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Abstract

Background

In 2015, Singapore had the first and only reported foodborne outbreak of invasive disease

caused by the group B Streptococcus (GBS; Streptococcus agalactiae). Disease,
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predominantly septic arthritis and meningitis, was associated with sequence type (ST)283,

acquired from eating raw farmed freshwater fish. Although GBS sepsis is well-described in

neonates and older adults with co-morbidities, this outbreak affected non-pregnant and

younger adults with fewer co-morbidities, suggesting greater virulence. Before 2015 ST283

had only been reported from twenty humans in Hong Kong and two in France, and from one

fish in Thailand. We hypothesised that ST283 was causing region-wide infection in South-

east Asia.

Methodology/Principal findings

We performed a literature review, whole genome sequencing on 145 GBS isolates collected

from six Southeast Asian countries, and phylogenetic analysis on 7,468 GBS sequences

including 227 variants of ST283 from humans and animals. Although almost absent outside

Asia, ST283 was found in all invasive Asian collections analysed, from 1995 to 2017. It

accounted for 29/38 (76%) human isolates in Lao PDR, 102/139 (73%) in Thailand, 4/13

(31%) in Vietnam, and 167/739 (23%) in Singapore. ST283 and its variants were found in

62/62 (100%) tilapia from 14 outbreak sites in Malaysia and Vietnam, in seven fish species

in Singapore markets, and a diseased frog in China.

Conclusions

GBS ST283 is widespread in Southeast Asia, where it accounts for a large proportion of

bacteraemic GBS, and causes disease and economic loss in aquaculture. If human ST283

is fishborne, as in the Singapore outbreak, then GBS sepsis in Thailand and Lao PDR is pre-

dominantly a foodborne disease. However, whether transmission is from aquaculture to

humans, or vice versa, or involves an unidentified reservoir remains unknown. Creation of

cross-border collaborations in human and animal health are needed to complete the epide-

miological picture.

Author summary

An outbreak due to a bacterium called Streptococccus agalactiae in Singapore in 2015 was

caused by a clone called ST283, and was associated with consumption of raw freshwater-

fish. It was considered unique as it was the only reported foodborne outbreak of this bac-

terium. Our new data show that invasive ST283 disease is far from unique. ST283 has

been causing disease in humans and farmed fish in SE Asian countries for decades.

Reports of ST283 are almost absent outside Asia. We suspect that human ST283 is fish-

borne in other Asian countries, as it was in Singapore, but we haven’t looked at this yet.

We don’t know where ST283 originally came from; it may have been transmitted from

humans to fish, or come from another animal. More studies are needed to determine

ST283’s geographical extent and burden of disease, as well as its origin, how it is transmit-

ted, and what enables it to be so aggressive. We may then be able to interrupt transmis-

sion, to the benefit of fish, farmers, and the general public.

S. agalactiae ST283 invasive disease in humans and fish in SE Asia

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007421 June 27, 2019 2 / 20

Singapore Infectious Diseases Initiative grant

number SIDI/2016/002 (TB) https://www.moh.gov.

sg, and the National Medical Research Council,

Ministry of Health, Singapore grant number NMRC/

CIRG/1467/2017 (SLC) http://www.nmrc.gov.sg,

by the UK Global Challenges Research Fund via the

Scottish Funding Council, SFC/AN/10/2018 (RNZ)

http://www.sfc.ac.uk, and by the Global Disease

Detection program of the U.S. Centers for Disease

Control and Prevention. The BSAC resistance

surveillance project is acknowledged for the

provision of the UK data. The Lao PDR GBS were

obtained during the work of LOMWRU, funded by

the Wellcome Trust. The funders had no role in

study design, data collection and analysis, or

preparation of the manuscript: the US CDC

approved the decision to publish.

Competing interests: I have read the journal’s

policy and the authors of this manuscript have the

following competing interests: SLC and TB are

named applicants on a patent for the ST83-specific

PCR test used in this study.

https://doi.org/10.1371/journal.pntd.0007421
https://www.moh.gov.sg
https://www.moh.gov.sg
http://www.nmrc.gov.sg
http://www.sfc.ac.uk


Introduction

In 2015, there was an unprecedented outbreak of invasive disease due to the group B Strepto-
coccus (GBS; Streptococcus agalactiae) in Singapore. Disease, including septic arthritis and

meningitis, was associated with a GBS belonging to serotype III, subtype 4 (serotype III-4),

and multilocus sequence type (MLST) 283 (ST283) [1]. Human disease was associated with

consumption of raw, farmed, freshwater fish: an official public advisory was issued, and bacter-

aemia rates promptly fell [2, 3]. Whereas GBS sepsis in neonates, post-partum adults, and

older adults with co-morbidities is well known, the ST283 outbreak was different as it affected

non-pregnant, younger adults with fewer co-morbidities [1], suggesting greater virulence.

Although GBS colonisation has previously been associated with fish consumption [4], and the

origin of GBS in late onset neonatal disease, while uncertain, may be enteric [5, 6], this was the

first report of an invasive GBS outbreak associated with foodborne transmission.

