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Abstract

Solar radiation is one of the most common threats to the skin, with exposure eliciting a specific protective cellular response.
To decrypt the underlying mechanism, we used whole genome microarrays (Agilent 44K) to study epidermis gene
expression in vivo in skin exposed to simulated solar radiation (SSR). We procured epidermis samples from healthy
Caucasian patients, with phototypes II or III, and used two different SSR doses (2 and 4 J/cm2), the lower of which
corresponded to the minimal erythemal dose. Analyses were carried out five hours after irradiation to identify early gene
expression events in the photoprotective response. About 1.5% of genes from the human genome showed significant
changes in gene expression. The annotations of these affected genes were assessed. They indicated a strengthening of the
inflammation process and up-regulation of the JAK-STAT pathway and other pathways. Parallel to the p53 pathway, the p38
stress-responsive pathway was affected, supporting and mediating p53 function. We used an ex vivo assay with a specific
inhibitor of p38 (SB203580) to investigate genes the expression of which was associated with active p38 kinase. We
identified new direct p38 target genes and further characterized the role of p38. Our findings provide further insight into
the physiological response to UV, including cell-cell interactions and cross-talk effects.
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Introduction

The skin is a complex organ composed of organized cells that

constitute a unique physiological barrier. The skin has a diverse

range of protective functions in the face of a number of biological,

chemical and physical hazards, including UV-radiation.

The sun’s radiation that reaches Earth contains UV made up of

a combination of UVA (95%) and UVB (5%). The cytotoxicity

induced by these UV rays depends on their wavelength. UVA

(320–400 nm) penetrates deeply, as far as the dermis, generating

reactive oxygen species (ROS), including superoxide radicals,

hydrogen peroxide and hydroxyl radicals. These ROS, in turn,

lead to changes in protein and DNA [1–4]. UVB radiation (280–

320 nm) mainly affects cells of the epidermis layer, with only 10 to

15% of the radiation penetrating the dermis. UVB rays cause

direct DNA damage, producing pyrimidine dimers and pyrimi-

dine-pyrimidone photoproducts [5]. UV is considered to be the

agent that causes most damage to DNA, contributing to skin

aging, photodermatoses and carcinogenesis.

Cells have developed multiple mechanisms to mitigate the

effects of UV exposure, including specific photo-protective

responses involving increased production of melanin pigment,

the most efficient UV-absorbing agent [6]. Dedicated DNA-repair

machineries are also activated and nucleotide excision repair

(NER) protein complexes are recruited to remove DNA photole-

sions [7]. UV radiation mediates a variety of additional cellular

reactions, including inflammation and cell-cycle regulatory events

[8,9].

Inflammation is mostly due to UVA [10]. UVA induction of

inflammation entails a cascade of early events involving the

infiltration of inflammatory blood leucocytes four to six hours after

irradiation, increased production of prostaglandins, release of

TNF-alpha and inflammatory cytokines and activation of the

NFKB transcription factor pathway [11]. Cell-cycle arrest and

apoptosis of cells are also seen in response to UV. The occurrence

of these two cellular responses depends on the amount of UV to

which cells are exposed. Phosphorylation and stabilization of the

p53 tumor suppressor involves the Mitogen Activated Protein

kinase (MAPK) p38a and the ATM/ATR pathway [12,13].

MAPK p38a induces the transcriptional activity of p53, leading to

cell-cycle arrest, DNA repair and apoptosis [14]. Low UV doses

induce transient cell-cycle arrest by up-regulating p53 target genes

and thereby eliciting DNA repair processes [15]. High UV doses

induce p53-mediated apoptosis through the up-regulation of p53

target genes [15]. The apoptotic response is also mediated by the

stress-activated p38 kinase (MAPK14), which modulates p53
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activity through TP63 phosphorylation [16]. The activity of the

downstream target of p38, USF-1, is modulated through post-

translational modification, again depending on the nature and

dose of UV exposure, either promoting gene expression or

inducing a transcriptional block [17,18].

The response to UV is complex, affecting both transcription

and protein activity. Several human in vitro models have been

developed to facilitate studies of the molecular processes

involved, and in particular focusing on pigmentation [19,20],

DNA-repair or inflammation [21]. These models include mono-

cultured cell lines, co-cultured melanocytes and keratinocytes,

and reconstructed epidermis. Low doses of UVB radiation have

been shown to cause a greater increase in melanin synthesis in

human co-culture models based on melanocyte and keratinocyte

cells isolated from the foreskin or from skin donors of various

phototypes [22,23] than in mono-cultured melanocytes [23,24].

