Mann-Whitney U test. Each dot represents a cell type. (D) Proportions of CD8_CXCL13 subsets in CD8+ T cells. (E)
Proportions of CD4_CXCL13 subsets in CD4+ T cells. (F) GSVA pathway analysis of CD8+ T cell clusters. (G) GSVA pathway analysis of CD4+ T cell clusters. (H) Ki67 expression
levels in different cell subsets in CN, CC, LN, and LM by flow cytometry. Gated on tumor-infiltrated CD8+CD45RO+ T cells.
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CD4_CXCL13 was decreased, but the percentage of this subset was
increased in LM compared with that in LN (Fig. 4E).

To further investigate the characteristics of the CXCL13+ T
subset, we analyzed the pathways up-regulated in each subset.
GSVA analysis revealed that the CD8_CXCL13 subset was enriched
with T cell proliferation pathway, and the CD4_CXCL13 subset was
enriched with G2-M checkpoint pathway, showing the proliferative
properties of these two subsets (Fig. 4, F and G). The gene analysis
of each cluster showed that CD8_CXCL13 cells expressed high level
of ITGAE, which is a marker for tissue-resident memory T (TRM)
cells. Considering that the TRM cells were also CD69 positive (fig.
S6E), we identified CD69+CD103+CD8+ T cells by flow cytometry.
Most CD103+ cells were CD69-positive cells, and the CD69+-

CD103+CD8+ T cells were rarely presented in LN (fig. S6F). Consis-
tently, the expression levels of Ki67 in CD69+CD103+CD8+ T cells
from both CC and LM were higher than those in other CD8+ T cells.
However, the proliferative properties of different CD8+ T cell
subsets from CN and LN were almost identical (Fig. 4H). Together,
these results indicated that both CD8_CXCL13 and CD4_CXCL13
cells were up-regulated in LM of CRC because of their high prolif-
eration abilities.

The CXCL13+ T cells are associated with good prognosis of
CRC patients
In aforementioned results, we showed that CD8_CXCL13 was en-
riched in CC and LM compared with the CD4_CXCL13 subset
(Fig. 4, D and E), indicating that the CD8_CXCL13 cells might be
a tumor-activating subset. Thus, we further investigated the charac-
teristics of the CD8_CXCL13 subset. High levels of exhausted
markers, such as PDCD1, HAVCR2, LAG3, CTLA4, and TIGIT,
were observed in the CD8_CXCL13 subset compared with other
subsets (Fig. 5, A and B). Previous studies showed that tumor-reac-
tive T cells exhibited an exhaustion phenotype due to the persistent
tumor antigen stimulation (23–25), and the exhaustion phenotype
indicated their tumor reactivity. The trajectory analysis showed that
the CD8_CXCL13 cells were terminally differentiated (Fig. 5C).
Furthermore, CXCL13+ T cell subsets showed remarkable clonal ex-
pansion ability in TME, further indicating their antigen experience
properties (26). In addition, the CD8_CXCL13 subset also ex-
pressed high levels of effector molecules, such as GZMB (Fig. 5, A
and B), which indicated that this subset might preserve partial an-
titumor function. Because it was difficult to detect CXCL13 in the
tissues, we attempted to use CD69 and CD103 to label CXCL13+

cells, and the IHC results showed that CD69+CD103+CD8+ T
cells were more adjacent to the CK19+ tumor cells than other
CD8+ T cells in the tumor tissues (Fig. 5, D and E), facilitating
their tumor-killing function. Notably, CD103+CD8+ T cells were
present in the tertiary lymphoid structures (TLSs) of CRC tissue,
and patients with a higher TLS score had a higher CD8_CXCL13
score, which indicated that this subset might participate in the for-
mation of TLS (Fig. 5, F and G).

To explore the prognostic value of CXCL13+ T cells in CRC, we
divided CRC patients from the Gene Expression Omnibus (GEO)
cohort into CXCL13high and CXCL13low groups and found that the
higher expression of CXCL13 in CC predicted better overall survival
(Fig. 5H). To summarize, CXCL13+ T cells enriched in TME were a
tumor-reactive subset and contributed to a better prognosis of CRC
patients.