Previous reports of ST283 were limited to 20 cases in adults in Hong Kong between 1993

and 2003 [7], two cases in a survey of 119 osteoarticular GBS infections in France between

2002 and 2007 [8], and an infected tilapia (Oreochromis sp.) amongst samples collected in

Thailand between 2000 and 2010 [9]. Southeast (SE) Asia was, however, under-represented in

the literature, with MLST data reported for only a handful of human GBS from SE Asia

amongst thousands in global studies.

We hypothesised that fish-borne ST283 might be a regional problem, causing disease in

multiple SE Asian countries. As a prelude to studying transmission, we searched for ST283

and its variants, collectively called clonal complex 283 (CC283), in GBS collections from

humans and aquaculture. Our aim was achieved, as we verified the wide prevalence of ST283

in Southeast Asia, though whether human disease is fish-borne outside Singapore remains an

open question.

Methods

The study was approved by the Institutional Review Board of Tan Tock Seng Hospital

(TTSH), Singapore, NHG DSRB 2016/00202.

Literature search

We identified articles in English with searches of Medline, PubMed, and references from arti-

cles, with the terms “Streptococcus agalactiae” OR “ST283” AND “meningitis” OR “invasive”,

up to December 2017.

GBS collections

Institutions, selected through personal contacts and recommendations, were invited to con-

tribute GBS and/or datasets. There were no specified criteria other than the availability of iso-

lates or DNA from invasive GBS, or GBS from high vaginal swabs, over time, with metadata if

possible. Invasive disease was defined as isolation of GBS from normally sterile sites. Indica-

tions for testing patients and accompanying characterisation data were not standardised or

complete; rates of meningitis, osteoarthritis, and endocarditis may therefore be greater than

recorded. Country-specific regulations resulted in some contributors sending GBS isolates to

Singapore for processing while others contributed extracted DNA, whole genome sequencing

(WGS) data, or other data sets. GBS were screened with a ST283-specific PCR (Lezhava A.,

Sarma S., Chen S. and Barkham T.M.S. A method for the detection of Group B Streptococcus.

(2017) PCT Patent Application PCT/SG2017/050579). This PCR has been evaluated against

WGS on over 660 invasive GBS representing 27 MLST types collected over 18 years in
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Singapore and found to be 100% sensitive and 99.8% specific. GBS identification, determina-

tion of serotype and WGS were performed as previously described [1]. All new sequencing

data were deposited in GenBank under BioProject PRJNA293392. We expressed ST283 preva-

lence as simple proportions of all GBS in each collection (Fig 1).

Human GBS

Singapore. Invasive bacterial isolates are routinely saved: 331 invasive GBS isolates from

2001 to 2010 were retrieved from freezers in TTSH and Changi General Hospital. Data and

sequences for 408 invasive GBS ST283 isolated from 2011–2015 were publicly available [1].

Sequences of five GBS, isolated in Singapore General Hospital in 1998 from cases of meningi-

tis, are now available at GenBank accessions SRR6282417-SRR6282421 (under BioProject

PRJNA417692).

Thailand. 139 invasive GBS isolates were available from population-based surveillance for

blood stream infections conducted in all 20 hospitals in Nakhon Phanom and Sa Kaeo

Fig 1. Prevalence of clonal complex 283 in human and animal collections of group B Streptococcus showing their host, geographic origin, and period of collection.

This figure represents our new data, as well as the literature on Streptococcus agalactiae (GBS) that includes multi locus sequencing typing data up to December 2017.

The vertical bars on the left indicate human or animal origin and the geographical region, Southeast Asia (SEA) or outside SEA (Ex- SE Asia), where collections of GBS

originated. The horizontal bars delineate the time period of each collection of GBS, with reference to the central time bar; associated text shows the host, the country of

origin, and number of ST283/all GBS in each collection, except where other STs are shown. The figure shows the lack of reports, from humans and animals, in SEA

compared with outside SEA, both in terms of time periods and absolute numbers of GBS studied. It also shows that GBS CC283 is rare outside SEA, with only four

human and no animal CC283 reported, despite the large number of GBS studied. In contrast, CC283 is prevalent in all human and animal GBS collections from SEA.
�One of these 34 from a tilapia in Vietnam is ST1311, a double locus variant of ST283. �� Australia, Ghana, South America, North America, Israel and Kuwait.

Abbreviation: ND = not determined.

https://doi.org/10.1371/journal.pntd.0007421.g001
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provinces from 2007–2015; these include paediatric patients. GBS isolates from the isolate

repository were screened with the ST283 PCR described above. A selection of positive isolates

were subjected to WGS on the MiSeq platform using the Nextera XT DNA Library Prep Kits

and the MiSeq Reagent Kit v3. In addition, sequences of seven GBS ST283 from invasive

human cases in Bangkok in 2015 were publicly available [1].

Lao PDR. This set comprised 38 GBS, available as isolates or as DNA extracts, obtained

from blood cultures and CSF samples at the Microbiology Laboratory of Mahosot Hospital,

Vientiane, Lao PDR between 2000–2017 during studies of the aetiology of fever and central

nervous system infections.

