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Abstract

The discovery and characterization of blood-based disease biomarkers are clinically important because blood collection is
easy and involves relatively little stress for the patient. However, blood generally reflects not only targeted diseases, but also
the whole body status of patients. Thus, the selection of biomarkers may be difficult. In this study, we considered miRNAs as
biomarker candidates for several reasons. First, since miRNAs were discovered relatively recently, they have not yet been
tested extensively. Second, since the number of miRNAs is relatively limited, selection is expected to be easy. Third, since
they are known to play critical roles in a wide range of biological processes, their expression may be disease specific. We
applied a newly proposed method to select combinations of miRNAs that discriminate between healthy controls and each
of 14 diseases that include 5 cancers. A new feature selection method is based on principal component analysis. Namely this
method does not require knowledge of whether each sample was derived from a disease patient or a healthy control. Using
this method, we found that hsa-miR-425, hsa-miR-15b, hsa-miR-185, hsa-miR-92a, hsa-miR-140-3p, hsa-miR-320a, hsa-miR-
486-5p, hsa-miR-16, hsa-miR-191, hsa-miR-106b, hsa-miR-19b, and hsa-miR-30d were potential biomarkers; combinations of
10 of these miRNAs allowed us to discriminate each disease included in this study from healthy controls. These 12 miRNAs
are significantly up- or downregulated in most cancers and other diseases, albeit in a cancer- or disease-specific
combinatory manner. Therefore, these 12 miRNAs were also previously reported to be cancer- and disease-related miRNAs.
Many disease-specific KEGG pathways were also significantly enriched by target genes of up2/downregulated miRNAs
within several combinations of 10 miRNAs among these 12 miRNAs. We also selected miRNAs that could discriminate one
disease from another or from healthy controls. These miRNAs were found to be largely overlapped with miRNAs that
discriminate each disease from healthy controls.
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Introduction

Specific and sensitive noninvasive biomarkers for the detection

of human diseases, including malignancies, are urgently required

to reduce worldwide morbidity and mortality caused by cancer [1–

3]. Although some successful use of transcriptome components as

biomarkers was reported [4,5], circulating microRNAs have also

recently been identified as new clinical biomarker candidates [6–

12]. MicroRNAs are post-transcriptional regulators that are

involved in many physiological and pathophysiological conditions.

A recent study by Keller et al. [13] compared the expression

profiles of hundreds of blood-borne microRNAs across a variety of

nonmalignant and malignant diseases to identify disease-specific

expression patterns. The resulting microRNA expression data

could be used to discriminate disease samples with a high level of

accuracy, demonstrating the potential use of microRNA signatures

for blood-based diagnosis of disease. Using extensive bioinfor-

matics research, Keller et al. demonstrated that a wide range of

cancers and other diseases could be discriminated from healthy

controls by only miRNA expression. The data set Keller et al. used

was the most extensive data set ever reported, i.e., it included

various types of diseases (14 diseases plus normal controls) and a

large number of patient (n = 384) and control (n = 70) data sets

from a large number of blood-based miRNA biomarker studies.

In spite of this, selecting a biomarker based on feature-

extraction techniques remains challenging. Although Keller et al.

[13] successfully discriminated cancers and other diseases from

healthy controls by using the expression of only 10 miRNAs (see

Supplementary Table 6 on page 14 of their Supplementary

Materials), they did not state which 10 miRNAs were selected

because of the problem of stability, raised by Abeel et al. [14].

Stability is the measure of how stable feature selections are. For

example, suppose we have 2 set of samples, each of which consists

of 2 categories. When features are independently extracted so as to

discriminate 2 categories for each sample, if the majority of

selected features are common between the 2 samples, it can be

considered a stable feature extraction. If not, it is unstable. That is,

if selected features fluctuate depending on the sample, the stability

of feature selection is poor. Conversely, if most features are

selected independent of the sample, the stability of feature

selection is high.

Although Keller et al. [13] employed 10-fold cross-validation,

the selection of 10 miRNAs fluctuated between trials (see

demonstration in the ‘‘Stability’’ subsection below). This prevented

them from presenting 10 specific miRNAs as biomarkers to
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discriminate patients with cancers and other diseases from healthy

controls. This is a significant disadvantage of their research if it is

to be applied for clinical use, since it is impossible to decide in

advance which miRNAs should be employed as biomarkers.

In order to overcome this problem, we propose a new feature

selection technique to select miRNAs as biomarkers. This method

is based on principal component analysis (PCA), more specifically,

sparse PCA [15–19].

PCA [20] is a type of dimensional reduction or ordination

analysis. Ordination analysis attempts to embed objects distributed

in high dimensional space into lower dimensional space. In PCA,

dimensional reduction is achieved by projection to lower

dimensional space using linear transformation. Although PCA is

a simple and classical method, it can often effectively reduce

redundant information.