Distinct subsets of fibroblasts exist in the primary and liver
metastatic tumors of CRC
Fibroblasts are the major types of stromal nonimmune cells in TME
(27). Various fibroblast subsets have been identified in a wide range
of tumors (10–12). Thus, we further characterized the fibroblasts to
explore their heterogeneity in CRC primary and liver metastatic
tumors. Eight clusters of fibroblasts with distinct gene expression
patterns were identified in TME of CRC, which were designated
as F1_PRELP, F2_MCAM, F3_HAS1, F4_F3, F5_CCL11,
F6_IGFL2, F7_COCH, and F8_MKI67 (Fig. 6A and fig. S7, A and
B). All the fibroblast highly expressed ACTA2 (fig. S7B), which was
widely reported as an important marker of CAF. The percentage of
the F2_MCAM cluster was higher in LM compared with that in CC.
The F4_F3 and F5_CCL11 clusters mostly contained cells derived
from CC (Fig. 6B and fig. S7C). The infiltration of F4_F3 was in-
creased in CC compared with that in CN according to the bulk
RNA-sequencing data. However, the percentage of the F5_CCL11
cluster was decreased in CC, which might turn into the F4_F3
cluster based on the trajectory analysis (Fig. 6C and fig. S7, D and
E). Trajectory analysis also predicted that F2_MCAM and F4_F3
were two distinct terminally differentiated clusters (Fig. 6C). IHC
analysis verified that F2_MCAM existed in CC and LM (Fig. 6D).
According to the IHC result, the MCAM+ CAF is very rare in LN.
Most of the MCAM+ cells were endothelial cells (fig. S7F). However,
consistent with the single-cell analysis, the F4_F3 subset only
existed in CC, but not in LM, and this phenomenon might be
caused by the absence of F4_F3 in LN and the presence in CN
(Fig. 6, E and F). ST analysis also confirmed that there was more
infiltration of F4_F3 subset in CC than in LM (Fig. 6, G and H).
The F4_F3 subset closely laid around the epithelial cells in both
CN and CC, facilitating its interaction with the epithelial cells
(Fig. 6I). Furthermore, the increased infiltration of F4_F3 in CC
might lead to worse prognosis (Fig. 6J). In summary, different phe-
notypic profiles and highly variable frequencies of fibroblasts were
observed between primary and liver metastatic tumors of CRC,
which indicated the cellular heterogeneity within TMEs in different
cancer settings.

The F3-expressing fibroblast subset enriched in the primary
tumors secretes protumor factors and is associated with
poor prognosis of CRC patients
To investigate the remodeling of TME by different fibroblasts en-
riched in CC and LM, we further analyzed the characteristics of
F2_MCAM and F4_F3. F2_MCAM was enriched with JAG1 and
NOTCH3, which participated in the NOTCH signaling pathway.
F4_F3 was enriched with C3 and CXCL1, indicating that this
subset was involved in the complement and inflammatory response
pathway (Fig. 7, A and B). F4_F3 also expressed high levels of
MMP2 and MMP3, which might contribute to the extracellular
matrix organization (Fig. 7A and fig. S7G). In addition, protumor
factors participating in angiogenesis and tumor invasiveness, such
as VEGFA, NRG1, HGF, GDF15, AREG, and BMP2, were enriched
in F4_F3 (Fig. 7C and fig. S7G). The interaction analysis between
F4_F3 and tumor cells further revealed their cross-talk through
the NRG1 and Erb-B2 receptor tyrosine kinase 3 (ERBB3)
pathway, and ERBB3 was almost enriched in the tumor cells and
could form heterodimer with ERBB2, promoting tumor cell prolif-
eration and resistance to cetuximab of CRC patients (Fig. 7D and
fig. S7, H and I) (28, 29). ST analysis also indicated the
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colocalization of F3 with NRG1, which surrounded the ERBB3+

tumor cells (Figs. 6G and 7, E to I). Transwell migration assay
showed that recombinant human NRG1 (rNRG1) can promote
the migration of RKO and SW620 cells (Fig. 7J and fig. S7J). CRC
patients with high expression levels of F3 and NRG1 had worse
overall survival (Fig. 7K). These results demonstrated that the

CC-enriched fibroblast F4_F3 could lead to poor prognosis of
CRC patients by secreting protumor factors.