Vietnam. 13 invasive GBS isolated between 2015 and 2017 were retrieved from the Hospi-

tal for Tropical Diseases (HTD), Ho Chi Minh City (HCMC). HTD is a 550-bed hospital that

serves as a main primary and secondary facility for the surrounding local population in

HCMC and a tertiary referral center for infectious diseases for the southern provinces of Viet-

nam. Nearly 70% of HTD admissions live in HCMC, with the remainder residing in the sur-

rounding provinces. Neonates, patients without infectious diseases, including those with

surgical requirements, tuberculosis, cancer, primary hematological disorders or immunosup-

pression (other than HIV) are referred to other hospitals within HCMC. HIV-infected chil-

dren are often referred to local paediatric hospitals. Blood cultures were performed for

patients in whom an infection was suspected on the basis of a fever (>38˚C) or who had evi-

dence of sepsis on the basis of the presence of two or more of the following features: fever

(>38˚C) or low temperature (<36˚C); tachycardia (exact level according to age); tachypnea

(exact level according to age); an elevated white cell count (>12,000 cells/mm3) or depressed

white cell count (<4,000 cells/mm3). There was no systematic change in the application of

these criteria during the time course of the study. All data originating from consecutive

patients admitted to the hospital who had a blood culture performed for suspected blood-

stream infection between 2015 and 2017 were included. In addition, 38 GBS representing the

most recent high vaginal swab GBS isolates from women with colpitis, three of whom were

pregnant, were collected from outpatients at the National Hospital for Obstetrics & Gynaecol-

ogy (Phu San Hospital), Hanoi, between September 2016 and May 2017.

Cambodia. DNA from eleven GBS isolated from skin and umbilical swabs collected from

children presenting to Angkor Hospital for Children, a non-governmental paediatric referral

hospital in Siem Reap, between 2012 and 2016 were included.

Britain. WGS data were available from 1,017 invasive human GBS submitted to the Respi-

ratory and Vaccine Preventable Bacteria Reference Unit, Public Health England (PHE), as part

of the British Society for Antimicrobial Chemotherapy Resistance Surveillance Project over a

one year period bridging 2014 and 2015.

Piscine GBS

Singapore. Sequences of GBS ST283 isolated from fish in 2015 were publicly available [1,

10].

Malaysia. We sequenced 28 GBS, isolated between 2007 and 2008, from brain, eye or kid-

ney samples from 28 tilapia (Oreochromis sp.) from farms suffering streptococcosis outbreaks.

Ten of these 28 tilapia did not show any external or internal signs of disease. The fish were

obtained from nine farms separated by 20–250 km in Kedah and Terengganu states, Peninsu-

lar Malaysia.

Vietnam. We sequenced 34 GBS isolated in 2016 from the brains of sick fish from five

farms in the Mekong River running through An Giang Province and Can Tho District. GBS

was isolated directly from the brains of red or black tilapia (Oreochromis sp. and O. niloticus)

S. agalactiae ST283 invasive disease in humans and fish in SE Asia
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that showed abnormal behaviour (erratic swimming pattern) or “pop eye” (exophthalmus),

both of which are recognized clinical signs of streptococcosis.

Other datasets. Other GBS MLST datasets were contributed by collaborators. All whole

genome data sets annotated as S. agalactiae in GenBank deposited as assemblies (as of June 07,

2017) and in the SRA database (as of November 10, 2017) were downloaded.

Genomic methods. We performed Illumina sequencing on 145 CC283 GBS strains. All

new sequencing data was deposited in GenBank under BioProject PRJNA293392. All assem-

bled genomes (as of June 7, 2017) and short read data sets (as of November 10, 2017) anno-

tated as S. agalactiae in GenBank were also downloaded; this provided another 82 CC283

isolates, for a total of 227 CC283 isolates amongst 7,468 GBS. All primary sequence analysis

was performed by the Genome Institute of Singapore Efficient Rapid Microbial Sequencing

(GERMS) platform (https://www.a-star.edu.sg/gis/Our-Science/Technology-Platforms/

GERMS). Reference-based analyses were performed using the SG-M1 genome [11] as the ref-

erence. FASTQ files were mapped using bwa (version 0.7.10) [12]; indel realignment and sin-

gle nucleotide polymorphism (SNP) calling were performed using Lofreq� (version 2.1.2) with

default parameters [13]. SNP positions for assembled genomes were inferred by using nucmer

and show-snps from the MUMmer package (version 3.23) [14]. MLST and resistance gene

predictions were made using SRST2 0.2.0 [15] for Illumina sequenced strains or using a cus-

tom BLASTN [16] based script for fully assembled reference sequences, using the recom-

mended MLST database (http://pubmlst.org/sagalactiae/) [17] and the ARG-ANNOT

resistance gene database [18] included with SRST2.