Sparse PCA is defined as follows. In contrast to ordinary PCA,

which employs all features to express lower dimensional space,

sparse PCA tries to express lower dimensional space by a smaller

number of features, even if the accuracy decreases. That is, sparse

PCA is a feature extraction method that eliminates unnecessary

features through a method that is not uniquely defined, but varies

depending on the implementation.

Some similar trials of this kind using clustering-based feature

extraction have been reported [21,22]. For example, Liu et al.

[23,24] proposed gene selection using spectral biclustering, Dy et al

[25] used hierarchical clustering for feature selection of lung

cancer image classification, and Modha et al [26] made use of k-

means for feature extraction. However, these are feature selection

methods that require prior knowledge of class partitions or

labeling. At minimum, prior to feature selection, the previous

methods require knowledge or inference of the number of clusters,

which our current approach does not require. Moreover, there has

been no discussion of the stability of feature selection when using

these cluster-based feature selection criteria. Such stability

problems have started to be discussed only very recently [14].

In contrast to both of these above-mentioned general feature

extraction approaches and several previously proposed feature

extraction methods especially designed for gene expression

analysis, e.g., significance analysis of microarrays (SAM) [27],

gene selection based on a mixture of marginal distributions

(gsMMD) [28], and ensemble recursive feature elimination (RFE)

[14], our approach is free from stability problems. These types of

classification-independent and stability-problem-free approaches

were invented only very recently (e.g., unsupervised feature

filtering (UFF) [29]) and are still very rare.

For each pair of diseases and normal controls, our approach

enabled the selection of a set of 10 strict (confident) miRNA

biomarker candidates. Each set of miRNAs could not only

accurately discriminate patients with each disease from normal

controls, but could also accurately discriminate one disease from

another. Moreover, most of the sets shared the majority of

miRNAs, which would allow for simplification of the measurement

of a biomarker since a limited number of sets of miRNA

measurements would permit the discrimination of several diseases.

The reason why we tried to employ blood-based biomarkers in

spite of the drawbacks that miRNAs in blood inevitably reflect the

whole body status and thus have less of a relationship with targeted

diseases is because previous studies have demonstrated that the use

of several circulating miRNAs can work well in a practical sense.

Thus unification and consideration of our analysis results will

improve the ability of miRNAs as biomarkers.

Materials and Methods

Feature Extraction Methods
PCA-based feature extraction. Suppose we have the

miRNA profiles xij ,(i~1, . . . ,N,j~1, . . . ,M), each correspond-

ing to the ith miRNA in the jth sample. N and M are the total

number of miRNAs and samples, respectively. Samples were

classified into L clinical sets, Gl ,(l~1, . . . ,L). We applied PCA to

the fxijg set in 2 ways:

1. Method 1 (miRNA-based): Substitute Ks(vM) principal com-

ponent (PC) score fxik,k~1, . . . ,Ksg to fxij ,j~1, . . . ,Mg. In

this case, PCA was applied to a matrix fxijg.
2. Method 2 (sample-based): Substitute Km(vN) PC score

fxkj ,k~1, . . . ,Kmg to fxji,i~1, . . . ,Ng. In this case, PCA

was applied to a transverse matrix fxjig.

PCA-based feature extraction was performed as follows.

1. Choose a pair of clinical sets, l and l’.
2. Compute xik with Method 1 PCA from fxij Dj [Gl|Gl’g.
3. Compute distance ri,

ri:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiXK0
s

k~1

x2
ik

vuut
,

where K0
s (vKs) is the number of components to be used for

feature selection.

4. Select miRNAs i’ with top N1(vN) ris.

N1 miRNAs are a set of selected features to distinguish clinical

sets l and l’. Throughout this paper, K0
s was assumed to be 2

unless stated otherwise. PCA was computed by the prcomp

function in the R base package [30].

It should be noted that our method did not use any classification

information. This enabled us to obtain stable feature extractions.

t-test based feature extraction. The P-value for the ith
miRNA between fxij Dj [G1g and fxij Dj [G2g was computed using

a t test. The top N1 miRNAs with smaller P-values were selected.

SAM-based feature extraction. The P-value for the ith
miRNA between fxij Dj [G1g and fxij Dj [G2g was computed using

SAM. The top N1 miRNAs with smaller P-values were selected.

gsMMD-based feature extraction. Significantly up- or

downregulated miRNAs were selected by gsMMD, which was

implemented in Bioconductor software. The P-values for up- or

downregulation were considered separately, and the top N1

miRNAs were selected for both up- and downregulated miRNAs.

RFE- and ensemble RFE-based feature extraction. As

described by Abeel et al. [14], the support vector machine with a

linear kernel was applied to 40 independent resampled sets (with

replacements) for ensemble RFE. After 100 independent cross-

validations with 10% test samples and 90% training samples, the

top N1 miRNAs with better accuracy were extracted. For

simplicity, we employed only complete linear aggregation for

weighting among each resampled set. No resamplings were

conducted for simple RFE, and only cross-validations were

performed. The top N1 miRNAs with better accuracy were

selected.