Fig. 5. Characterization and prognostic effect of CXCL13+ T cells. (A) Volcano plot showing differentially expressed genes between CD8_CXCL13 and other CD8+ T
cells. (B) Feature plots showing the checkpoint and effector molecules in CD8+ T cells. (C) Monocle analysis showing the developmental trajectory of CD8+ T cells. (D)
Multicolor IHC staining of CD69+CD103+CD8+ T cells in one representative CRC tumor. (E) Distances of CD69+CD103+CD8+ T cells and other CD8+ T cells to cancer cells. (F)
Multicolor IHC staining of CD103+CD8+ T cells in CRC tertiary lymphoid structure. (G) Relationship of tertiary lymphoid structure score and CD8_CXCL13 infiltration score
in the GSE39582 dataset. (H) Overall survival of CXCL13high and CXCL13low patients from the GSE39582 dataset.
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Fig. 6. Transcriptome signatures and heterogeneity of fibroblasts in primary andmetastatic tumors. (A) UMAP visualization of fibroblast clusters. (B) Proportions of
the F2_MCAM, F4_F3, and F5_CCL11 clusters in CC and LM (P values were determined by the paired nonparameter test). (C) Monocle analysis showing the developmental
trajectory of fibroblasts. (D) IHC staining of F2_MCAM in CC and LM. (E) IHC staining of F4_F3 in CC and LM. (F) IHC staining of F4_F3 in CN and LN. (G) F4_F3 fibroblast
distributions in CC (C1 to C4) by ST. (H) F4_F3 fibroblast distributions in LM (L1 and L2) by ST. (I) Multicolor IHC staining of F4_F3 fibroblasts and tumor cells (CK19). (J)
Overall survival of F3high and F3low patients from the GSE39582 dataset.
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Fig. 7. Characterization and prognostic effect of F3+ fibroblasts. (A) Volcano plot showing differentially expressed genes between F2_MCAM and F4_F3. (B) GSVA
analysis showing pathways enriched in F2_MCAM and F4_F3 subsets. (C) Violin plots showing expressions of VEGFA, NRG1, HGF, GDF15, AREG, and BMP2 in fibroblasts. (D)
Communication network between tumor cells and F4_F3 fibroblasts by CellPhone DB. (E) NRG1 and ERBB3 distributions in C1 sample. (F) NRG1 and ERBB3 distributions in
C2 sample. (G) NRG1 and ERBB3 distributions in C3 sample. (H) NRG1 and ERBB3 distributions in C4 sample. (I) Pearson correlation of F3 (x axis) and NRG1 (y axis). (J) Effects
of rNRG1 onmigration of the RKO cells. The migrated cell number in six different fields was counted in the experiment, and the values were averaged. Three independent
experiments were performed. The bars represent means ± SD (***P < 0.001). (K) Overall survival of F3high NRG1high and F3 low NRG1 low CRC patients from the
GSE39582 dataset.
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The MCAM-expressing fibroblast in TME of LM modulates
the generation of CD8_CXCL13 cells through the Notch
signaling pathway
The Notch signaling TF RBPJ was preferentially expressed in both
the CD8_CXCL13 and CD4_CXCL13 subsets (Fig. 5A and fig. S6, C
and D). It has been reported that the Notch signaling pathway can
be activated by the ligand and receptor interaction (30). Following
the interaction with its ligands, the intracellular domain of Notch
can be cleaved and translocate into the nucleus, where it modulates
the transcription of its target genes. The RBPJ expression in LM was
positively correlated with CXCL13 and ITGAE, which was not ob-
served in CC (Fig. 8A and fig. S8A). The CD8_CXCL13 and
CD4_CXCL13 subsets mainly expressed the NOTCH1 receptor
(Fig. 8B). To further gain insights into what types of cells modulate
Notch signaling in the CD8_CXCL13 and CD4_CXCL13 subsets,
we analyzed the expression levels of Notch ligands, including
DLL1, DLL3, DLL4, JAG1, and JAG2, and we found that Notch
ligands were predominantly expressed in the fibroblasts and endo-
thelial cells (fig. S8B). The F2_MCAM subset was enriched with
JAG1, and the F5_COCH subset with DLL1, while the E2_DLL4
subset was enriched with DLL4, JAG1, and JAG2 (Fig. 8C). The in-
teraction analysis of Notch and its ligands using the CellPhone DB
showed that among the endothelial cells, the E2_DLL4 subset exhib-
ited the strongest interaction with CXCL13+ T cells, and among the
fibroblasts, the F2_MCAM cluster interacted with the
CD8_CXCL13 and CD4_CXCL13 subsets by JAG1-NOTCH1
(Fig. 8D and fig. S8C). Because of the scatter distribution pattern
of the fibroblasts in TME, we speculated that the F2_MCAM
subset contributed to the activation of Notch signaling in
CXCL13+ T cells.

Next, we divided the patients into two groups according to the
ratio of F2_MCAM from LM and found that patients in the
F2_MCAM-high group had higher proportion of CD8_CXCL13
subset in LM (Fig. 8E). GEO dataset analysis showed that patients
with a higher F2_MCAM infiltration score had a higher
CD8_CXCL13 subset infiltration score in LM, but not the
CD4_CXCL13 subset, and not in CC (Fig. 8F and fig. S8, D and
E). Furthermore, we detected the locations of F2_MCAM and
CD8_CXCL13 in LM through ST. Consistent with the single-cell
results, regions with a higher F2_MCAM infiltration score had a
higher CD8_CXCL13 infiltration score in the ST samples (Fig. 8,
G and H). Moreover, the strength of the Notch signaling interaction
in LM was much stronger than that in CC (fig. S8F), which might be
due to the higher proportion of F2_MCAM subset in LM (Fig. 6B).

The Notch signaling pathway has been reported to modulate the
antitumor immunity of CD8+ T cells (31); however, little is known
about whether the Notch signaling pathway can modulate the ex-
pression of CXCL13. To explore such modulation, we predicted
the binding sites of RBPJ on the CXCL13 promoter using
JASPAR (http://jaspar.genereg.net/). Several potential binding
sites were detected (table S1), indicating that RBPJ might act as a
TF influencing the expression of CXCL13.

Intercellular interaction network in ST tissues
We also investigated the cellular interactions between different clus-
ters in ST of the primary tumors and liver metastatic tumors. It
showed that the VEGFA-NRP1 and VEGFA-NRP2 ligand-receptor
pairs were enriched in both the primary and liver metastatic tumors.
We also found there were various different enriched ligand-receptor

pairs between CC and LM. The ERBB3-NRG1 pair was enriched in
both C1 and C3, but absent in both L1 and L2 (Fig. 9A), indicating
the potential role of the ERBB3-NRG1 interaction in the develop-
ment and metastasis in the primary tumors.