Recombination analysis. From an initial neighbour-joining tree made from all SNPs

called relative to the SG-M1 reference, a set of strains containing all CC283 strains and strains

from the nearest non-CC283 clade (consisting of 92 strains within CC10) was taken. We

excluded those strains which had no metadata for isolation date, leaving a total of 273 strains

(215 from the ST283 clade, 58 from the non-ST283 clade). We reconstructed an aligned

genome sequence for each of these 273 strains by introducing that strain’s SNPs into the

SG-M1 genome; gaps were also inserted where mapping coverage was below 10 as per Lofreq

default parameters. The BRATNextGen [19] (using a clustering cut off of 0.2 and a significance

cut off of 0.05) and ClonalFrameML [20] (using default parameters) programs were used to

call recombination on this set of 273 aligned genomes. We took the union of all recombined

segments called by either program in any of the 273 strains as the maximal recombination set

(in total, 608 kb or 28.7% of the total chromosome); these were removed for the subsequent

Bayesian analysis. We also took the union of all recombined segments called by either program

only in the 215 CC283 strains as a CC283-specific recombination set (totalling 62 kb or 3.0%

of the total chromosome); removal of these segments from the reconstructed genomes of the

original 227 CC283 strains (including those that had no available year or country metadata)

resulted in a recombination-free CC283 alignment which was used to generate the maximum-

likelihood tree shown in Fig 2B.

Phylogenetic trees. Approximately maximum-likelihood SNP trees were created using

FastTree 2.1.8 with the–gtr and–nt command line options [21] on reconstructed genome

sequences (relative to the SG-M1 reference genome). Fig 2A was constructed from 1,236

strains (all CC10 and CC283 strains; all strains described in Da Cunha, et al 2014 [22] that

were available in GenBank; and 23 complete genomes in the GenBank Refseq database as of

August 4, 2016) using all called SNPs (i.e., no removal of recombination). Fig 2B was created

from all CC283 strains after removal of CC283-specific recombination as described above

(Recombination analysis). All phylogenetic trees were visualised with GGTREE 3.2 [23] in R

(3.2.2) (https://www.R-project.org). Origins of the GBS CC283 WGS sequences used for phy-

logenetic analysis are given in Table 1.
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BEAST analysis. This was performed on all CC10 and CC283 strains described above in

the recombination section. Analysis of divergence times was performed using BEAST 2.4.8

[26] using a combination of site substitution models (HKY, GTR4), clock models (strict,

relaxed exponential, relaxed lognormal), and population change models (coalescent constant,

exponential, Bayesian skyline, and extended Bayesian skyline). MCMC runs were done in trip-

licate with 200,000,000 steps, using the first 20,000,000 as burn-in, sampling every 10,000

steps. Logcombiner was used to combine the three runs. Models were compared using AICM

analysis in Tracer V1.6 [27], from which the GTR4 substitution model with a strict clock and

exponential model was chosen as the best set of parameters. Treeannotator was used to gener-

ate a final tree. Visualization was done in FigTree 1.4.3 (http://tree.bio.ed.ac.uk/software/

figtree/). The divergence time reported was calculated after removing the maximal

Fig 2. Phylogenetic analysis of group B Streptococcus (GBS) with emphasis on clonal complex (CC) 283 genomes. (A) Approximately maximum-likelihood

phylogenetic tree of 1,236 GBS strains. The ST283 isolate SG-M1 was used as a reference sequence. The scale bar is shown on the x-axis, in mutations/nucleotide. The

bootstrap values for selected branches (supporting the difference between different CCs) are indicated by black circles; all are 1.000 except where indicated. Major clonal

complexes are indicated with coloured branches and a matching coloured label. The clade containing all CC283 isolates is highlighted in blue. All ST283 variants

discussed in the text (ST491, ST739, ST751, and ST1311) are highlighted with black branches and an adjacent label in black text. (B) Approximately maximum-

likelihood phylogenetic tree of 227 GBS CC283 genomes. Reconstructed genome sequences (based on the SG-M1 reference sequence) of the isolates indicated as CC283

in (A) were used, after excluding redundant isolates, defined as identical sequences from the same site, based on SNP calls. Bootstrap support is indicated for selected

branches by black circles. Arrows show predicted events resulting in loss of tetracycline resistance. (C) For each CC283 isolate, the metadata are indicated at the same

horizontal position (i.e. directly to the right of the phylogenetic tree tip) as in panel B. Host and country are represented by coloured rectangles, as indicated in the

legend. Different values for Host and Country are further offset horizontally for clarity. Asterisks to the right of the Year box indicate isolates for which individual loss of

tetracycline resistance appears to have occurred.

https://doi.org/10.1371/journal.pntd.0007421.g002
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recombination set; since this was a significant fraction of the genome, we repeated the analysis

using a data set from which only the ST283-specific recombination regions were removed. The

95% highest posterior density for the maximal recombination data set fell entirely within that

for the ST283-specific recombination set, suggesting that the removal of additional recombina-

tion regions did not drastically bias this result. However, despite this technical agreement, the

opportunistic nature of the source data for these predictions must be kept in mind when inter-

preting these results.