UFF. As described by Varshavsky et al. [29], differential

singular value decomposition (SVD)-entropy DHi ,

PCA Based Feature Extraction of miRNA Biomarkers
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DHi:H{Hi

H:{
1

log (N)

XN

i’~1

ri’ log (ri’)

Hi:{
1

log (N)

X
i’=i

ri’ log (ri’)

ri:
s2

iPN
i0~1 s2

i0

where si is a singular value and N is the total number of miRNAs,

was attributed to each miRNA. After 100 independent cross-

validations with 10% test samples and 90% training samples, the

top N1 miRNAs with larger DHi were selected.

PCA-based Linear Discriminant Analysis (LDA)
PCA-based LDA was conducted as follows:

1. Choose a pair of clinical sets, l and l’.

2. If necessary, apply feature extraction and reduce the

number of miRNAs used for LDA.

3. Compute xkj ,(k~1, . . . ,Km) using Method 2 PCA.

4. Divide samples into training and test sets.

5. Apply LDA to training set.

6. Validate performance of LDA using test set.

7. Repeat steps 4–6 the specified number of times

depending on the employed cross-validation method.

8. Compute performance with averaged values.

9. Estimate the optimal value of Km by repeating steps 3–

8 as Km changes.

It should be noted that the division between training and test

sets was carried out AFTER the computation of PCA (and feature

extraction if necessary). Thus, xkj includes the test set information

as well. Feature extraction, if applied, was also conducted before

division was performed; thus, it was sampling free. One may

suggest that this was erroneous since we do not know the

classification of the test set. However, we can compute the PCA

even if we do not have prior knowledge of the classification

because we do not need classification information to compute xkj .

This is explained in the ‘‘Why did PCA-based feature selection

work so well?’’ subsection in Results and Discussion section as well.

The LDA was computed by the lda function in the R base package

[30].

miRNA Expression and Normalization
The miRNA expression used in this study was obtained from

the Gene Expression Omnibus (GEO) accession number

GSE31568, which was used by Keller et al. [13]. We downloaded

GSE31568_raw and normalized miRNA expression within each

sample to obtain the mean and standard deviation (SD).

Stability Test
As in Abeel et al. [14] and Varshavsky et al [29], we evaluated

whether the selection of miRNAs for the discrimination between

patients with diseases and healthy controls was stable [13]. The

procedure was as follows:

1. Choose a pair of clinical sets, each including one

cancer or other disease sample and one healthy control

sample.

2. Pick 90% samples randomly, independent of classifi-

cation.

3. Apply feature selection to select 10 miRNAs as

biomarkers.

4. Repeat steps 2 and 3 a total of 100 times and count the

frequency of each miRNA selection.

5. Repeat steps 2–4 for all pairs of diseases and healthy

controls.

The above procedures were applied to all feature extraction

methods, i.e., those based on t-tests, PCA, SAM, gsMMD, RFE,

RFE ensemble, and UFF.

Amount of Contribution from each miRNA to
Discrimination

Suppose we obtained xkj by PCA analysis after PCA-based

feature extraction was applied. Then

xkj~
XKm

i~1

aikxij

If we applied LDA to discriminate one cancer or disease from

one healthy control using xkj , we obtained the discriminant

function LDj as

LDj~
XPC

k~1

bkxkj~
XPC

k~1

bk

XKm

i~1

aikxij~
XKm

i~1

XPC

k~1

bkaik

 !
xij ,

for the jth sample, where PC is the number of PCs used for

discrimination. Typically, a positive (negative) LDj indicates that

the sample j represents a patient with cancer or another disease

(healthy control) sample. Then, the amount of contribution, Ci, of

miRNA i to the discriminant function is

Ci~
XPC

k~1

bkaik:

KEGG Pathway Analysis of miRNA Target Genes
DIANA-mirPath. DIANA-mirPath [31] is a web tool. We

used this software version for the implementation of multiple

miRNAs (http://diana.cslab.ece.ntua.gr/pathways/

index_multiple.php). DIANA-mirPath accepts a set of miRNAs,

estimates union of miRNA target genes, and finally computes P-

values that describe KEGG pathway enrichment of the target

genes. For the data set of our selection, we extracted up- or

downregulated sets of miRNAs and uploaded them onto DIANA-

mirPath. Using default settings, DIANA-mirPath employed a list

of target genes estimated by DIANA-microT v4.0. When we

needed to infer P-values attributed to KEGG pathways for other

studies, we uploaded a set of miRNAs identified as biomarkers in

the relevant research.

PCA Based Feature Extraction of miRNA Biomarkers
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Starbase. Starbase [32] is another web tool. Among several

tools provided by Starbase, we used miRPathway(http://starbase.

sysu.edu.cn/miRPathway.php) to infer P-values attributed to

KEGG pathways. Instead of target gene tables inferred compu-

tationally, Starbase employed cross-linking immunoprecipitation

(CLIP)-Seq data. This has both advantages and disadvantages.