This highlights the cooperative role of keratinocytes and

melanocytes. Similar findings have been obtained for inflam-

mation [25]. An in vitro three-dimensional model of reconstruct-

ed human skin epidermis has been developed to study

cooperation between keratinocytes and melanocytes. However,

the model does not take into account the different cell types, cell

ratios or cellular organizations. Indeed, in the physiological

epidermal structure, melanocytes lie over the basal membrane,

surrounded by keratinocytes and protected by the stratum

cornea. This specific architecture may affect the cellular

response to UV radiation. We therefore further investigated

the UV-induced response by studying gene expression profiles in

the epidermis using skin samples exposed, in vivo, to simulated

solar radiation, containing environmentally relevant amounts of

UVB and UVA. A whole-genome approach was used to

investigate expression profiles. We also used ex vivo assay in

the presence of a specific p38 kinase inhibitor to identify among

the differentially expressed genes, those for which the transcrip-

tion was specifically mediated through the stress-activated p38

kinase.

Results

Transcriptional profile following in vivo simulated solar
radiation (SSR)

To examine the effects of solar radiation on gene expression in

vivo, we carried out a photobiological study in five healthy

volunteers referred for abdominal plastic surgery. Volunteers were

aged between 38 and 60 years, with a median age of 46. Skin

phototypes were determined by detailed interview and using the

sun-reactive skin type classification [26]. Two patients were

classified as skin phototype II and three as skin phototype III

(Fig. 1A). Five hours before resection of the pre-defined abdominal

skin region, two areas were irradiated with a solar simulator at

doses of 2 and 4 J/cm2, as shown in Figure 1A. Gene expression

profiles were obtained for irradiated and non-irradiated samples

using whole-genome arrays (Agilent 44K) (Fig. 1B). Array data

were normalized and scaled using R software (http://www.

bioconductor.org). We then used the Significant Analysis of

Microarray (SAM) statistical method to identify genes for which

expression was modified by SSR. Pair-wise comparisons were

made between non-irradiated and irradiated skin samples to

analyze the effect of irradiation on gene expression. Two-class

SAM identified a set of 288 genes, the expression of which differed

between samples exposed to 2 J/cm2 and non-irradiated samples,

and a set of 473 genes, the expression of which differed between

samples exposed to 4 J/cm2 and non-irradiated samples. These

genes accounted for about 1.5 to 2.5% of the ‘‘valid’’ genes tested.

Hierarchical Clustering (HC) of these genes grouped together

samples for each condition in a single branch and highlighted two

gene clusters, named UP and DOWN, according to their relative

expression level (Fig.1B-2A). Three-class SAM analysis of 2 J/cm2,

Figure 1. Experimental design. (A) Simulated solar irradiation (SSR) of abdominal areas, at doses of 2 and 4 J/cm2, five hours before plastic
surgery. Five women with a median age of 42 years, with phototype of II or III according to Fitzpatrick classification, were included in a
photobiological study. (B) Microarray workflow. Non-irradiated and irradiated samples were separately compared to a reference, containing pooled
samples (non-irradiated and irradiated). Significance Analysis of Microarrays (SAM) and a false discovery rate (FDR) of zero were used to identify
transcripts that were differentially expressed between irradiated and non-irradiated conditions. SAM comparing 2 J/cm2 with non-irradiated samples
identified 288 differentially regulated genes; comparison between 4 J/cm2-irradiated and non-irradiated samples identified a set of 473 differentially
regulated genes; and 3-class SAM identified a set of 476 genes (Table S1).
doi:10.1371/journal.pone.0010776.g001

Solar Radiation Gene Networks
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4 J/cm2 and non-irradiated conditions gave a set of 476

differentially expressed genes. HC grouped the two groups of

irradiated samples together in a single branch and the non-

irradiated samples in a separate branch and identified two gene

clusters. Principal Component Analysis (PCA) confirmed segrega-

tion of irradiated and non-irradiated samples, whereas no

segregation between the two groups of irradiated samples was

detected, consistent with the HC (Fig. 2B). We next compared the

genes included in UP-clusters and DOWN-clusters. Use of a Venn

diagram revealed that 160 genes were grouped as ‘‘UP’’ and 66

genes as ‘‘DOWN’’ for both 2 J/cm2 and 4 J/cm2 irradiated

samples (Fig. 3A, Table S1); these genes corresponded to 80% of

all genes found to be differentially expressed in 2 J/cm2 irradiated

samples. The number of down-regulated genes increased in a UV

dose-dependent manner (Fig. 3B), consistent with the notion that

increasing the dose of UV increases DNA damage, causing more

cell arrest and apoptosis, which in turn reduces gene transcription

overall.