Results

Human GBS CC283 in Asia

GBS ST283 accounted for 11% to 76% of invasive GBS per country, with the earliest known

example collected in 1995, in Hong Kong. Five GBS ST11, single locus variants (SLV) of

ST283, isolated from meningitis cases in Singapore in 1998 [28, 29] were recently corrected to

ST283 [30], leaving no known examples of ST11. In total, 29% of GBS were identified as ST283

(Fig 1, Table 2). The majority of patients with ST283 (345/357 (97%) were adults, and 36% to

Table 1. New and Existing group B Streptococcus (GBS) clonal complex (CC) 283 sequences used for phylogenetic analysis. This gives an overview of the origins and

numbers of CC283. Further details are in Supporting Information.

Host Country Site or reference Collection

Year

Sample

type

GBS isolates screened for

ST283 (No.)

GBS isolates with

WGS data (No.)

CC283 isolates with

WGS data (No.)

New sequences

Human Singapore Singapore General Hospital 1998 B 5 5 5

Human Singapore Tan Tock Seng Hospital & Changi

General Hospital

2001–2010 B, CSF 331 331 21

Human Thailand Nakhon Phanom and Sa Kaeo

provinces

2007–2015 B 139 22 a 22

Human Lao PDR Mahosot Hospital, Vientiane 2000–2017 B, CSF 38 38 30b

Human Vietnam Hospital for Tropical Diseases,

Ho Chi Minh City

2015–2017 B 13 13 4

Human Vietnam Phu San Hospital, Hanoi 2016–2017 HVS 38 0 a 0

Human Cambodia Angkor Hospital for Children,

Siem Reap

2012–2016 S 11 0 a 0

Human Britain Multiple hospitals 2015 B ND 1,017 1

Tilapia Malaysia Kedah and Terengganu states 2007–2008 Br, E, K 28 28 28

Tilapia Vietnam An Giang and Can Tho 2016 Br 34 34 34

Existing sequences

Human Singapore [1] 2011–2015 B, CSF ND 145 40

Human Thailand [1] 2015 B ND 7 6

Human Hong Kong [24] 1993–2012 SS ND 11 11

Human Netherlands GenBank ND ND ND 1 1

Fish Singapore [1, 10] 2015 S, O, M ND 20 20

Fish Thailand [9] 2000–2010 ND ND 1 1

Fish Vietnam [9] 2006 ND ND 1 1

Fish Thailand [25] 2012–2014 ND ND 1 1

Frog China GenBank 2014 L ND 1 1

a = WGS was only performed on GBS positive by an ST283 specific PCR.
b = Included one technical replicate. Where sequences from the same site were identical (based on SNP calls), only one was used. Abbreviations: No. = number,

B = blood, CSF = cerebro-spinal fluid, HVS = high vaginal swab, S = superficial swabs, ND = not determined, SS = sterile site, Br = brain, E = eye, K = kidney,

O = organs, M = muscle, L = liver.

https://doi.org/10.1371/journal.pntd.0007421.t001
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80% did not have comorbidities. Meningitis, endocarditis, and septic arthritis were noted in

10% to 35%, 4.5% to 10%, and 23% to 39% of adult patients with ST283, respectively (S1

Table).

Piscine GBS CC283 in Asia

All newly sequenced GBS isolated from tilapia in Peninsular Malaysia and Vietnam, during

outbreaks of streptococcosis, were CC283 (Fig 1, Table 3). Notably, ten of the 28 fish sampled

in Malaysia did not have signs of disease. ST283 was previously reported from 17/57 (30%)

GBS isolated from seven freshwater fish species, including tilapia, on sale for human consump-

tion in Singapore in 2015: these 17 ST283 were found in only 6/586 (1%) fish from ports, but

in 11/39 (28%) fish from markets [10]. Two previously reported ST283 were reported from

farmed tilapia in Thailand between 2000 and 2014 [9, 25]. One ST491 and one ST1311, (a new

SLV of ST491, and also a double locus variant of ST283) were isolated from tilapia in Vietnam

in 2006 [9] and 2016 respectively. An ST739, another SLV of ST283, was isolated in 2014 from

a diseased tiger frog (Hoplobatrachus chinensis) farmed for human consumption in Guang-

dong, China, about 100Km from Hong Kong; although frogs are not piscine, they are often

farmed in close proximity to fish and all known GBS infections in frogs are caused by clades

that are also found in fishes [9].

Table 2. Asiana Human group B Streptococcus (GBS) clonal complex (CC) 283 reported up to December 2017 as a proportion of invasive GBS by location and year.

All CC283 in this table are sequence type (ST) 283: other examples of CC283 were not found. This table shows that ST283 was found in the first year of all newly described

GBS collections in Southeast Asia, so it may have predated these collections, and that both GBS numbers available and ST283 proportions vary from year to year.

