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The generalized Vogel-Fulcher-
Tamman equation for describing 
the dynamics of relaxor 
ferroelectrics
Rafael Levit1, Julio C. Martinez-Garcia2, Diego A. Ochoa1 & José E. García   1

Relaxor ferroelectrics (RF) are outstanding materials owing to their extraordinary dielectric, 
electromechanical, and electro-optical properties. Although their massive applications, they remain 
to be one of the most puzzling solid-state materials because understanding their structural local order 
and relaxation dynamics is being a long-term challenge in materials science. The so-called Vogel-
Fulcher-Tamman (VFT) relation has been extensively used to parameterize the relaxation dynamics in 
RF, although no microscopic description has been firmly established for such empirical relation. Here, 
we show that VFT equation is not always a proper approach for describing the dielectric relaxation in 
RF. Based on the Adam-Gibbs model and the Grüneisen temperature index, a more general equation 
to disentangle the relaxation kinetic is proposed. This approach allows to a new formulation for the 
configurational entropy leading to a local structural heterogeneity related order parameter for RF. A 
new pathway to disentangle relaxation phenomena in other relaxor ferroics could have opened.

Materials are usually ordered at low temperatures (e.g., crystals) whereas they show disordered states at high 
temperatures (e.g., liquids). The order degree is controlled by the presence or absence of correlations between 
the material entities (e.g., molecules, electrical or magnetic dipoles, colloidal particles, etc.) upon the change of 
a control physical parameter (e.g., temperature, pressure, or density). However, there are systems where the dis-
ordered state remains at low temperatures such as glass materials (GM), which are non-equilibrium amorphous 
(disordered) systems with no long-range translational order (periodicity).

GM has a tremendous impact for technological applications showing optimal properties in comparison with 
their crystalline counterparts1,2. For instance, (i) many electrical transmission systems are made with glass optical 
fibers transmitting optical signals longer than crystalline materials, which is fundamental for improving the effi-
ciency of the telecommunication network, (ii) electrical transformers fabricated with metallic glasses minimize 
more effectively the electrical losses in comparison to polycrystalline metals, thereby becoming metallic glasses 
optimal materials for improving the power generation and power transmission of electricity, (iii) in the pharma-
ceutical industry, glasses shown a better bioavailability than their crystalline counterpart, which suppose higher 
solubility and therefore lower doses of the active principle are required. Furthermore, since GM are out of equilib-
rium materials, their process of formation can be tunneled to produce composite materials (e.g., glass-filled pol-
ymers) with significant physical properties (electrical conductivity, mechanical sthength, rigidity, etc.) with have 
strong industrial applications2. When the physical control parameter is the temperature, GM can be obtained by 
quenching a liquid sufficiently fast enough to avoid crystallization passing through an intermediate state, defined 
as super-cooled liquid (SCL), to a glass low-temperature state3.

Relaxor ferroelectrics (RF) are another example of systems maintaining the disordered (quenched) state 
at ‘low temperatures’. RF are functional materials considered to bear a revolutionary potential for a myriad of 
modern electronic applications due to their unique properties such as ultrahigh strain and outstanding piezoe-
lectric behavior (hysteresis-free electromechanical response)4, excellent electroacoustic response5, and remark-
able electro-optic properties6. RF, mostly perovskite-structured (general formula, ABO3), are compositionally 
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disordered systems where the arrangement of different ions on equivalent crystallographic sites (A or B) is par-
tially or fully disordered7. A typical example of canonical RF is the Pb(Mg1/3Nb2/3)O3 (PMN) systems where 
the non-isovalent ions Mg2+ and Nb5+ are fully or partially disordered on the B-site6. The PMN solid solu-
tion with small concentration of PbTiO3 (PMN-PT) also shows relaxor behavior but, in this case, besides the 
non-isovalent ions disorder, the inhomogeneous chemical distribution of Ti4+ also contributes to the disorder 
of the system. Relaxor behavior can also be found in homovalent solid solutions like Ba(ZrxTi1−x)O3 (BZT) or 
in non-stoichiometric solid solutions such as the Pb1−xLax(Zr1−y,Tiy)1−x/4O3 (PLZT) where the A-site vacancies 
(VPb) generated by the substitution of La3+ for Pb2+ promotes the disorder of the system. Summarizing, there are 
a significant number of RF where different contributions to the system disorder co-exist, all of them endorsing 
the relaxor behavior7,8.