One advantage was the certainty of the miRNA target, while one

disadvantage was the range of targets. If some genes are listed as

targets of some miRNAs, it is very likely true. On the other hand,

if no CLIP-Seq data exists for targeted diseases, there are likely no

disease-specific miRNA target genes listed. Thus, we employed

Starbase to support mirPath software. The lack of detection of

KEGG pathways listed by mirPath is not discussed here. All

parameters were kept as default values.

Results and Discussion

Simulation
Before performing biomarker selection of miRNAs for real data

sets, we performed numerical simulations that compared our

proposed method with 2 other methods, i.e., SAM-based and t-test

based feature extraction (for details, see }1 Simulation in Text S2).

In this simulation, we prepared 100 miRNAs with 200 samples.

The first 100 samples belonged to category 1, while the second 100

samples belonged to category 2. Among 100 miRNAs, only the

first 10 miRNAs exhibited distinct expression between the 2

categories. The task is to select 10 correct miRNAs among the 100

miRNAs and achieve better performance for the discrimination

between the 2 categories. We tested 3 scenarios. In the scenario I,

expression differences of the 10 miRNAs were kept constant, while

noise added to these 10 miRNAs was varied. In scenario II, the

expression differences of the 10 miRNAs varied, while the noise

added to these 10 miRNAs was kept constant. In scenario III, both

expression differences of the 10 miRNAs and noise added to the

10 miRNAs were varied simultaneously (Table 1, for more

detailed discussion, see Text S2). Then, we found that our method

outperformed the other 2 methods over a wide range of

parameters. Thus, we concluded that our method can achieve

both better performance of discrimination and more ability to

select features that differ between the 2 categories. R core that

generates simulation data set used in this study can be found in

Text S3.

Biomarker Identification for the Discrimination of
Patients with Cancers and other Diseases from Healthy
Controls

Based on the findings in the previous section, we employed and

applied PCA-based feature extraction to biomarker identification

for cancers and other diseases [13]. As we will explain in the ‘‘Why

did PCA-based feature selection work so well?’’ subsection in this

section, since our PCA-based feature extraction was free from

sampling, we could strictly define the top 10 miRNAs that were

distinct between pairs of clinical samples and healthy control

samples (Table 2). The reasons we employed 10 miRNAs as

biomarkers were as follows. First, a previous study [13] extensively

studied a situation in which 10 miRNAs were employed as

biomarkers, making it easy for us to compare our findings with

their discrimination performances, e.g., accuracy, sensitivity, and

specificity. Second, as can be seen below, using 10 miRNAs as

biomarkers allowed us to achieve sufficiently good performance.

Third, measurement of 10 miRNAs is practical for clinical use.

Finally, as stated in the previous section, 10 miRNAs were

sufficient to achieve a performance comparable to that of all (100)

miRNAs.

We can also make use of these 10 selected miRNAs for

discrimination between patients with diseases and healthy controls.

The performance of PCA-based LDA between patients with

diseases and healthy controls using only these 10 miRNAs is

summarized in Table 3. In contrast to Keller et al. [13], we

successfully identified 10 miRNAs as biomarkers. Keller et al could

not do this because t-test-based feature extraction is highly

dependent on divisions between training and test sets. Since they

carried out 100 division trials, it would have been impossible for

them to create a definite set of 10 miRNAs (see the ‘‘Stability’’

subsection in this section).

Instead of a list of 10 miRNAs used for discrimination, they

listed miRNAs that were deregulated in at least 6 diseases (Keller

et al. [13] Supplementary Table 2). Surprisingly, there was very

little overlap between the miRNAs reported by Keller et al and the

miRNAs reported in our Table 2 in the present study. In fact, the

only overlapping miRNA was hsa-miR-16. Even if we took

Figure 1 in the study by Keller et al. [13] into account, where

upregulated miRNAs were considered together, no other miRNAs

were selected both in their paper and in the present study.

Recently, Keller et al. [33] attempted similar research with next-

generation sequencing. They renewed a list of significant miRNAs

in the supplementary information of their original study, but

again, there were only 2 overlaps with the current study, i.e., miR-

425 (for gastric cancer and Wilm’s tumor) and miR-140-3p (for

melanoma, ovarian cancer, and periodontitis).

Comparison with previous studies. In order to validate

our selections independent of the research by Keller et al, we have

reviewed the literature for previous reports to support our findings

that these miRNAs are closely related to cancers and other

Table 1. Performance of several feature extraction methods
for scenario III.