Together, we found that F3+ fibroblast enriched in the CRC
primary tumor could modulate the development and/or migration
by producing various protumor factors, including NRG1, which in-
teracted with ERBB3 expressed on tumor cells to exert their protu-
mor functions. However, the MCAM+ fibroblast enriched in LM
could modulate the generation of CD8_CXCL13 cells through the
Notch signaling pathway, different from the protumor subset F3+

fibroblast in CC, indicating the cellular heterogeneity of stromal
cells in different cancer settings (Fig. 9B).

DISCUSSION
CRCLM is a multistep process and fatal in most of the cases (3). In
this study, we presented a comprehensive single-cell transcriptomic
characterization of the primary and liver metastatic tumors of CRC,
covering 41,892 nonimmune cells and 196,473 immune cells from
six patients. We observed that colorectal tumor cells could recapit-
ulate the multilineage differentiation processes of normal colon ep-
ithelium. Distinct cellular profiles of CAF were identified from CC
and LM. The CC-enriched CAF subset F4_F3 was involved in pro-
moting tumor invasiveness, while the LM-enriched CAF subset
could promote the generation of tumor antigen–specific CXCL13+-

CD8+ T cells through the Notch signaling pathway.
It has been reported that tumor tissues generated from a single

tumor cell can recapitulate the cellular diversity of the parental
tumors (19). In this study, we found that tumor cells in LM con-
tained multiple cell types whose transcriptome profiles mirror
those in the primary tumors. The intratumoral heterogeneity of
tumor cells with different biological processes may contribute to
the chemotherapy failure of CRC, thus investigating the cellular
components of each patient may facilitate personal precision
treatment.

Fibroblasts are critical to normal tissue homeostasis. However,
they are functionally subverted in TME (32). Different types of fi-
broblasts have been identified from a wide range of malignant
tumors, including breast cancer (9), pancreatic cancer (33), CRC
(34), lung cancer (35), and gastric cancer (8). CAFs have been as-
cribed pleiotropic protumorigenic functions, such as extracellular
matrix remodeling, tissue stiffening, escape from immune surveil-
lance, and promotion of therapeutic resistance (36, 37). Tumor-spe-
cific FAP+ fibroblast was identified in primary CRC and proved to
be positively correlated with SPP1+ macrophage, which would stim-
ulate the formation of immune-excluded desmoplastic structure
and limit the T cell infiltration (38). In this study, we identified
eight subpopulations of fibroblasts with distinct gene expression
profiles in CC and LM. The F4_F3 subset expressing protumor
factors was enriched in the primary tumors and probably contrib-
uted to tumor invasiveness through the NRG1-ERBB3 pathway.
Considering the characterized genes, the F4_F3 subset was distinct
from FAP+ fibroblast (38). It has been reported that NRG1 fusion
can be detected in CRC, andNRG1 amplification was found in anti–
epidermal growth factor receptor (EGFR) therapy intrinsic-resis-
tant CRC patients. Bone marrow–derived mesenchymal stem cells
stimulate invasion, survival, and tumorigenesis of CRC through the
release of soluble NRG1, activating the HER2/HER3-dependent
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Fig. 8. NOTCH signaling in TME modulates the generation of CD8_CXCL13 cells. (A) Scatterplots showing correlations of CXCL13, ITGAE, and RBPJ in LM using the
GSE50760 dataset. (B) Dot plot showing the expressions of NOTCH1, NOTCH2, NOTCH3, and NOTCH4 in T cell clusters. (C) Dot plot showing the expressions of DLL1, DLL3,
DLL4, JAG1, and JAG2 in nonimmune cell clusters. (D) Communication network of the Notch signaling pathway between CD8_CXCL13 cluster and nonimmune cells by
CellPhone DB. (E) Percentages of CD8_CXCL13 in F2_MCAM infiltration high and low groups in LM of scRNA-seq data. (F) Infiltration scores of CD8_CXCL13 in F2_MCAM
infiltration high and low groups in LM of GSE50760 dataset. (G) Infiltration of F2_MCAM and CD8_CXCL13 subsets in L1 and L2 by ST. (H) Pearson correlation of signature
score of CD8_CXCL13 (x axis) and F2_MCAM (y axis) in L1 and L2.
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Fig. 9. Cellular ligand and receptor interactions in ST tissues. (A) Bubble heatmap showing the mean interaction strength between two clusters for ligand-receptor
pairs in C1, C3, L1, and L2. Dot size indicated the statistical significances by permutation test. Dot color indicated themean interaction strength levels. The size factor used
here is 10−4. (B) Cross-talk model between the fibroblasts and other cells in CC and LM.
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phosphatidylinositol 3-kinase (PI3K)/AKT signaling cascade in
CRC cells (39–41). In our study, rNRG1 can promote the migration
of CRC cell lines in vitro. These results hint that NRG1-ERBB3 sig-
naling can promote the progression of CRC. However, the
F2_MCAM fibroblasts enriched in LM expressed Notch ligands, re-
vealing that different organs had distinct stromal microenviron-
ment. It is reported that the NOTCH-RBPJ regulatory network is
vital for persistence of TRM state in non–small cell lung cancer
(42), which expressed high level of CXCL13, indicating that
Notch signaling is vital for the generation of CXCL13+CD8+ T
cells. By analyzing the ligand-receptor pair communication, we
found that the LM-enriched F2_MCAM subset could interact
with tumor-specific CD8_CXCL13 cells through JAG1-NOTCH1,
which was confirmed by the colocalization of F2_MCAM cells
with CD8_CXCL13 cells using the ST.