Notwithstanding the number of RF systems, their main feature arises from the existence of nanoscale polar 
inhomogeneities with randomly distributed directions of the dipolar moment, known as polar nanoregions 
(PNRs)9, which have been extensively confirmed by practically all characterization techniques used in mate-
rial science, such as: transmission electron microscopy10, Raman scattering11, nuclear magnetic resonance12, 
neutron-scattering pair distribution functions13, time resolved piezoresponse force microscopy14, and diffuse 
scattering15. The emergence of the PNRs is related to disordered chemical inhomogeneities that unavoidably exist 
in these materials such as Pb2+ or O2− vacancies, antisite ions (e.g. Nb/Mg arrangement in PMN), and so on16. 
The quenching of these disordered chemical inhomogeneities leads to the development of the disordered state 
being the time-response to switch their polarization vector to follow the applied external stimuli (usually applied 
electric fields) defined as the relaxation time (τ).

Both RF and SCL share two relevant common features: (i) the existence of small regions governing the relax-
ation processes (i.e., the cooperatively rearranging regions (CRRs) in SCL, and the PNRs in RF) as well as (ii) 
the dramatic increase on the relaxation times of the CRRs and PNRs on cooling, characterized by a broadened 
and dispersive permittivity peak in their temperature- and frequency-dependent dielectric spectra, leading to a 
‘super-Arrhenius’ (SA) behavior. The SA behavior in SCL is a consequence of the increasing interaction of the 
closely packed liquid molecules within the CRRs leading a huge increase in relaxation time near the glass tran-
sition temperature. On the other hand, the SA in RF is interpreted as a consequence of the formation, growing 
and cooperative reaction between the PNRs7. Upon cooling, the increase of the PNRs interaction surpass the 
short-range forces favoring the paraelectric state. Similar to the increasing interaction of the CRRs in SCL, the 
increment on the PNRs interaction leads to an enormous increases in relaxation time near to the freezing tem-
perature Tf. Hence, the CRRs arguments of SCL resemble the PNRs concepts in RF above their freezing temper-
atures, thereby suggesting that the dielectric relaxation of RFs could be understood from the dynamic of SCL. 
Thus, an important question emerges: What we can learn from the establish concepts developed to understand 
the dynamic of SCL to disentangle the dielectric relaxation in RF?

Decades of studies have engendered the prevailing conviction that the ultimate parameterization for quan-
tifying the SA behavior of glass forming systems is possible via the Vogel-Fulcher-Tammann (VFT) equation17:
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where DT denotes the fragility strength coefficient and T0 is so-called Vogel divergence temperature (T0 < Tg and 
T > Tg), being Tg the glass transition temperature. This relationship has been assumed as the key checkpoint for 
developing theories/models to describe the SA behavior in SCL, linking the relaxation time with one or more 
thermodynamic variables. This is the case of the Adam and Gibbs (AG) model, which is probably the most pop-
ular and accepted theory for SCL. In the AG model, the configurational entropy is linked to the relaxation time 
by the equation17,18:
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where τ0and ΔE0 are the relaxation time and activation energy at high temperatures, respectively. The config-
urational entropy Sc(T) is defined as the entropy difference between the SCL state and the crystalline phase. If 
the configurational entropy is extrapolated to temperatures below Tg, it becomes equal that of the crystal at a 
finite temperature TK (i.e., the Kauzmann temperature) where the configurational entropy tends to zero (i.e., 
Sc(TK) → 0) establishing a real limit for the dynamic in SCL. Further extrapolation in temperature (0 < T < TK) 
leads to a negative entropy, which is known as the Kauzmann paradox17. This fact strongly supports that SA 
behaviour in SCL could be disentangled by assuming divergent parametrization (equation predicting the diver-
gence at finite temperature) as the case of VFT. Despite various three-parameter equations predicting the diver-
gent relaxation time at a finite temperature have been postulated for describing the dynamics of SCL, the selection 
of the more appropriate model is still unclear19–25.