Vientiane, Lao PDR Nakhon Phanom and Sa

Kaeo provinces, Thailand

Ho Chi Minh City, Vietnam Singapore b Total

Year GBS No. CC283 No. (%) GBS No. CC283 No. (%) GBS No. CC283 No. (%) GBS No. CC283 No. % GBS No. CC283 No. (%)

2000 1 1 (100) ND ND ND ND ND ND 1 1

2001 0 0 ND ND ND ND 16 3 (19) 16 3 (19)

2002 0 0 ND ND ND ND 13 2 (15) 13 2 (15)

2003 1 1 (100) ND ND ND ND 28 2 (7) 29 3 (10)

2004 0 0 ND ND ND ND 32 7 (22) 32 7 (22)

2005 0 0 ND ND ND ND 23 0 (0) 23 0 (0)

2006 3 2 (67) ND ND ND ND 36 2 (6) 38 4 (11)

2007 5 5 (100) 7 3 (43) ND ND 41 2 (5) 52 10 (19)

2008 0 0 10 6 (60) ND ND 46 1 (2) 54 7 (13)

2009 2 1 (50) 1 0 ND ND 53 1 (2) 55 2 (4)

2010 7 5 (71) 4 3 (75) ND ND 43 1 (2) 52 9 (17)

2011 1 0 (0) 5 4 (80) ND ND 38 0 (0) 44 4 (9)

2012 1 1 (100) 13 8 (62) ND ND 43 3 (7) 57 12 (21)

2013 3 3 (100) 31 27 (87) ND ND 58 9 (16) 92 39 (42)

2014 2 1 (50) 66 50 (76) ND ND 77 15 (19) 145 66 (46)

2015 4 3 (75) 2 1 (50) 4 1 (25) 110 61 (55)� 120 66 (55)

2016 7 5 (71) ND ND 8 3 (38) 50 15 (30) 15 8 (53)

2017 1 1 (100) ND ND 1 0 (0) ND ND 2 1 (50)

Total 38 29 (76) 139 102 (73) 13 4 (31) 707 124 (18) 840 244 (29)

a Similarly detailed data for Hong Kong were not found.
b This Singapore data is from the only two institutions that had systematically saved GBS; Tan Tock Seng Hospital and Changi General Hospital.

�The outbreak year. Abbreviations: ND = not determined.

https://doi.org/10.1371/journal.pntd.0007421.t002
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GBS CC283 outside Asia

Only four CC283, of human origin, were found: two from France, one from Britain, and one

from the Netherlands (Fig 1, Table 4). All four were ST283 and none had associated epidemio-

logical data. CC283 was otherwise absent from studies of over 4,000 human GBS from nine

countries, of over 1,200 bovine GBS from five continents, and from the aquaculture literature

from 6 continents, as of December 2017 (Fig 1 and S4 Table) [9, 22, 31–54]. Three human

ST751, although an SLV of ST283 and ST10, were distinguished from ST283 by over 2,000

SNPs, based on phylogenetic analysis, and clustered outside of CC283, in CC10 (Fig 2), so

ST751 is excluded from tables and figures referring to CC283. Other SLVs of ST283 listed in

the MLST database are ST690, a human isolate, and ST160, of unknown origin, but we could

not find WGS data for them. Three GBS serotype III-4 were not included as ST data were not

available, although ST283 is the only published ST within serotype III-4: they were reported,

without epidemiological data, amongst a collection from Australia and New Zealand in the

original description of this subtype [55].

Genomic analysis

A previous report, using Bayesian analysis of a smaller subset of mostly Singaporean isolates,

estimated the time of emergence of CC283 as 1994 (95% highest posterior density (HPD)

1991–1997) [1]. Analysis of our expanded set confirms that CC283 forms a monophyletic

clade that appears to have arisen from within CC10 (Fig 2A). Bayesian analysis of our current

set of CC283 and closely related CC10 strains suggests a slightly earlier predicted emergence

Table 3. Asian Piscine group B Streptococcus (GBS) clonal complex (CC) 283 reported up to December 2017. All these CC283 were ST283, except for two variants, as

indicated.

Country/fish Data

source

Date

range

Locations Sample

type

GBS

No.

CC283 No.

(%)

Singapore; Asian bighead carp, red tilapia, black tilapia, giant snakehead, common

snakehead, grass carp and silver carp a
[10] 2015 Ports I, S 27 6 (22)

Markets I, S 30 11 (36)

Peninsular Malaysia; red hybrid tilapia New data 2007–

2008

9 farms I 28 28 (100)

Vietnam, tilapia [9] 2006 ND ND ND 1 b (ND)

Vietnam, Can Tho and An Giang; tilapia New data 2016 5 farms I 34 34 c (100)

Thailand; tilapia [9] 2000–

2010

ND I 8 1 (12�5)

Thailand; tilapia [25] 2012–

2014

ND ND ND 1 (ND)

a A glossary of fish scientific names is in S2 Table.
b This is ST491, a single locus variant of ST283.
C One of these 34 is ST1311, a double locus variant of ST283 (See S3 Table). Abbreviations: I = invasive (brain, organs, muscle), S = superficial, ND = not determined.

https://doi.org/10.1371/journal.pntd.0007421.t003

Table 4. Human group B Streptococcus (GBS) clonal complex (CC) 283 outside Asia.