Accuracy # of miRNAs

Dm Ds t test PCA SAM t test PCA SAM

2.0 0.5 0.99 0.99 0.99 9.0 8.7 8.0

2.0 1.0 0.95 0.95 0.95 8.1 7.9 7.5

2.0 1.5 0.88 0.88 0.88 7.7 9.2 7.5

2.0 2.0 0.83 0.82 0.82 6.8 9.3 6.9

1.5 0.5 0.98 0.98 0.98 8.7 8.0 7.2

1.5 1.0 0.90 0.88 0.90 7.9 8.0 7.1

1.5 1.5 0.82 0.81 0.82 7.1 8.5 6.7

1.5 2.0 0.77 0.76 0.77 6.4 8.9 6.5

1.0 0.5 0.95 0.89 0.94 8.2 6.2 6.5

1.0 1.0 0.82 0.75 0.81 6.9 6.4 6.0

1.0 1.5 0.71 0.66 0.71 6.2 7.1 5.9

1.0 2.0 0.66 0.63 0.66 5.4 8.1 5.4

0.5 0.5 0.82 0.50 0.80 6.9 0.0 4.5

0.5 1.0 0.66 0.50 0.65 5.3 0.1 3.9

0.5 1.5 0.59 0.50 0.57 3.9 2.1 3.5

0.5 2.0 0.55 0.51 0.55 3.5 4.4 3.4

Accuracy and the number of correctly selected miRNAs among 10 miRNAs with
distinct expression between the 2 classes (averaged over 100 trials) for t-test-,
PCA-, and SAM-based feature extractions. Scenario III was employed. Upper
rows indicate easier classification problems. Dm and Ds represent the
amplitudes of mean and standard deviation of the first 10 miRNAs that exhibit
distinct expression between the 2 categories.
doi:10.1371/journal.pone.0066714.t001
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diseases. We discovered a large number of previously published

reports supporting the relationship between diseases and the

miRNAs observed in this study (Table 2 and Text S1). Although

the reports were not always consistent, miR-15b, miR-185, miR-

140-3p, miR-320a, miR-486-5p, miR-16, and miR-30d were

found to function generally as tumor suppressors, and miR-425,

miR-92a, miR-191, miR-106b, and miR-19b were primarily

oncogenic. In order to confirm the validity of our evaluation, we

listed the reported up- and downregulated miRNAs in several

cancers in Table 4. However, since not all miRNAs have been

reported to be up- or downregulated, the fact that most of the

miRNAs in Table 2 were also included in Table 4 (with the

exception of miR-320, miR-486, and miR-191) supports the

notion that our findings agree with those of previous studies. Their

up- and downregulation patterns are essentially consistent with

what we have described above, since a tumor suppressor

(oncogene) should be suppressed (expressed) in cancers. Among

these, some miRNAs exhibited slightly more complicated func-

tionalities. For example, miR-185 was frequently upregulated in

cancers (see Table 4) while its expression sometimes suppressed

cell proliferation (see Text S1). Another example of an miRNA

with complicated features is miR-15b, which was not always

suppressed in tumors. As shown in Table 4 this miRNA was

upregulated in colon cancer, but sometimes inhibited tumor

function (see Text S1). This somewhat difficult-to-understand

situation can be observed in expression profiles as well. Even when

reviewing a heat map (Fig. S1), one can discern that no specific

expression of miRNAs was associated with cancers and other

diseases. Thus, we need to develop approaches that are more

sophisticated than observing individual miRNA expression one at

a time.

Probability of different disease sharing same miRNA

subsets. If we also consider the fact that our list was common

for most of the comparisons between healthy control samples and

disease samples, we believe that our list of miRNAs as biomarkers

to distinguish between patients with cancers or other diseases and

healthy controls was accurate. Such a trend would rarely occur

only because of simple accidental/coincidental agreement; there

are too many miRNAs for this to occur by chance. Suppose that

there are N miRNAs and we select N1 among them. Assuming the

selection of 10 miRNAs as biomarkers from a total 862 miRNAs

are independent of each other, the expected number of miRNAs

being always selected for 14 selections is 8|10{27, when N~862
and N1~10. This is much less than the number of common

miRNAs in Table 2, i.e., 8 (miR-425, miR-15b, miR-185, miR-

92a, miR-140-3p, miR-320a, miR-486-5p, and miR-16). Thus,

our list is plausible even if it does differ dramatically from

Supplementary Table 2 reported by Keller et al. [13]. Neverthe-

less, there are no theoretical/biological reasons that a set of 10

representative miRNAs used to discriminate between patients with

cancers or other diseases and healthy controls must be unique.

Disease-specific co-expression of miRNAs. In order to

understand more deeply how each miRNA cooperatively

discriminates between cancers or other diseases and healthy

controls, we visualized the contribution of each miRNA to

discrimination (Fig. 1 and Table 2). Since LDA is a linear

method, it allowed us to do this easily (see Materials and Methods).