Chromosomal location of differentially expressed genes
To investigate whether there is a UV-responsive gene cluster,

we used Onto-Express (http://vortex.cs.wayne.edu/projects.htm)

to determine the chromosomal location of differentially expressed

genes following SSR exposure. No UV-responsive clusters were

identified (Fig. 3C). UV-regulated genes were distributed random-

ly among chromosomes. The percentage of genes per chromosome

that were found to be UV-regulated was between 0.20% (chr X) to

1.38% (chr 3), for an SSR dose of 2 J/cm2, and 0.15% (chr X) to

2.56% (chr4) for 4 J/cm2 (Table S2). Chromosomes 21, 22 and X

displayed the lowest percentages for both doses used (Table S2).

Functional annotation
To investigate the biological and molecular processes and

pathways affected in response to SSR, we analyzed the list of

differentially expressed genes using EASE (Expression Analysis

Systemic Explorer, http://david.abcc.ncifcrf.gov/tools.jsp). This

online software package identifies groups of biologically related

genes. We focused on significant gene sets belonging to three GO

categories: biological processes, molecular function and cellular

components. Eighty % of the annotated transcripts showing

differential expression upon UV exposure at 2 J/cm2 also showed

differential expression at a dose of 4 J/cm2. Thus, most (80%) of

the biological processes (GO terms) implicated by genes that were

differentially expressed at 2 J/cm2 exposure were also highlighted

by genes differentially expressed at 4 J/cm2. Additional genes

showing differential regulation upon 4 J/cm2 exposure only were

Figure 2. Gene and sample classification analyses. Hierarchical Clustering (HC) (A) and Principal Component Analysis (PCA) (B) (Mev 4.4) were
used to classify the differentially expressed genes after SAM normalization. The normalized expression for each gene (rows) in each sample (columns)
is presented with a color code (green for down-regulated and red for up-regulated). Each HC analysis (A) formed groups confirmed by PCA (B),
showing clearly distinct clusters for UV-irradiated and control samples.
doi:10.1371/journal.pone.0010776.g002
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associated with other GO terms, representing almost 60% of these

UP- and Down-regulated gene sets (Table S3). The GO terms

common to both the 2 and 4 J/cm2 SSR-regulated gene sets

highlighted two fundamental biological processes: inflammation

and apoptosis. Inflammation was associated with the set of UP-

regulated genes and is known to be the most common and

immediate response to UV-induced damage. Solar radiation elicits

the production of chemokines inducing cytokine activity, leading

to cell-cell communication within both the dermis and the

epidermis. The main inflammatory responses identified here

included the promotion of cell proliferation, cell development

and keratinocyte differentiation. This suggests that, despite the

negative effects of SSR, the skin epidermis increases its thickness to

protect against additional damage. Consistent with this, the

associated cellular component was the extra-cellular space and

the nucleus. Events associated with apoptosis and the regulation of

apoptosis were found in both the UP- and Down-regulated gene

sets, together with processes that concomitantly regulate the cell

cycle and protein kinase activity (both cyclin dependent and

independent). KEGG pathway analysis (DAVID analysis) identi-

fied only the p53-signaling pathway (hsa04115) as being involved

in the SSR-induced events common to both sets of genes.

We then analyzed the GO terms associated with the set of genes

that showed differential regulation only for high-dose SSR

exposure (Fig. 4). These genes were associated with additional

processes and indicated a further up-regulation of the inflamma-

tory response. Indeed, the proportion of up-regulated genes that

were annotated with GO terms associated with inflammation, cell

development and cytokine activity were considerably higher for

the higher SSR dose (52%, 44% and 50%, respectively) than for

lower dose responses. At this higher dose, there was evidence of

the involvement of new processes, particularly the immune

response, chemotaxis and JAK-STAT cascade activation

(Fig. 4A). Consistent with this, KEGG pathway analysis showed

the involvement of the p53 signaling pathway and cytokine-

cytokine receptor interaction (hsa04060) in the response to the

higher dose. This reflects the important roles of the kinase and

cytokine activities in the underlying molecular mechanisms. We

also observed transcriptional and transcriptional regulatory events

associated with the down-regulated gene set, suggesting a

reduction in transcription to favor the damage response (Fig. 4B).

These findings are evidence of the activity of a variety of processes

in the epidermis, eliciting different responses according to the

degree of radiation.

Validation of photo-induced expression by qRT-PCR
Real-time PCR was used as an independent method to validate

microarray expression data and to analyze quantitative gene

expression data. Eleven genes were selected (nine up-regulated and

two down-regulated). The nine up-regulated genes were chosen as

belonging to the p53-signaling pathway or to the cytokine-cytokine

receptor interaction process. The two down-regulated genes were

chosen for their involvement in vitamin D3 hydroxylation

(CYP2R1) and in epithelial regenerative proliferation (TP63, a

p53 homolog). Gene expression assays were performed using the

same sample set for technical validation and five additional

samples (from five different individuals) for biological validation.