ST, place/country, isolate No. Data source Date range Sample type GBS No. ST283 No. ST283%

ST283, Britain; ERR1742070 GenBank a 2014 Invasive 1017 1 <0�1

ST283, France; S80 & S81 [8] 2002–2007 Invasive 119 2 2

ST283, Netherlands; ERR1659855 GenBank ND ND ND 1 ND

a Originally Public Health England (V. Chalker, personal communication). Abbreviations: ST = sequence type, ND = not determined.

https://doi.org/10.1371/journal.pntd.0007421.t004
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date of 1985 (95% HPD 1980–1990). Given that the original Bayesian analysis was done on a

data set that consisted largely of strains isolated from Singapore during 2015, the shift in the

predicted emergence date is perhaps not surprising. However, our current data set was also

not systematically collected, either by time, geography, or host, and these results should be

interpreted in this context. Additional systematic sampling may provide further insights into

emergence dates as well as the likely geographical and host origin of CC283. We found very lit-

tle recombination in CC283 isolates, 62 kb (3.0%) of the total chromosome, and little variation

in genome content, as indicated in the phylogenetic tree (Fig 2) and single nucleotide poly-

morphism (SNP) distances between CC283 pairs (S5 Table).

Discussion

GBS CC283 has been widespread in SE Asia for over two decades in humans, and at least a

decade in aquatic animals, but is rare outside SE Asia. As ST283 was found in the first year of

every available collection of invasive GBS from SE Asia (Lao PDR, Thailand, Vietnam and Sin-

gapore), it may have been present even earlier. The estimated date of emergence, of 1985, pre-

dates the first known human cases and is roughly contemporaneous with the start of the

expansion of aquaculture in SE Asia, based on reports from the Food and Agricultural Organi-

sation of the United Nations [56]. The 2015 human outbreak of GBS in Singapore was fish

borne; although our current study did not address transmission or consumption patterns,

human cases in other parts of Southeast Asia could potentially also be fish-borne, especially

since consumption of undercooked aquaculture foods is common in Asia, as shown by the

high rate of trematode infections [57, 58]. It is not known to what extent healthy fish may

carry ST283, or what the infectious dose for humans may be, but ST283 was isolated from

healthy looking fish in Malaysian farms and in Singapore ports and markets, so fish sold for

human consumption could be the source of exposure even if visibly diseased fish were

excluded from sale. The high proportions of ST283 in invasive human GBS collections suggest

that if human ST283 is acquired from aquaculture, or another undetermined food source, then

invasive GBS is primarily a foodborne infection in Thailand and Lao PDR, and largely food-

borne in Vietnam. The invasive human data from these three countries are all from areas bor-

dering the Mekong River, separated by up to 1,500 km. If the ST283 data is not representative

of each whole country, it may represent an epidemiology peculiar to the ecosystem surround-

ing the river.

Aquaculture and one health

The phylogenetic tree shows that where human and fish GBS were collected concurrently, they

are intermingled, whereas separate clustering of isolates of human and piscine origin tends to

reflect collections being from different countries or time periods. We found numerous exam-

ples of pairs of human and piscine GBS distinguished by few to zero SNPs. Of note, while strict

use of SNP distances is not fully reliable for determination of transmission, many of the exam-

ples have SNP distances smaller than 21 and are monophyletic in the ST283 tree. These criteria

both support a possible “match”, as recently defined [59], although any SNP number cutoff is

arbitrary, and the fewer the SNPs, the more likely is the linkage. GBS from the Singapore out-

break cluster with GBS from multiple countries, suggesting multiple sources contributed to

the outbreak; although this may not seem surprising, given that Singapore imports fish from

multiple countries, it leaves an unanswered question as to why imports from across the region

suddenly, and simultaneously, were associated with increased GBS incidence in 2015. Of note,

the 2015/2016 El Niño broke warming records in the central Pacific [60], and higher
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temperatures are associated with increased GBS load [61] and outbreaks of streptococcosis

[62] in fish, and increased human cases [24].

GBS is known to affect fish species other than tilapia, including farmed and wild freshwater

and marine fishes [63, 64]. Our detection of CC283 in fish farms was from tilapia, which were

preferentially sampled because they are the most commercially important species affected by

GBS in SE Asia, but the involvement of other species remains uncertain. Although the out-

break in Singapore was linked to several freshwater fish species, it is unclear whether the fish

left the farms as carriers, or were contaminated during transport and handling. Cross contami-

nation and post-contamination bacterial amplification at ambient temperature might explain

the data, from Singapore, that showed that ST283 was recovered from 1% of fish taken from

ports, but 28% of fish from markets [10].

Fish account for up to 37% of protein consumed in SE Asia [65], and Lao PDR and Thailand

are among the top ten global tilapia producers [56]. Tilapia were introduced to SE Asia in the

1940s with repeated importations of fish fry: if these fry were contaminated at source, this could

explain the finding of ST283 across the region. Alternatively, ST283 may have evolved regionally,

from other animals, and acquired the ability to infect fishes through lateral gene transfer of viru-

lence elements from other piscine GBS, followed by onward transmission [66]. Interestingly,

GBS transmission from a tilapia hatchery into a new farm was reported in Malaysia where, in an

effort to prevent economic losses due to streptococcosis, farms were advised to source fry from

disease-free hatcheries [67]; GBS from these outbreaks in 2007/2008 were included in our study

and are ST283. However, a survey of invasive GBS isolated from 13 adults in Malaysia in 2010

did not find Serotype III GBS [68]; this was a small sample and the predominant Malay popula-

tion do not habitually eat raw fish, perhaps explaining this lack of human ST283.