Interestingly, miRNAs that belong to the same cluster, defined

by a inter-miRNA distance of 1 kbp, often share combinations of

positive/negative contributions. For example, in Table 2, there are

remarkable coincidences between miR-92a and miR-19b in the

rows labeled ‘‘C’’ in the left column and those in the same row that

are underlined. Three (lung cancer, ductal pancreatic cancer, and

melanoma) out of 4 cancers or other diseases for which

contributions of miR-19b are listed shared the same outcomes,

although they were not significant (P~0:3125). Similarly, miR-

425 and miR-191 (rows ‘‘A’’ and underlined in the same row in

Table 2) had the same positive/negative contributions for 10

(P~0:046) out of 13 cancers or other diseases, whereas miR-191

made non-zero contributions (3 exceptions: gastric cancer,

sarcoidosis, and melanoma). However, since this does not hold

true for miR-15b and miR-16 (rows ‘‘B’’ but not underlined in the

Table 3. Performance of PCA-based LDA for discrimination between patients with cancers or other diseases and healthy controls.

cancer or
other disease PC Accuracy Specificity Sensitivity Precision

Lung cancer 5 0.784 (+) 0.800 (+) 0.750 (+) 0.632

Other pancreatic tumors
and diseases

7 0.814 (+) 0.771 0.875 (+) 0.724

Pancreatitis 8 0.833 (+) 0.786 (2) 0.921 (+) 0.700

Ovarian cancer 6 0.800 0.786 (2) 0.867 (+) 0.464

COPD 2 0.713 (2) 0.671 (2) 0.833 (+) 0.465

Ductal pancreatic cancer 2 0.765 (2) 0.743 (2) 0.800 (+) 0.667

Gastric cancer 9 0.855 (+) 0.857 (+) 0.846 0.524

Sarcoidosis 10 0.835 (2) 0.800 (+) 0.889 (2) 0.741

Prostate cancer 5 0.806 (+) 0.800 (+) 0.826 (+) 0.576

Acute myocardial
infarction

7 0.789 (2) 0.900 0.757 (2) 0.964

Periodontitis 10 0.807 (+) 0.814 (+) 0.778 (2) 0.519

Multiple sclerosis 10 0.892 (+) 0.871 (+) 0.957 (+) 0.710

Melanoma 10 0.867 (2) 0.857 (+) 0.886 (2) 0.756

Wilm’s tumor 7 0.867 0.886 0.600 0.273

+ (2) indicates that the performance was better (worse) than that of Keller et al [13]. PC is the number of PCs used for PCA-based LDA. LOOCV was applied. See the
Table in the study by Keller et al [13] on page 14 of the Supplementary Materials.
doi:10.1371/journal.pone.0066714.t003
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same row in Table 2 because of the small number of coincidences),

this is again not as straightforward as expected.

Some miRNAs appeared to be consistent with their known

functions. For example, miR-486-5p is known to be a tumor-

suppressive miRNA (see above and Text S1). As can be seen in

Fig. 1, miR-486-5p was more highly expressed in normal controls.

On the other hand, miR-92a was more highly expressed in cancers

and other diseases, which was consistent with the previous belief

that the miR-17-92 cluster is oncogenic.

Moreover, some miRNAs exhibit features contrary to previous

findings. For example, miR-106b and miR-425 are believed to be

oncogenic miRNAs but are expressed mainly in normal controls

(Fig. 1). These apparent discrepancies may result from the

measurement of miRNAs from blood samples. If we examine

the PhenomiR database [34], we would find many cases in which

expression in blood differs from that in tissues. For example, miR-

140 is reported to be downregulated in lung cancer tissues

(database IDs 132 and 134), but is overexpressed in serum from

patients with lung cancer (database ID 503). miR-92a-1 is reported

to be downregulated in lung cancer tissues (database IDs 530 and

543), but is overexpressed in serum from patients with lung cancer

(database ID 503). These findings in blood are in agreement with

those of the present study, demonstrating that miR-140 and miR-

92a are expressed in the blood of lung cancer patients (Table 2 and

Fig. 1). Similarly, mir-92a is highly expressed in hepatocellular

carcinoma (HCC), but is decreased in plasma from HCC patients

compared with that from healthy donors [35].

One may still wonder whether miRNAs in the blood can

function as useful biomarkers in spite of these disagreements with

tissue miRNAs. However, there are many studies that have

reported inconsistencies between miRNAs in the blood and tissue

miRNAs; these studies have still concluded that miRNAs in the

blood can function as useful biomarkers [36–40]. For more

detailed discussions of these studies, see }3 Frequent disagreement

between blood and tissue miRNAs in Text S2.

KEGG Pathway Analysis for miRNA Target Genes
Although a substantial number of studies have supported that

the miRNAs selected in this paper are associated with several

cancers and diseases, relating these miRNAs with specific diseases

directly and biologically would be a more effective approach. One

such method is to check whether any KEGG pathways were

enriched with sets of miRNA target genes. As can be seen in the

following results, our findings were validated as biologically

meaningful. Up- or downregulated sets of miRNAs are selected

from Table 2 and uploaded them onto DIANA-mirPath.

Cancer-related pathways. Some pathways directly related

to specific cancers were included in the KEGG pathways. For

these cancers and cancer-related diseases, it was not difficult to

validate whether the up- or downregulated miRNA target genes

are related to cancer. In Table 5, we list target-gene enrichment of

KEGG pathways annotated as cancers investigated in our study

(Table 2). For lung cancer, ductal pancreatic cancer, pancreatitis,

other pancreatic tumors and diseases, prostate cancer, and

melanoma, corresponding cancer-specific pathways were enriched

with miRNA target genes that were up- or downregulated between

patients with cancer or cancer-related diseases and healthy

controls. Thus, our selection of miRNAs as biomarkers in this

study was biologically validated.