The CD8_CXCL13 cell subset has been identified in various
tumors, such as breast cancer (26) and uterine cancer (43), and
proven to be associated with increased efficacy of immunotherapy
(26). It has been proven that CXCL13+ T cells can attract CXCR5+ B
cells into tissues, participating in the formation of TLS (43), which
was also verified in our study. TLS can promote antitumor
immunity, contribute to the efficacy of immunotherapy, and
improve prognosis (44, 45). Our data also showed that high
infiltration of CXCL13+ T cells predicted better prognosis in CRC
patients. Despite the universal existence of this subset in
many kinds of tumors, the mechanism of CD8_CXCL13 cells
activation remains unknown. In our study, both CD8_CXCL13
cells and CD4_CXCL13 cells expressed high levels of RBPJ, the
characteristic TF of the Notch signaling pathway. In addition,
RBPJ was correlated with the expression of CXCL13 and ITGAE,
which was highly enriched in the CD8_CXCL13 cell subset accord-
ing to the analysis of bulk RNA-sequencing dataset of CRCLM,
demonstrating that the Notch signaling pathway could influence
the generation of tumor-specific T cells. Furthermore, we also iden-
tified the possible binding sites of RBPJ on the promoter ofCXCL13,
indicating the role of Notch signaling in the antitumor immunity of
T cells. Because Notch signaling mutations contribute to the anti-
tumor immune responses in CRC (46, 47), further studies should be
performed to address the interaction of Notch signaling in TME
and the possibility of targeting this signaling pathway.

There were some limitations of our study. First, all the patients
included have undergone neoadjuvant therapy and were unable to
reflect the original state of CRC. Second, because the subjects in-
cluded received different treatments, it was difficult to value the in-
fluence of each kind of treatment. Third, the characterizations of
stromal cells from the paratumors were unavailable, and the cause
of the divergent atlas of stromal cells in CC and LM remains to be
elucidated. Last but not least, because our study used a relatively
small sample size, a larger population cohort is needed to verify
the conclusion.

In conclusion, we unveiled the cellular profiles of TME from
tumors and paratumor tissues of CRCLM. Our analysis uncovered
the different lineages and functions of fibroblasts as well as the
dynamic nature of immune cells in different cancer settings,
which can be used for further identification of regulatory mecha-
nisms and for potential therapeutic targets.

MATERIALS AND METHODS
Patients
The study was approved by the Ethical Committees of the Guang-
zhou First People’s Hospital and the Sixth Affiliated Hospital of Sun
Yat-sen University (no. KY2020-361-01-01). For scRNA-seq, six
CRC patients with liver metastasis were enrolled after written in-
formed consent was obtained. Primary CC, CN (at least 2 cm
from matched tumors), LM, LN (at least 2 cm from matched
tumors), and PB of the enrolled patients were collected following
resection. All the patients received preoperative chemotherapy
and/or radiotherapy. For ST sequencing, formalin-fixed paraffin-
embedded (FFPE) tissues of six CRC patients were prepared. The
clinical and demographic information of all the patients were sum-
marized in table S2, and the neoadjuvant regimens of the patients
for scRNA-seq were listed in table S3.

Processing of human tissues and cell sorting
Freshly resected tumors were rinsed with 1× phosphate-buffered
saline (PBS) for three times, cut into small pieces, and transferred
to 15 ml of digestion medium containing collagenase IV (1 mg/ml,
C5138, Sigma-Aldrich) in Dulbecco’s modified Eagle’s medium
(DMEM)/F-12 1:1 (70100300, Biosharp). Tissues were digested
for 45 min at 37°C under agitation at 120 rpm; afterward, the
samples were filtered using a 150-μm nylon mesh. Following the
centrifugation at 450g for 5 min, the supernatants were discarded
and the cell pellets were resuspended in 3 ml of red blood cell
lysis buffer (C3702, Beyotime) at 4°C for 10 min. After washing
with 1× PBS, the cell pellets were suspended in 1× PBS containing
0.2% bovine serum albumin (4240GR500, BioFroxx) and filtered
using a 74-μm nylon mesh. Single-cell suspensions were stained
with allophycocyanin (APC)/Cy7-CD45 (HI30, BioLegend) and
7-aminoactinomycin D (7-AAD; B226396, BioLegend) for fluores-
cence-activated cell sorting using BD Aria III (BD Biosciences).
Nonimmune cells were sorted as 7-AAD−CD45−, and immune
cells were sorted as 7-AAD−CD45+. The information of cells ob-
tained from different sites of all the patients was listed in table S4.