Based on the analogy between the CRRs and the PNRs, the arguments of AG have recently brought to RF26, 
written the dielectric relaxation time of RF as the following analogous equation:
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where the extrapolated excess entropy has been introduced as the difference between the paraelectric phase (anal-
ogous to the liquid) and the ferroelectric phase (analogous to the solid), = −S S Sex para ferro. On the observable 
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time scale, the entropy of the ordered ferroelectric phase, Sferro, is smaller than the entropy of the disordered par-
aelectric phase, Spara, but decreases more slowly with decreasing temperature. Therefore, Sex tends to vanish at 
some finite temperature26.

Considering such observation, the Kauzmann statement formulated for SCL could also be valid for RF, but the 
appearance of a frozen polar glass phase at a glass temperature Tg > TK in RF avoided the “entropy crisis”26. This 
was confirmed in 1990 by Viehland et al.27 showing a flawless correspondence between the freezing temperature 
Tf and the Vogel-Fulcher temperature T0 in PMN-PT. VFT became the most acceptable and used equation to 
describe the dielectric relaxation in RF, even more when, first, was evidenced Volgel-Fulcher freezing in RF and, 
second, VFT equation was derived by considering percolation and thermodynamic arguments28,29. This strongly 
indicates that for RF the SA behaviour may be elucidated by assuming the phenomenological VFT equation con-
trary to the case of SCL where the dominance of VFT parametrization is under debate.

Regarding the dynamic of SCL, it is important to recall that a new model-free methodology has been recently 
proposed30. The implementation of this model-free route to 55 supercooled glass forming systems have provided 
valuable information to unravel the dominant parameterization in SCL, showing that the fundamental justi-
fication of the VFT relation is limited to a very specific group of glass formers with definite symmetric order. 
Accordingly, a fundamental question arises: Is the VFT equation the more consistent parameterization to dis-
entangle the dielectric relaxation in RF? This is an important scientific question which require a thorough inves-
tigation. The purpose of the present paper is to answer the mentioned question. To carry out it, we have first 
extended the model-free approach to RF deriving a more general configurational entropy equation which can 
recover the VFT-type as particular case. This new approach is validated and discussed by using two canonical RF 
(PLZT and PMN-PT) as model systems. Based on the results, a more consistent, generalized parameterization 
for RF is proposed.

Results
Model-free route (MFR) for relaxor ferroelectrics.  MFR methodology enables numerical extraction 
of the activation energy of vitrifying systems directly from their relaxation time τ(T) data without imposing any 
model a priori30. This methodology is helpful in systems where their dynamic relaxation achieve a SA pattern 
described by:
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as is the case of SCL and RF systems. MFR has been recently extended for studying the low-temperature dielectric 
relaxations of normal ferroelectrics31, but this approach has never applied before to study the dynamic of RF.

In order to determine the activation energy, the apparent enthalpy energy τΔ ′ = Δ =H T H R d T d T( ) / ln ( )/ (1/ )a a  
should be first numerically calculated and subsequently the activation energy is numerically extracted from the fol-
lowing differential equation30:
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Additionally to ∆ ′E T( )a , further analysis of ∆ ′H T( )a  allows to predicts the possible existence of dynamic 
crossover temperature by using the ∆ ′H Tln ( )a  versus 1/T plot30, which give rises equivalent predictions than the 
Stickel et al.32 plot (supplementary information).

The non-linearity of the SA behavior is quantified by using the Grüneisen temperature index that is numeri-
cally calculated as30,33:

= −
Δ

.I T d E T
d T

( ) ln ( )
ln (6)N

a

The implementation of this methodology for SCL, ranging from low molecular weight liquids, polymers liquid 
crystal, plastic crystals and spin glasses, elucidated three novel conclusions: (i) a simple universal linear pattern 
such that = +−I T aT b( )N

1 , being a ≠ 0 and b ≠ 0, (ii) a clear prevalence for the relaxation time parameterization 
associated with the finite-temperature divergence, TN > 0, determined by the extrapolation = =−I T T( ) 0N N

1 , 
showing a coincidence between the Kauzmann temperature and TN, (iii) the power exponent values of the derived 
configurational entropy equation, = − = =−n b I T(1/ ) ( 0)N

1 , gives rise the conclusions that VFT will be valid 
only for a very specific group of glass formers (i.e., for n = 1).