The two sample sets gave similar expression profiles in response to

SSR, thus validating the data (Fig. 4C shows mean values for total

expression data for the two sample sets). Quantitative RT-PCR

results were statistically significant and were consistent with

microarray data. Genes up-regulated in response to SSR remained

in the UP set in both samples sets, and down-regulated genes

remained in the DOWN set. However, although gene expression

profiles for different skin samples were similar, the extent of

changes in expression differed, as reflected by the error bars for

mean expression data. This suggested inter-individual variation,

independent of skin phototype. Gene expression profiles differed

Figure 3. Gene distribution as a function of UV treatment and
chromosome location. The Venn diagram (A) shows up- and down-
regulated genes following 2 J/cm2 and 4 J/cm2 SSR. The diagram shows
the number of genes in each group (UP or Down). The histogram (B)
shows differentially expressed genes, demonstrating variation in
response as a function of dose. The number of down-regulated genes
is greater for the higher dose. Differentially regulated genes in response
to UV exposure (C) do not show clustering for chromosomal location
(the number of UV regulated genes is reported in Table S2).
doi:10.1371/journal.pone.0010776.g003
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Figure 4. GO tree for genes showing differential regulation only with a dose of 4 J/cm2 SSR and qPCR validation. Genes showing
differential regulation only in response to the higher dose of SSR are annotated with several GO terms. Up-regulated genes (A) were associated with
terms that included negative regulation of cellular processes, morphogenesis of anatomical structures, JAK-STAT signaling, nucleosome assembly and

Solar Radiation Gene Networks
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as a function of SSR dose and correlated with the microarray data.

The radiation-induced response observed for the tested genes was

higher at higher dose. Indeed, the IL6 and IL20 mRNA responses

were stronger with 4 J/cm2 than with 2 J/cm2. IL20 expression

levels were 52 times higher in samples exposed to low-dose (2 J/

cm2) radiation and 490 times higher in samples exposed to high-

dose (4 J/cm2) radiation than in non-irradiated samples. In

comparison, SFN (stratifin), TNF-a and GADD45a mRNA levels

were 2 to 3 times higher in 2 J/cm2 irradiated samples than in

samples from non-irradiated areas, but were not higher still in

samples irradiated with 4 J/cm2 (3 to 3.7 times higher than in non-

irradiated samples). We also observed the down-regulation of

CYP2R1 and TP63 in samples irradiated with a dose of 2 J/cm2,

with levels 2.4 and 3.7 times lower, respectively, than in non-

irradiated samples and remaining low in samples irradiated with

the 4 J/cm2 dose. Taken together these results validate the

microarray data.

A role for p38 in the response to SSR: Gene network
analysis and skin explants

The p53 pathway is a major and well-characterized pathway

that is switched on following radiation. However, additional kinase

processes including the stress responsive p38 kinase may also

mediate UV- and solar radiation-induced responses. To identify

downstream targets of p38 in the response to solar radiation, we

used Ingenuity Pathway Analysis software (IPA) to identify

potential links between genes that were differentially regulated in

response to high-dose radiation and the p38 stress kinase (Fig. 5A).

We analyzed all the networks generated by IPA, based on

the immune response (inflammatory response and cell differentiation were also found for 1 MED (minimal erythema dose: 2 J/cm2), as indicated in
red); for down-regulated genes (B), GO terms were predominantly associated with transcription and regulation, although three GO terms (in red)
relating to ‘‘regulation of transcription’’ were also observed for 1 MED (Table S3). (C) Microarray data were validated for 11 genes (nine up and two
down-regulated): mRNA was assayed by qPCR and normalized to the values for 18S mRNA. These genes were selected from the list of differentially
expressed genes, for their classification as inflammatory response genes or their involvement in the p53 pathway. Error bars represent standard
deviation. Stars indicate significant differences (two-tailed Student’s t-test) between control and irradiated samples: * P,0.05; ** P,0.01; *** P,0.001.
doi:10.1371/journal.pone.0010776.g004

Figure 5. The p38 pathway network for the 4 J/cm2 SSR response. Identification of p38-dependent genes ex vivo. Ex vivo study of the p38
pathway (A) in response to SSR using Ingenuity Pathway Analysis. Edges of the diagram are labeled with a description of the relationship between
the nodes. Lines between genes represent known interactions, with solid lines representing direct interactions and dashed lines representing indirect
interactions. Nodes are displayed using various shapes that represent the functional class of the gene product (see legend). Genes showing up-
regulation of expression levels in response to SSR are in red. Skin samples from patients participating in the in vivo study were used for ex vivo
analysis, with the same conditions as used in vivo. Genes belonging to the p38 pathway were identified using the specific kinase inhibitor SB203580.
Genes not regulated by p38 are shown in B and those regulated by p38 are shown in C. Error bars represent standard deviations. Stars indicate
significant differences (two-tailed Student’s t-test) between DMSO-treated and SB203580-treated samples. * P,0.05; ** P,0.01; *** P,0.001 (Table
S4). Values for irradiated DMSO and SB203580 samples were significantly different to values for their non-irradiated controls (data not shown).
doi:10.1371/journal.pone.0010776.g005
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published databases, merging those that include p38 to sequen-