Single-cell RNA library preparation and sequencing
After sorting, cells from different sites were labeled with sample tags
(633781, BD Single Cell Multiplexing Kit, BD Biosciences) at 4°C
for 45 min and washed by cell staining buffer (B302741, BioLegend)
for three times. For immune cells, the expressions of seven proteins
on cell surface were detected simultaneously using BD AbSeq
Oligo-Conjugated Antibodies (BD Biosciences). The information
of AbSeq Ab-Oligos was listed in table S5. After washing and cen-
trifugation at 400g, 4°C for 5 min, the cell pellet was resuspended
using BD stain buffer (554656, BD Biosciences) to a density of
700 to 1200 cells/μl. Single-cell library preparation was carried out
according to the BD Rhapsody Single-Cell Whole Transcriptome
Analysis alpha protocol (https://bdbiosciences.com/). Before
loading cells to BD Rhapsody Cartridge, nonimmune cell suspen-
sions from primary and metastatic sites were pooled together, so
were immune cells from primary and metastatic sites. About
20,000 cells from the cell suspension mixture were loaded onto a
microwell array, followed by adding barcoded magnetic BD Rhap-
sody Cell Capture Beads and cell lysis buffer. Upon cell lysis, the
mRNAs and sample tag barcodes of each cell were captured by
probes via polyA/polyT hybridization. Beads were subsequently
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retrieved from the microwells by magnets and pooled into a single
tube for reverse transcription to synthesize complementary DNAs
(cDNAs). Then, cDNAs were amplified following multiple amplifi-
cation schemes (https://bdbiosciences.com/). Amplified cDNAs
were purified using SPRIselect beads (B23318, Beckman Coulter
Life Sciences). Last, the whole transcriptome libraries, AbSeq librar-
ies, and sample tag libraries were obtained for sequencing. Libraries
were sequenced on NovaSeq 6000 (Illumina) after quality examina-
tion by Agilent 2100 Bioanalyzer (G2940CA, Agilent Technologies).

scRNA-seq data quality control and preprocessing
The sequencing data were mapped to the human reference sequence
(GRCh38). The raw gene expression matrix from each sample was
aggregated and converted into a Seurat object via Seurat R package
(V4.0). Nonimmune cells with >6000 or <200 genes or >40% mito-
chondrial genes were discarded. Immune cells with >4000 or <200
genes or >25% mitochondrial genes were filtered out. To further
eliminate the data of doublets, we performed the scrublet pipeline
(48) for each batch of our scRNA-seq data, which were expected ob-
jectively to exclude doublets, and the expected_doublet_rate was set
at 0.05. We got 238,365 cells for further analysis, including 41,892
nonimmune cells and 196,473 immune cells. The genes expressed in
more than 50 cells were selected. Last, 17,515 genes from nonim-
mune cells and 17,066 genes from immune cells met the criteria.
The gene expression matrices were normalized to the total unique
molecular identifiers (UMI) counts per cell and transformed to the
natural log scale. To correct the technical and biological variations
and increase the accuracy of cell type designation, we applied ca-
nonical correlation analysis implemented in Seurat to all the
samples before cell type identification. After selecting 2500 highly
variable genes by the FindVariableFeatures function in Seurat, prin-
cipal components analysis (PCA) was performed using these genes.
The numbers of principal components (PCs) of different kinds of
cells were differentially selected according to the knee point of the
scree plot for each cell type to accommodate different population
complexities based on the ElbowPlot function in Seurat, and we
chose the top 20 PCs to run the FindNeighbors and RunUMAP
functions. We used the FindClusters function to cluster the cells,
and resolutions from 0.1 to 0.8 were explored for better cell cluster-
ing, and we set this argument at 0.5 for clustering immune cells and
0.1 for clustering tumor cells. Two-dimensional Uniform Manifold
Approximation and Projection (UMAP) was used to represent cell
clusters.

Unsupervised cell clustering and annotation
According to the differentially expressed genes of each lineage, non-
immune cells were divided into tumor cells, fibroblasts, and endo-
thelial cells. Immune cells were divided into T cells, NK cells, B cells,
plasma cells, monocytes/macrophages, DCs, and mast cells. To
identify subpopulations within these major cell types, second-
round UMAP reduction was performed. Differentially expressed
genes of each subset were identified using the FindAllMarkers func-
tion implemented in Seurat. Clusters were named by the highly ex-
pressed genes of each cluster.

Single sample gene set enrichment analysis
To calculate the subset infiltration score in the bulk RNA-sequenc-
ing dataset, we adopted single sample gene set enrichment analysis
(ssGSEA) according to Senbabaoglu et al. (49). Marker genes for

F2_MCAM, CD8_CXCL13, CD4_CXCL13, and TLS were listed
in table S6.