Other pathways. Although there were no other KEGG

pathways directly related to diseases, many previously known

disease-related pathways are enriched with miRNA target genes.

For more details about KEGG pathway enrichments related to

other diseases, i.e., ovarian cancer, gastric cancer, chronic

obstructive pulmonary disease (COPD), acute myocardial infrac-

tion, Wilm’s tumor, and periodontitis, see }2 KEGG pathway

analysis in Text S2.

Stability
In order to confirm the findings above, i.e., commonness of

miRNAs that can discriminate patients with cancers or other

diseases from healthy controls, we evaluated the stability of the

selection (for methodological details, see Materials and Methods).

The concept of stability was defined as follows:

Figure 1. Individual contributions of miRNAs to discrimination
between patients with cancers or other diseases and normal
controls. The height of the bars indicates the amount of contribution
from each miRNA in discriminating patients with cancers or other
diseases from healthy controls. A positive (negative) value indicates that
the miRNA was expressed in patients with cancer and other diseases
(healthy controls). The order of cancers or other diseases is the same as
that in Table 2 (top to bottom): lung cancer (black), other pancreatic
tumors and diseases (red), pancreatitis (green), ovarian cancer (blue),
COPD (cyan), ductal pancreatic cancer (pink), gastric cancer (yellow),
sarcoidosis (grey), prostate cancer (black), acute myocardial infarction
(red), periodontitis (green), multiple sclerosis (blue), melanoma (cyan),
and Wilm’s tumor (pink).
doi:10.1371/journal.pone.0066714.g001
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Suppose we have a set of samples, generate subsamplings many times,

and apply feature extraction to each subsampling. Stability is defined as

the amount of overlapping features over all subsamplings.

If there are no features selected for all subsamplings, we can

define stability alternatively by the average frequency that each

feature is selected. The importance of this concept was not

recognized until very recently. Abeel et al [14], pointed out this

issue and proposed a new method that grants better performance

regarding stability, RFE, and ensemble RFE. However, their

method still requires classification information as prior knowledge.

Earlier, Varshavsky et al [29] described UFF, to our knowledge,

the first classification-free feature extraction method.

Thus, the concept of stability was not newly introduced by the

present authors, but has already been discussed by others [14,29].

According to our results, our implementation is the suitable that

resolves the difficulty of stability of feature extractions.

Although UFF and our method are sampling-independent, as

mentioned above, we checked the stability of our method for

discrimination between diseased individuals and healthy controls,

following the methods of Abeel et al. [14] or Varshavsky et al [29].

In our case, there were 14 diseases represented in the samples.

Thus, we attempted to discriminate the normal control from each

of the 14 diseases. Since 10 miRNAs were selected for each

discrimination event, a total of 140 miRNAs were selected as

biomarkers, although each miRNA could be selected more than

once if it was selected in a different discrimination event. These

140 miRNAs could change at every subsampling. Next, we

checked whether each miRNA could always be selected for all of

subsamplings. If the number of miRNAs that was always selected

as biomarkers was large, this means that the method was stable.

We found that 8 miRNAs, i.e., hsa-miR-425, hsa-miR-15b, hsa-

miR-185, hsa-miR-92a, hsa-miR-140-3p, hsa-miR-320a, hsa-

miR-486-5p, and hsa-miR-16, were always selected by our

method with 100% probability as biomarkers, independent of

cancers and other diseases. Hsa-miR-191 and hsa-miR-106b were

selected with 100% probability as biomarkers for 9 and 5 out of 14

cancers or other diseases, respectively. In addition to this, hsa-

miR-19b was selected as a biomarker with 100% probability 3

times. Thus, in total, 8|14z9z5z3~129 miRNAs were

selected as biomarkers with 100% probability. Furthermore, all

miRNAs selected as biomarkers for any cancer and diseases (Table

S1) have also appeared in Table 2. Thus, it is clear that our

miRNA selection was highly independent of sampling.

We also examined the stability by t-test-based feature extrac-

tion, as proposed by Keller et al. [13]. As expected, their results

were too scattered to allow for the proposal of well-defined

biomarkers consisting of 10 specific miRNAs. By our evaluation, it

is very rare for an miRNA to be selected as a biomarker for cancer

or other diseases with 100% probability in t-test-based feature

extraction. In fact, there were only a total of 40 miRNAs selected

as biomarkers with 100% probability (Table S1) in t-test-based

feature extraction; our method identified 129 miRNAs. Based on

this, it is almost a certainty that the reason Keller et al. [13] could

not present 10 specific miRNAs as biomarkers was this heavy

fluctuation. We also examined SAM, up- and downregulation by

gsMMD, RFE, ensemble RFE, and UFF. We identified 30, 5, 1, 1,

0, and 111 miRNAs, respectively, that were selected as biomarkers

with 100% probability (Table S1). Although UFF was as good as

our novel method, UFF requires execution of SVD as many times

Table 4. miRNAs in Table 2 whose up- and/or downregulation in any cancer was reported in the study by Bandyopadhyay et al.
[41].