There are a limited number of GBS clades that cause streptococcosis in fish, and ST283 and

its variants are the only known serotype III GBS that naturally affect tilapia [9]. This suggests

that ST283 caused streptococcosis in multiple sites across Thailand between 2003/2011, when

12% to 56% of GBS isolated from diseased tilapia were serotype III [69–71]; furthermore, some

were serotype III-4, and the only described example of serotype III-4 is ST283 [7]. Interest-

ingly, untyped GBS were reported as an emerging cause of septic arthritis, in humans, in Thai-

land between 1990 and 2010 [72].

The three predominant clades of GBS in fish are associated with different serotypes: ST7

with serotype Ia, CC552 (including ST260) with serotype Ib, and ST283 with serotype III [9].

Commercially available vaccines cover serotype Ib only, or serotypes Ia and III, but without

cross-protection between serotypes. Strain confirmation is therefore recommended prior to use

of vaccination, but diagnostic infrastructure is very limited in SE Asia, so fish farmers rely on

antimicrobial treatment rather than on strain typing and vaccination. Antibiotics, including tet-

racyclines, are commonly used in controlling streptococcosis [73]. Concentrations above maxi-

mum limits have been found in fish sold for consumption in Vietnam [74], which may explain

the high prevalence of tetracycline resistance genes found in ST283 from Vietnam. However,

although similar antimicrobial use is reported in Thailand [75], tetracycline resistance amongst

human ST283 from Thailand disappeared after 2012: this loss was also seen in human ST283

from Lao PDR and Singapore, possibly through three separate resistance gene loss events (Fig

2). In contrast, tetracycline resistance was 88% amongst 712 non-ST283 invasive human GBS,

isolated in Singapore from 2001 to 2018 (T. Barkham, personal communication).

Potential global dissemination

Whereas fish-associated CC7 and CC552 are geographically widespread, our literature review,

up to December 2017, showed that CC283 had only been confirmed from SE Asia, although
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serotype III GBS had been described as the cause of disease outbreaks that occurred in 2016 in

tilapia farms in Brazil [76]. Serotype III GBS isolates from Brazilian tilapia farms have now

been confirmed as ST283, while this paper was in revision, and cluster with ST283 from Asia

[25, 77]. This observation, in combination with import records of live Nile tilapia from Singa-

pore to Brazil in 2014, suggests that ST283 may have been introduced into South America

from Southeast Asia, underlining the potential threat of Southeast Asian ST283 to expanding

aquaculture worldwide. The global trade in tilapia has previously been reported to account for

the dissemination of GBS CC552 (ST260/261), from Israel to Australia, Africa (Ghana), Asia

(China) and America (USA) [78] but CC552 does not affect homeothermic species. If ST283

spreads in a similar manner, human disease may also occur beyond SE Asia.

Limitations and further studies

Our data is limited by the use of existing GBS collections. More extensive and systematic geo-

graphical sampling and transmission studies are needed. Future studies might specifically

address the prevalence of GBS in fish hatcheries, animal feed, humans (including healthy carri-

ers), and both healthy and diseased aquatic and non-aquatic animals, as well as the evolution-

ary origin and virulence mechanisms of ST283. Pathogenicity factors that explain the virulence

of ST283 in humans are yet to be described, although a recent report identified the bceR gene

as important for antibiotic resistance, biofilm formation, and lethality in a mouse model of

infection [79]. Humans have previously been implicated as the source of GBS that caused a

mass die-off of fish [80], so the interplay between aquaculture and human waste, which is com-

monly discharged into fish ponds and rivers in Asia, in part to recycle nutrients in the food

production system, might also be studied.

Summary

GBS ST283 is widespread in Southeast Asia, where it has been causing disease for over 25 years.

Human ST283 is almost absent outside Asia but accounts for over 70% of invasive human GBS

in collections from Thailand and Lao PDR. As both are significant producers of tilapia, and con-

sumption of raw fish is common in these countries, we hypothesise that their ST283 infections

are acquired from fish, as in the Singapore outbreak. ST283 has been detected in healthy and

diseased farmed fish in SE Asia and is estimated to have emerged in 1985, corresponding with

the beginning of the rapid expansion of the aquaculture industry. ST283 causing tilapia deaths

in Brazil since 2016 are thought to have been introduced with tilapia imported from Asia in

2014. Evolutionary origins and routes of transmission within and between host species need

further study, as it is possible that ST283 is transmitted from humans to aquaculture, or that

there is another common source. Creation of cross-border collaborations in human and animal

health are needed to complete the epidemiological picture, may lead to improved human and

fish welfare, and may contribute to safer economic development in affected countries.
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