Gene set variation analysis
To compare signaling pathway enrichment of different cell clusters,
GSVA was performed to calculate gene set enrichment scores (50).
Briefly, we run the gsva function for each single cell and used the
“ssGSEA” method to calculate the enrichment score of indicated
gene sets, and then we used limma packages (version 3.52.3) to
analyze the difference of enrichment score of every gene set
between each cell cluster and all other clusters, respectively. We
chose the top five up-regulated gene sets for each cluster, scaled
the score among the clusters, and exhibited in heatmap.

SCENIC analysis
The single-cell regulatory network inference and clustering
(SCENIC) package (v1.1.2.1) (51) was used to analyze the TF activ-
ity. We generated the super cells, which combined the data of every
20 single cells in each cluster to reduce the computing resource con-
sumption. The mean values of normalized counts of 20 single cells
were calculated as the raw input data of SCENIC. The Wilcoxon
rank sum test was used to identify the differentially activated TFs
for each subcluster, with log2 fold change > 0.1 and adjusted P <
0.05 as significantly changed.

Cell differentiation trajectory inference
To infer the differentiation trajectory of intratumor T cells and fi-
broblasts, we used Monocle2 (52) to infer the pseudotime of each
cell. The differentially expressed genes across the clusters were iden-
tified by FindMarkers in Seurat for T cells and fibroblasts, respec-
tively. The dimensionality reduction was performed with the
DDRTree algorithm, using the most highly variable genes (top
2000) to arrange the cells in order.

Flow cytometry
The single-cell suspensions were stained to detect the tissue-resi-
dent CD8+ T cells (CD8+ TRM) with the following antibodies, in-
cluding mouse anti-human BV510-CD45 (304036, BioLegend),
mouse anti-human BV711-CD3 (317328, BioLegend), mouse
anti-human BV785-CD56 (362550, BioLegend), mouse anti-
human BUV563-CD4 (566000, BD Bioscience), mouse anti-
human Alexa Fluor 700–CD8A (300920, BioLegend), mouse anti-
human BV421-CD45RO (304224, BioLegend), mouse anti-human
BV650-CD45RA (304136, BioLegend), mouse anti-human phyco-
erythrin (PE)–CD69 (310906, BioLegend), mouse anti-human
APC-CD103 (350216, BioLegend), and mouse anti-human
BV421-Ki67 (350505, BioLegend). After staining with surface
markers, cells were fixed and permeabilized using staining buffer
set (00-5523-00, eBioscience) to detect the Ki67 expression. Flow
cytometry data were obtained using BD Fortessa (BD Biosciences)
and analyzed with FlowJo software (V10, BD Biosciences).

Molecular interaction network analysis
We used CellPhone DB (http://CellPhoneDB.org) to analyze the in-
teractions between the tumor cells and the fibroblasts as well as the
communications between the CXCL13+ T cells and nonimmune
cells through the Notch signaling pathway (53). CellChat (http://
cellchat.org/) was applied to compare the differences of the
ligand-receptor interactions between CC and LM (54).
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IHC staining
IHC was performed on 5-μm FFPE tissue sections prepared from
primary sites. The tissues were dewaxed, hydrated, and subjected
to antigen retrieval. After blocking with goat serum at room tem-
perature, tissues were stained with primary antibodies, followed
by staining with horseradish peroxidase (HRP)–conjugated second-
ary antibodies. For single-color IHC, 3,3′-diaminobenzidine
tetrahydrochloride (DAB) was used as substrate for staining. For
multiplex IHC, a PANO 7-plex IHC kit (TSA-RM) (0004100100,
Panovue) was used. Tyramide signal amplification (TSA) dye was
applied to amplify the signal following the secondary antibodies.
The mouse anti-human CD8 antibody (70306s, Cell Signaling
Technology), rabbit anti-human CD69 antibody (ab233396,
Abcam), rabbit anti-human CD103 antibody (ab224202, Abcam),
rabbit anti-human CK19 antibody (ab52625, Abcam), rabbit anti-
human CD4 antibody (ab133616, Abcam), rabbit anti-human F3
antibody (ab228968, Abcam), and rabbit anti-human MCAM anti-
body (ab75769, Abcam) were used as primary antibodies. The
nuclei were stained with 4′,6-diamidino-2-phenylindole (DAPI)
(C1006, Beyotime). Multiplex IHC slides were viewed, and images
were recorded with a Vectra Polaris multispectral imaging system
(Akoya Biosciences). Phenochart software (v1.0.12, Akoya Biosci-
ences) and HALO software (V3.2, Indica Labs) were used to view
images and calculate the distance of different subsets to tumor cells.

CRC patient survival analysis
The expression information and survival information of CRC
patients were downloaded from GEO (https://ncbi.nlm.nih.gov/
geo/), and the accession number is GSE39582. The Kaplan-Meier
method was used to generate survival curves, and the log-rank
test was used to determine the statistical significance of differences
in survival. Survival curves were constructed with R packages sur-
vival (version 3.4.0) and survminer (version 0.4.9). The “maxstat.-
test” function of R package maxstat was run to find the cutoff value
of gene expressions for maximum rank statistic.