tially enrich for p38-related genes. About half of the retrieved

genes were associated with the p53-signaling network and half

were associated with the cytokine-cytokine receptor network. The

interactions identified, involving either the genes or proteins, were

mainly indirect (dotted lines, Fig. 5). We therefore set up an ex vivo

assay to identify the genes for which changes in expression could

be linked directly to activation of the p38 pathway, using

SB203580, a p38-specific inhibitor [27]. We also screened for

new genes for which UV-dependent transcript levels could be

linked to the p38 pathway. Skin punch biopsy samples were taken

from six abdominal plastic surgery resections, three of which were

from skin donors used for the experiments described above, and

cultured in the presence or absence of a p38-specific inhibitor.

Protocols for SSR and time of sample collection were the same as

for the in vivo assays. Quantitative RT-PCR experiments were

carried out for genes that were in either the UP or Down clusters,

and for which an indirect relationship with the p38 pathway had

been identified (HAS1, GADD45a, SFN, CDKN1A) (Fig. 5A). We

also tested various genes for which a relationship with p38 can be

suspected (SNX5, IL20, PMAIP1, AREG, HAS3, HBEGF, p63,

Cyp2R1). Gene expression profiles obtained for irradiated skin

biopsy samples were comparable with in vivo data, and UV-

induced changes in expression levels were statistically significant

(Fig. 5B–C). However, the magnitudes of the changes in mRNA

abundance were smaller than in in vivo experiments, consistent

with previous reports [27]. To investigate whether UV-induced

changes in gene expression were dependent on the p38 pathway,

we used the statistical t-test comparing UV-induced gene

expression levels in the presence and absence of the inhibitor

SB203580. The t-test split the genes into two groups, p38-

independent (genes for which differences in expression levels in the

presence and absence of SB203580 were not significant; Fig. 5B)

and p38-dependent (genes showing a significantly smaller UV-

induced response in samples treated in the presence than absence

of SB203580 Fig. 5C and Table S4). This approach thus allowed

us to determine the nature of the relationship between p38 and

various genes (SFN, CDKN1A) and to identify HAS3, HBEGF,

AREG as new physiological p38 targets, AREG and HBEGF being

part of the inflammatory response.

Discussion

Using in vivo whole-genome transcript profiling, we quantified

the effect in the epidermis of environmentally relevant levels of

solar radiation on the expression of genes that mediate cellular

responses to UV, the most common and damaging threat to

human skin. Using the doses and gene-expression filters described,

we found that in the epidermis of Caucasian skin irradiated in vivo

about 1.5% of the genome is modulated in a UV dose-dependent

manner. Genes differentially expressed in non-irradiated and SS-

irradiated skin areas included both UP- and Down-regulated

genes. These genes were randomly distributed among chromo-

somes, consistent with the absence of any substantial UV-

controlled regions.

The use of gene annotation coupled to this in vivo approach

allowed the global response of the skin epidermis to be studied as it

occurs in real life, including the effects of paracrine mediators

secreted by the dermis layers and the coordinated responses of

epidermal cell populations. Indeed, this approach preserves

interactions between cells present in the correct ratios, with

physiological organization of the epidermal 3D-structure support-

ed by the dermis. Keratinocytes are the predominant epidermal

cell sub-population, but melanocytes, fibroblasts and other cell

types, also known to participate individually in the solar radiation

response, are present as in natural conditions [28–30]. Impor-

tantly, the differentiation state of cells in the epidermis changes

over time [31]. Keratinocytes undergo a complex and precise

program of differentiation; they start at the basal layer of the

epidermis where they proliferate and move on to the stratum

corneum. The nature of the biological processes taking place,

including the response to UV, would thus be expected to depend

on their differentiation state. This issue needs to be incorporated

into any accurate description of the response, as it is the case in our

model. Also, unlike data from monolayers of cultured cells, our

model reveals the effects of radiation taking into account the ability

of the wavelengths to penetrate through the stratum corneum

before hitting the epidermal and dermal cell layers. Indeed, UVA

and UVB rays penetrate the skin to different extents and elicit

distinct pathways, dependent not only on the doses delivered but

also on their ability to generate direct or indirect DNA

photolesions [9]. Previous studies have focused on the effects of

either UVA [32,33] or UVB [34–40] on skin or cell lines. Our

findings, however, reflect the effects of both types of UV, at a dose

of 2 J/cm2 corresponding to the minimal erythemal dose for the

skin of Caucasians. The specific responses of particular sub-

populations of skin cells (for example melanocytes or Langherhans

cells) cannot be quantified in our analyses due to filters that we

applied. Nevertheless, this global approach importantly integrates

cell-cell cross-talk mediated by paracrine factors, secreted within

the epidermal and the dermal cell layers of the skin [41].