Considering the SA behavior manifests in RF, and the formal similarity of the Grüneisen parameter previously 
noted by Samara and Boatner34, MFR methodology may provide valuable information related to dielectric relax-
ation in RF. In order to quantitatively evaluate the dynamic of the RF systems, dielectric spectroscopy measure-
ments were performed to explore the temperature dependence of the relaxation time in (Pb0.91La0.09)(Zr0.35Ti0.65)
O3 (hereafter labeled as PLZT). In addition, the dielectric relaxation data of 0.9PbMg1/3Nb2/3O3-0.1PbTiO3 
(hereafter labeled as PMN-PT) reported by Viehland et al.27 is used here to validate the MRF procedure with a 
well-known data of RF behavior. Both PLZT and PMN-PT are recognized as canonical-prototype of RF.

The temperature-dependent relaxation times of the studied RF are shown in Fig. 1. The SA behavior manifests 
as a shift from the Arrhenius linear behavior. Figure 2 shows the results obtained for the inverse of the index 

−I T( )N
1  by developing the MFR. Four important results may be identified: (i) both RF systems exhibit a linear 

temperature dependence of the inverse of the index ( = +−I T aT b( )N
1 ) similar to the behavior of the glass form-

ing systems; (ii) since the slopes and intercepts values are a ≠ 0 and b ≠ 0, solely linear patterns with divergence 
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temperatures occur (TN > 0), thereby excluding any divergent parameterization at TN = 0 K being compatible 
with the work by Pirc et al.26; (iii) the calculated TN values match perfectly with the freezing temperatures reported 
for those systems; (iv) for the case of PLZT system, the obtained value of = =−n I T( 0)N

1 , = .n 0 45PLZT , is notice-
ably different to the VFT parametrization (n = 1) although for PMN-PT gives rises = .−n 0 92PMN PT , very close to 
the VFT one.

The value of the n was previously recalled as a possible order parameter correlating the dynamic of the SCL 
with their symmetry30. For instance, low values of n (i.e., n~0.2) was ascribed to materials with positional symme-
try (e.g., plastic crystals) while values of n~1 (i.e., VFT parameterization) was attributed to no-symmetry materi-
als (e.g., super-cooled low-molecular-weight liquids)30. Based on the results obtained for the SCL it is possible to 
wonder if there is a similar correlation for RF systems. The different values of the n for PLZT and PMN-PT 
(nPLZT = 0.45 and nPMN−10PT = 0.92) could be related to the different chemical compositions of the studied materi-
als. Both compositions are complex perovskite-structured solid solutions presenting chemical inhomogeneities 
with non-isovalent ions fully or partially disordered. However, both are different from the stoichiometric point of 
view. The PMN-PT is a stoichiometric solid solution, where the chemical inhomogeneities are fixedly randomly 
distributed, forbidding the rearrangement. As a consequence of their different ionic radii, the three cations (Mg2+, 
Nb5+ and Ti4+) on the B-site of the perovskite structure generate chemical heterogeneous nanoregions for mini-
mizing the elastic energy. These regions are the nucleus of the PNRs, which are frozen (quenched) at relatively 
high temperatures (below Burns temperature). Otherwise, the PLZT is a non-stoichiometric solid solution where 
the substitution of La3+ for Pb2+ ions leads to the creation of A-site vacancies, i.e., lead vacancies ( −VPb

2 ), which 
may rearrange below the Burns temperature.

Taking into account the analogies between RF and SCL and that different n values are obtained for RF systems 
with different compositional heterogeneity order, the following question emerge: Could be the n value consider-
ing as an order parameter for RF?

Figure 1.  Arrhenius plot. Logarithm of the reciprocal of the measurement frequency as a function of the 
inverse of the temperature corresponding to the maximum value of the real permittivity. A clear non-Arrhenius 
(usually called super-Arrhenius) behavior is manifested as a shift from the linear Arrhenius behavior, which is 
exhibited by the lines drawn from high to low temperatures.