Gene expression correlation analysis
Gene expression data of CRCLM patients generated by bulk RNA
sequencing were downloaded from the GEO public database
(https://ncbi.nlm.nih.gov/geo/) under the data series accession
number GSE50760. The processed fragments per kilobase per
million (FPKM) expression matrices of CXCL13, ITGAE, and
RBPJ of liver metastasis were extracted. The Pearson correlation
analysis was applied to calculate the relationship of different genes.

ST tissue handling, data processing, and cell type
infiltration score calculation
The tissues were obtained from patients after resection, fixed by for-
malin, and embedded in paraffin. A 10× FFPE gene expression slide
(PN-1000185, 10X Genomics) was used for ST. A slide with 5-μm
FFPE section was dewaxed with xylene (214736, Sigma-Aldrich)
and stained with hematoxylin (51275, Sigma-Aldrich) and eosin
(HT110116, Sigma-Aldrich). After visualizing and scanning the
whole slide, decrosslinking was performed using the tris-ethylene-
diaminetetraacetic acid (TE) buffer (10-0046, GeneMed) to release
the RNA. Forward and reverse human transcriptome probes (PN-
1000364, 10X Genomics) were used for probe hybridization over-
night. After hybridization, the cDNA libraries were constructed ac-
cording to the 10X protocol

(CG000407_VisiumSpatialGeneExpressionforFFPE_UserGui-
de_RevA). Sequencing was performed on NovaSeq 6000 (Illumina).
Raw sequencing reads were processed with CellRanger V3 and
aligned to human genome (GRCh38, ENSEMBL). Seurat (v4.0)
was used to process the Space Ranger output files. We used
SCTransform to normalize the data, ScaleData to scale the data,
RunPCA to perform dimension reduction, FindNeighbors and
FindClusters to cluster the ST spots, and RunUMAP to visualize
the data. Then, we chose the scaled matrix to calculate the mean
values of the F2_MCAM and CD8_CXCL13 gene signatures in
every spot. Last, we ran the log1p function for the mean values of
the F2_MCAM and CD8_CXCL13 gene signatures as the
F2_MCAM and CD8_CXCL13 scores, respectively. The reference
genes used were listed in table S7. SpatialFeaturePlot was performed
to visualize the infiltration score of each subset. Pearson correlation
analysis was applied to calculate the infiltration relationship of dif-
ferent subsets in each spot. The functional pathway enrichment
analysis was performed to explore the function differences
between the tumor and paratumor region. Briefly, we calculated
the mean expression levels of each gene in the tumor and paratumor
regions and then run the gsva function to calculate the gene set en-
richment scores for every hallmark gene sets, which were download-
ed from MSigDB database (http://gsea-msigdb.org/gsea/msigdb/).
The results were scaled and displayed in the heatmap. To estimate
the cell cluster proportions in each captured spot, we performed the
SPOTlight deconvolution analysis according to the standard pipe-
line supplied in https://github.com/MarcElosua/SPOTlight. Briefly,
we extracted the marker gene matrix for each cell cluster in our
scRNA-seq data by running the FindAllMarkers function in
Seurat package, setting logfc.threshold = 1 and min.pct = 0.8.
Then, the ST data and marker gene matrix were used to run the
spotlight_deconvolution function with the default parameters.
The deconvolution results were displayed in the histology image
by running the spatial_scatterpie function, and each captured
spot was renamed using the most dominant cluster there. Then,
to infer the cell-cell communication in ST data, the renamed
spatial object was used to perform the cellphoneDB analysis pipe-
line (https://github.com/Teichlab/cellphonedb).

Cell lines and culture
Human CRC cell line RKO was a gift from H. Zhang (Guangdong
Provincial People’s Hospital). Human CRC cell line SW620 was a
gift from Y. Yao (Guangzhou First People’s Hospital). Both RKO
and SW620 were maintained in DMEM (Gibco) supplemented
with 10% fetal bovine serum (FBS) (ExCell Bio) and antibiot-
ics (Gibco).

Transwell migration assay
Transwell migration assay was performed to determine the influ-
ence of rNRG1 on the cell migration of CRC cell lines. Cells were
seeded in 24-well Transwell inserting chambers (BD Biosciences)
that contained serum-low medium. FBS (10%) with (50 ng/ml) or
without (0 ng/ml) rNRG1 (R&D Systems, 396-HB-050) was added
to the lower chamber as a source of chemoattractant. After 24 hours,
the cells having not migrated through the chamber membrane were
removed, and those having passed through the membrane were sub-
jected to fixation and staining with crystal violet. They were subse-
quently detected and photographed using a microscope.
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Statistical analysis
Measurement data were presented as mean ± SD. The Wilcoxon
paired nonparametric test was used to compare percentages of dif-
ferent cell clusters among CN, CC, LN, LM, and PB. The infiltration
scores of subsets were calculated by unpaired nonparametric test.
The analysis was performed by SPSS 21 (IBM). Two-sided P <
0.05 was considered significant.
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