Additionally, due to the combination of both UVA and UVB in

environmentally relevant proportions and doses, the epidermis

transcriptome addressed in our model reflects the general

biological response to sun exposure with minimal bias.

To analyze the cell processes that are activated early following

environmentally relevant levels of radiation, we examined gene

expression profiles five hours after SSR, delivered at doses of 2 J/

cm2 and 4 J/cm2. Two sets of differentially expressed genes were

identified after SS irradiation, defined as UP and Down gene

clusters. Analysis of the number of genes differentially expressed in

response to radiation at the two different doses was consistent with

the idea that gene expression levels are dependent on radiation

dose [29,36,40,42]. However, whereas the number of down-

regulated genes was 2.5 times higher in samples exposed to a dose

of 4 J/cm2 than in samples irradiated at 2 J/cm2, the number of

genes present in the UP clusters was generally similar at the two

doses (only 1.3 times more in the higher dose samples). In addition,

about 80% of the genes grouped in either the UP or Down clusters

following minimal SSR dose exposure were also differentially

expressed following irradiation at a dose of 4/Jcm2 (59% of genes

from the UP gene set and 33% of the Down gene set). PCA

diagrams confirmed this observation, indicating that responses

differed between irradiated and non-irradiated samples, but that

the responses observed for irradiated samples were hardly

distinguishable between the two different doses. It is possible that

the responses induced by the lower dose form part of the response

observed following exposure to the higher dose. Indeed, the

response observed for 2 J/cm2, which corresponds to the minimal

erythemal dose in our study, could be considered as a basal or sub-

acute response and the 4 J/cm2 as an acute dose for Caucasian

skin.

Functional annotation based on gene ontology and enrichment

for GO terms allowed identification of the molecular processes

stimulated in the skin epidermis in response to solar radiation. The

protective response in the epidermis was represented by two major

GO terms observed for gene sets identified for both irradiation

doses: cell differentiation and the inflammatory response. Cell

Solar Radiation Gene Networks
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differentiation is associated with the subsequent thickening of the

skin resulting from both epidermal hyperplasia and increased

thickness of the stratum corneum in response to UV light [44].

The enrichment of genes involved in inflammation was observed

with the high irradiation dose. These genes included those

encoding chemokine family members and their receptors (TNFa,

CCR1, CXCL3, CCL2, CCL4, CCL8, OSM, and RELT). Through

KEGG pathway analysis, these genes suggested the involvement of

a cytokine-cytokine receptor interaction pathway, implicating cell-

cell communication in UV response mechanisms. Suppressor of

cytokine signaling (SOCS) proteins and the JAK-STAT pathway

are also involved in the tight regulation of the inflammation

process. SOCS proteins are intracellular cytokine-inducible

proteins that prevent JAK-mediated activation of STAT3, a

crucial mediator of inflammatory processes, from attenuating

cytokine signaling. SOCS3 was up-regulated in response to both

radiation doses. However, SOCS1 and SOCS2 were significantly

up-regulated only in samples exposed to 4 J/cm2 radiation,

presumably to balance cytokine signaling further and moderate

the acute inflammatory response. The production of reactive

oxygen species (ROS) induced by both UVA and UVB also

contributes to inflammation, by activating the JAK/STAT

pathway. Oxidative stress generated by free radicals modulates

tyrosine phosphorylation of JAK and activates the translocation of

STAT dimers to the nucleus, where they transactivate cytokine

target genes [43]. UV light thus activates inflammation, at the

same time stimulating cell survival mechanisms, cell proliferation

and cell differentiation. These findings provide the first in vivo

evidence of the involvement of the JAK-STAT pathway —

strengthening the immune response— in skin photo-biology, and

support previous observations [34,36-38,45]. Our findings also

show the importance of analyzing the global effects induced by

solar radiation.

Under UV-irradiation, the cell-cycle process is tightly regulated

to allow repair of DNA photolesions, to resume the cell-cycle or to

direct cells towards apoptosis. The set of up-regulated genes

showed a particularly strong link to p53, which promotes cell-cycle

arrest, together with CDKN1A [46], SFN [47] and GADD45 [48].