Figure 2.  Reciprocal of the Grüneisen temperature index. Temperature evolution of the reciprocal of the 
index obtained directly from the experimental data for the tested materials. Only the low temperature region 
is considered for the linearization of the reciprocal of the index for the PLZT because two dynamical regions 
are evidenced (see supplementary information). The values of the divergence temperature TN and the order 
parameter n are shown for both materials.
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Generalized VFT equation and scaling functions.  In order to answer the above question, the connec-
tion between the n value and the configurational entropy should be explored. Considering the validity of 
Adam-Gibs (AG) model and the index temperature pattern, = +−I T aT b( )N

1 , a generalized configurational 
entropy can be derived for RF as follow (see supplementary information):
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where ΔE0 defines the activation energy at higher temperatures T ≫ TN.
Recalling Eq. (4), a new and more general parameterization can be obtained as:
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where the new parameter n emerges. For the particular case of n = 1, the well-known VFT equation can be 
recovered.

Defining a dimensionless temperature x = TN/T, Eqs (7–9) can be re-written as:
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which are plotted in Fig. 3 in order to gain new insights into the physical meaning of the exponent n. The low tem-
perature evolution of the configurational entropy Sc = Spara − Sferro for the tested relaxors are plotted in Fig. 3a. The 
lines in the figures are the scaling plots functions (Eq. (10)) evaluated for the n-exponent values computed from 
the MFR methodology. The VFT case (black line) is also plotted to illustrate their inconsistency for describing 
the PLZT behavior.

Important conclusions can be elucidated form the scaling function in Fig. 3. The dynamic relaxation of the 
PLZT is faster than the PMN-PT one (Fig. 3e) indicating that the PNRs in PLZT require lower activation energy 
to relax (Fig. 3d) and consequently they follow the direction of the electric field easier. This leads to consider that 
PLZT owns a higher ferroelectric order (lower Sferro). This statements is clearly showed in Fig. 3c where higher 
(lower) values of SC are ascribed to lower (higher) values of the n-exponent suggesting higher (lower) ferroelectric 
order. Undoubtedly the n-parameter can be considered as an indicator of the ferroelectric order in RF. It is impor-
tant to remark that the avoidance of ferroelectric order is often considered a direct consequence of the frustration, 
arising from the competing many-body-interactions of the PNRs35–38.

In order to visualize our findings in τ(T) representation, a fitting comparison among the generalized VFT 
equation (Eq. (9)) and the classical VFT one is performed and plotted in Fig. 4. Results show that both classical 
and generalized VFT parameterizations fit very well with the PMN-PT relaxation data. However, the PLZT data 
fits better with the generalized VFT equation. This fact has a direct relation with the value of the order parameter 
n. When n ~ 1 (as in the case of PMN-PT) a classical VFT parameterization can be used as a particular case of Eq. 
(9) but a more general equation is required to obtain an accurate parameterization when the order parameter is 
clearly n ≠ 1 (as in the case of PLZT). Certainly, the proposed generalized VFT equation is a really consistent way 
to parameterize the dielectric relaxation in RF, regardless of the compositional heterogeneity order. More infor-
mation about the fitting parameters can be found in the supplementary information.

Discussion
Generalized VFT equations with fractional exponent have been previously proposed for describing dielectric 
relaxation of SCL39,40. However, results of the present work show that the use of a fixed fractional exponent 
for generalizing the VFT equation is not a proper approach for describing the dielectric relaxation in RF. The 
exponent n, which is obtained here directly from the experimental data through the Grüneisen temperature 
index, undertakes different values depending on the compositional heterogeneity order of the tested RF. Higher 
value of n is obtained for a stoichiometric solid solution (PMN-PT), where the chemical inhomogeneities are 
fixedly randomly distributed, while a non-stoichiometric solid solution (PLZT) exhibits lower value of n. Thus, 
n becomes an order parameter directly associated with the configurational entropy of RF. Results demonstrate 
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that the interacting relaxing entities (PNRs) of PMN-PT require more efforts to follow the applied electric field, 
which manifests with a higher values of the activation energy and relaxation times (i.e., slow relaxation dynamic). 
Otherwise, the A-site vacancies generated by the substitution of La3+ for Pb2+ in PLZT result in a lower coupling 
interaction among PNRs, giving rise to a fast relaxation dynamic. It seems to be that like in SCL, where the 
dynamic metric (fragility) is directly related with the degree of their dipolar interactions (i.e., hydrogen bonding), 
the dynamic metric of RF can also be directly connected with the degree of the coupling interaction between 
PNRs, where the new order parameter n could play an important role.