Indeed, the cyclin-dependent kinase inhibitor CDKN1A, a potent

inhibitor of several cyclin-dependent kinase complexes (CyclinD/

CDK4/6; CyclinB/CDK2) mediates G1 arrest, whereas SFN and

GADD45 inhibit the CyclinB/Cdc2 complex, promoting G2 arrest

[47]. Down-regulation of cyclinB2 (CCNB2) and CDK6 was

consistent with cell-cycle arrest, mediated by the up-regulation of

CDKN1A, SFN and GADD45, in response to UV damage. CDKN1A

is also able to inhibit PCNA-dependent DNA replication directly,

by its direct interaction with PCNA and thus prevention of

polymerase delta activation by PCNA during the S phase [49].

UV-mediated apoptosis also involves p53 signaling, with up-

regulation of genes PMAIP1 (Noxa) and CYCS (Cytochrome C)

promoting the mitochondrial pathway of apoptosis [50]. The

mitochondrial apoptotic pathway is further sustained by the down-

regulation of Bcl2, reducing cellular resistance to apoptosis [50].

Again, ROS-mediated apoptosis mediated by the JAK-STAT

pathway may be accompanied by the up-regulation of SOCS genes

[51,52]; indeed, SOCS3 mRNA has previously been shown to be

stabilized by the activation of the p38 MAPK pathway [53]. The

p38 pathway also participates in the apoptotic response, by

mediating the down-regulation and degradation of the phosphor-

ylated TP63 transcription factor, which binds p53 promoter DNA

[16]. Using an original approach, we could show that TP63, SFN

and CDKN1A mRNA levels are modulated in response to UV in a

p38-dependent manner. We also identified additional p38-

dependent genes involved in the inflammatory response (AREG,

HBEGF) [54]. This adds to growing evidence of the involvement of

the p38 pathway in the UV response. Thus, although p53 plays a

key role in mediating the UV response, the role of the stress-

responsive MAP kinase p38 may be just as important, forming part

of and strengthening the p53- mediated response to UV. Further

ex vivo studies, coupled to whole-genome analyses, would be useful

to elucidate in more detail the physiological role of the p38

pathway in the epidermal response to UV.

Materials and Methods

Volunteers
We recruited ten healthy female volunteers, with skin phototype

II or III according to the Fitzpatrick classification [26], who had

been referred for abdominal plastic surgery to the plastic-surgery

department of South Hospital, Rennes, France. None of the

patients had received UV radiation during the previous two

months, or had taken photosensitive compounds. Patients on

medical treatment or with striae on the region of the skin to be

excised were excluded from the study. Each volunteer was fully

informed of the procedures and gave written consent prior to

taking part in the photo-biological study, which was carried out in

the dermatology department of the Pontchaillou University

Hospital, Rennes. The Ethics Committee of Rennes Hospital

approved the study (CCPPRB Nu04/36-517).

Skin radiation and punch biopsies
A UV polychromatic light source (Dermolum UM-W1, Müller

ElektronikH, Moosinning, Germany) was used, equipped with a

Schott WG 305 filter to generate solar-simulated radiation (SSR)

containing 5% UVB and 95% UVA. The simulated radiance was

100 mW/cm2 (Müller ElektronikH dosimeter). The abdomen was

exposed to SSR at 2 and 4 J/cm2 five hours before plastic surgery to

allow sufficient time to detect significant UV-induced changes in

gene transcription. A dose of 2 J/cm2 was chosen because it

corresponded to the minimal erythemal dose (MED) of SSR for

phototype II Caucasian skin. Epidermis skin samples (0.5 cm Ø)

from UV-irradiated areas were collected immediately after

abdominal surgery and transferred directly into RNAlater (Qiagen)

for RNA extraction. Non-irradiated skin samples were taken as

controls. Skin punch biopsy samples (1 cm Ø) were taken from the

remaining (non-irradiated) operational area of skin from the donors

to test the UV response ex vivo. Whole skin discs were immediately

placed into wells, at the air/liquid interface of 24-well dishes

containing 0.3 ml of MCF medium composed of basal medium for

fibroblast culture (Biopredic InternationalH, Rennes, France),

supplemented with 2 mM L-Glutamine and 2% fetal bovine serum

(FBS) (GIBCO). Prior to UV irradiation, whole skin discs were

incubated at 37uC in a humidified incubator containing 5% CO2

for 24 hours in MCF medium containing either 0.1% DMSO or

10 mM SB203580. Skin discs were then irradiated with 2 or 4 J/cm2

SSR and maintained at 37uC for either 5 or 24 hours. Immediately

after incubation, the epidermis section of the skin discs were cut into

small fragments and stored in RNAlater at 220uC.

Total RNA extraction
Skin epidermis was homogenized in a PrecellysH-24 device

(Bertin), using ceramic beads (1.4 mm Ø, CK14), in the presence

of 350 ml lysis buffer (RA1 Macherey-Nagel) supplemented with

3.5 ml b-mercapto-ethanol. The device was set at a speed of

6300 rpm, with a cycle duration of 23 seconds and an interval

time between 2 cycles of 2 minutes, at 4uC. Six cycles were

required for complete homogenization. Tri-reagent (400 ml;

Sigma) was added, followed by 150 ml chloroform. The aqueous
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phase was recovered, mixed with 500 ml of 70% ethanol and

transferred to a NucleoSpinH RNA II column. RNA was

recovered from the column following the manufacturer’s instruc-

tions, although the wash volumes were larger (RA2 = 600 ml;

RA3 = 500 ml). Recovered RNA was quantified using a Nanodrop

1000 spectrophotometer (Nanodrop TechnologyH, Cambridge,

UK) and RNA integrity was assessed using a 2100 Bioanalyser

(Agilent, Palo Alto, CA, USA).

Microarray
Experiments were performed using 44K Human Whole-

Genome 60-mer oligo-chips (G4112A, Agilent Technologies)

(GEO platform accession GPL1708; GEO samples series

GSE20062). Total RNAs (350 ng) were amplified and labeled

using a two-color labeling protocol with the Low Input Linear

RNA amplification kit (p/n 5184-3523), according to the

manufacturer’s recommendations (Agilent). Test and reference

samples were labeled with Cyanine-5 and Cyanine-3 CTP,

respectively (10 mM, Perkin-Elmer/NEN Life Science). The

reference sample contained an equimolar pool of combined

irradiated and non-irradiated samples. Cyanine incorporation was

monitored using a Nanodrop ND-1000 Spectrophotometer (values

were between 1.4 and 1.6 pmol/ml). Hybridization was performed

using an Agilent oligonucleotide microarray in situ Hybridization-

Plus kit, following the manufacturer’s instructions. Briefly, 750 ng

of test sample cRNA was mixed with 750 ng of reference sample

cRNA, in the presence of target controls. This solution was

subjected to fragmentation (30 min at 60uC) and then dynamic

hybridization in a rotary oven (4000 rpm, 60uC, 17 h). Slides were

disassembled and washed in solutions I and II, as described in the

manufacturer’s instructions, and dried using a nitrogen-filled air

gun before scanning. Hybridized slides were scanned with the

dynamic autofocus Agilent G2565BA microarray scanner.

Data Analysis
The Agilent feature extraction software version 9.1 and the

Bioconductor package LIMMA (Smyth, 2005) were used to

extract and normalize the data. The slide quality was checked for

background and signal homogeneity. The background signal was

subtracted for each spot. Data were normalized using the loess

method and scaled with the Gquantile method [55,56].

Multi-experiment viewer v4.4 (Mev) software was used for the

Significance Analysis of Microarray (SAM) method, a multiple testing

statistical analysis, to identify genes that were differentially expressed

in response to SSR. Two-class unpaired analyses were made,

comparing non-irradiated and irradiated samples, with a median

FDR (false discovery rate) of 0%. Hierarchical Clustering (HC) and

Principal Component Analysis (PCA) were used to classify the data.

Identification of enriched biological themes
The EASE (Expression Analysis Systematic Explorer, http://

david.abcc.ncifcrf.gov/tools.jsp) application was used to identify

gene categories in which differentially expressed genes from the

SAM analysis gene lists were over-represented. EASE uses the

gene ontology (GO) systems for the categorization of genes. Gene

ontology groups with an FDR score less than 0.05 and an

enrichment score $1.5 were considered to be statistically

significant.

The DAVID Pathway Viewer was used for viewing a ‘‘dynamic-

gene-on-static-picture’’. It was used to visualize dynamically genes

of interest on manually drawn (KEGG) pathways.

We used Ingenuity Pathways Analysis (IPA) software to identify

the biological mechanisms, pathways and functions most closely

associated with the experimental dataset selected (http://analysis.

ingenuity.com).

RT-qPCR
Reverse transcription was performed with 1 mg of total RNA

using a High-Capacity cDNA Archive Kit (Applied Biosystems)

according to the manufacturer’s recommendations. qPCR was

performed in sealed 384-well microtiter plates using the SYBR

Green TM PCR Master Mix (Applied Biosystems) with the

7900HT Fast Real-Time PCR System (Applied Biosystems).

Relative amounts of transcripts were determined using the delta

Ct method [57]. For each experiment, mRNA levels are expressed

as fold increase following stimulation, relative to non-irradiated

samples, and normalized to ribosomal 18S transcript levels. Each

experiment was carried out at least twice, and qPCR was

performed in triplicate for each time point. Forward and reverse

primers were designed using Primer3 software (http://frodo.wi.

mit.edu) and have been tested previously for their efficiency

(sequences available on request). Validated primers for cyp2R1

were provided by Biopredic International (Rennes, France).
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