Adopting a hyperbolic temperature dependence for the specific heat, a configurational entropy equation for 
RF was postulated by Pirc et al.26,41. Here, based on the Adam-Gibbs model and the index temperature pattern, a 

Figure 3.  Scaling configurational entropy, activation energy and relaxation time plots. (a) Experimental 
evolution of the normalized configurational entropy as a function of the dimensionless temperature TN/T for 
the tested materials. Solid lines indicate the analytical evolution of the normalized configurational entropy 
computed taking into account the divergence temperature TN and the order parameter n for each tested 
material. The analytical representation of the normalized configurational entropy for the case of n = 1 is 
also shown. (b–d) Normalized configurational entropy, activation energy and relaxation time derived from 
the model-free route as a function of the dimensionless temperature for the tested materials. (e) Schematic 
representation of the relation between the physical magnitudes and the dynamics of the system.

Figure 4.  Fitting comparison between the classical and the generalized VFT equations. Dielectric relaxation 
data are fitted with both classical and generalized VFT equations. Residuals resulting from the fitting are 
plotted into inserts for both tested materials. Generalized VFT turns out to be an appropriate equation for 
parameterizing the dielectric relaxation of relaxor ferroelectrics.
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more general configurational entropy is proposed leading to a generalized VFT equation for successfully describ-
ing the dielectric relaxation of RF. Although the proposed τ(T) is an apparent four-parameter equation, the order 
parameter n and the divergence temperature TN are obtained directly from the experimental data from a 
model-free route. The n–parameter and the temperature TN are directly determined from the slope and the inter-
cept of the inverse of temperature index −I( )N

1  versus temperature plot through a linear fitting. It is important to 
point out that both parameters are intrinsically connected but are independent to the other two parameter (τ0 and 
ΔE0) of the generalized VFT equation. Therefore, only two parameters are extracted from the fitting of τ(T). This 
unbiased, model-free approach could be a powerful tool to gain knowledge about the structural origin of the RF 
behavior through an order parameter. Finally, the implemented methodology may open a new pathway to dis-
entangle relaxation phenomena in other relaxor ferroics.

Methods
Materials.  Polycrystalline lead lanthanum zirconate titanate (PLZT), with nominal composition (Pb0.91La0.09)
(Zr0.35Ti0.65)O3, is taken as a model relaxor ferroelectric with aliovalent cation substitution. PLZT was prepared by 
the conventional mixed oxide method as detailed in a previous work42. Otherwise, lead magnesium niobate-lead 
titanate (PMN-PT), with nominal composition 0.9Pb(Mg1/3Nb2/3)O3-0.1PbTiO3, is taken as a canonical relaxor 
ferroelectric having non-isovalent ions disorder. PMN-PT was prepared by other researchers as described 
elsewhere43.

Measurements and data acquisition.  A precision LCR meter (Agilent E4980A) is used to obtain the real 
and imaginary parts of the permittivity of unpoled PLZT at selected frequencies from 100 Hz to 1 MHz. The sam-
ple was placed in a programmable tubular oven for measurement cooling down from 550 K to room temperature. 
The temperature dependence of the permittivity was measured at a cooling rate of 0.2 K/min, slow enough to 
avoid thermal gradients inside the sample. A quadratic fitting near the maximum of the real permittivity was 
carried out to obtain the temperature corresponding to the maximum value of real permittivity. For simplicity, all 
references to this temperature are expressed as T in this manuscript. Taking into account the quality of the data 
and to avoid bias-processing, none smooth or interpolation was performed to the raw data. Each frequency f 
corresponding to each temperature T serves as the metric for the relaxation time via τ π= −f(2 ) 1. The PMN-PT 
data were taken from the Vielhand et al.21 work.

Data Availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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