miRNA Cancer type Expression Mean fold change

hsa-miR-425 Central nervous system Downregulated 13.6-fold reduction

hsa-miR-15b Colon Upregulated 1.5-fold increase

hsa-miR-185 Bladder (urothelial) Upregulated 1.30-fold increase

hsa-miR-185 Kidney Upregulated 1.42-fold increase

hsa-miR-92-2 Pancreas Upregulated

hsa-miR-92-2 Prostate Upregulated

hsa-miR-140 Central nervous system Downregulated 2.7-fold reduction

hsa-miR-140 Colon Downregulated 11.4-fold reduction

hsa-miR-140 Hematologic Downregulated 3.5-fold reduction

hsa-miR-140 Lung Downregulated

hsa-miR-140 Ovary Downregulated 3.51-fold reduction

hsa-miR-16-1 Uterus/endometrial _cancer Upregulated At least 2-fold increase

hsa-miR-16-2 B cell CLL Downregulated/Deleted

hsa-miR-16a B cell CLL Downregulated

hsa-miR-191 Breast Upregulated

hsa-miR-191 Central nervous system Downregulated 4.4-fold reduction

hsa-miR-191 Colon Upregulated 1.4-fold increase

hsa-miR-191 Lung Upregulated

hsa-miR-106b Lung Upregulated 12-fold increase in small lung
cancer cell line SKLC-2.

hsa-miR-30d Central nervous system Downregulated 3.2-fold reduction

Any miRNAs listed in the Additional File in the study by Bandyopadhyay et al. [41].
doi:10.1371/journal.pone.0066714.t004
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as the number of features (in this case, the number of human

miRNAs, i.e., 862), while our method requires execution of PCA

only once; thus, there was no need for us to employ UFF instead of

our proposed method. Therefore, it is clear that our method

outperformed others from the perspective of stability of feature

selection.

However, it is also true that UFF, which is the only other

classification-free feature extraction method, is the second best

method and is comparable to our method. This definitely

demonstrates the usefulness of classification-free extraction meth-

ods for the identification of blood-borne miRNAs as biomarkers to

discriminate between diseased individuals and normal controls.

Discrimination between Diseases
One may wonder whether miRNAs can be used to discriminate

not only between normal controls and diseased individuals, but

also between diseases. In order to answer this question, we applied

our methods to discriminate between diseases. As can be seen in

Fig. S2, discrimination between diseases was also quite good.

Thus, we may conclude that our methods can discriminate

between diseases.

Table 6 lists the miRNAs that were used for discrimination

between diseases. The miRNAs in Table 6 are almost identical to

those listed in Table 2. Additionally, most of the miRNAs in

Table 6 were also included in the miRNA list in Table 2. The

miRNAs that were included in Table 6 but were not included with

the miRNAs in Table 2, i.e., miR-103, miR-22, and miR-720,

were selected only twice each among the total of 140|14~1960
selections (see Table S2). Thus, the miRNAs selected for the

discrimination between patients with cancers or other diseases and

healthy controls can also discriminate between diseases well,

except for discrimination between closely related diseases, e.g.,

pancreatitis, ductal pancreatic cancer, and other pancreatic

tumors and diseases, or lung cancer and melanoma, etc (for

details, see Fig. S3 and Table S3).

Why did PCA-based Feature Selection Work So Well?
Finally, we would like explain why PCA-based feature

extraction could select biomarkers that could be used to

discriminate patients with cancers or other diseases from healthy

controls, or to discriminate between patients with distinct diseases,

without the knowledge of classification. As can be seen in the

Materials and Methods, our PCA-based feature extraction did not

consider classification information, even in the training set. One

may find this odd because biomarkers should represent the

maximum difference between more than 2 distinctive groups. The

selection of useful biomarkers should not be possible without the

knowledge of classification. However, from our point of view,

sample selection itself contains important information about the

maximum difference between distinctive groups. If we attempt to

gather as many samples as possible belonging to each considered

and distinctive group, any features not directly related to

classification should be averaged out. For example, if one does

not consider gender at all, the male to female ratio should

converge to 1 to 1 when a large enough number of samples is

collected for each group. This should hold true for any other

feature not apparently considered. When PCA was applied to the

data set in this situation, the maximum distinctive feature detected

should be generated by considering any classification, as the others

should have been phased out. We believe that this is the reason our

PCA-based feature extraction could detect biomarkers well

enough to discriminate between patients with cancers or other

Table 5. Cancer-specific KEGG pathways enriched in miRNA target genes.

DIANA-mirpath Starbase

–log10 P adjusted P-value (,0.1)

up down up Down

KEGG ID description Lung cancer

hsa05223 Non-small cell lung cancer 3.55 7.31 4.26e-02 –

hsa05222 Small cell lung cancer 2.9 3.64 – –

hsa05200 Pathways in cancer – – – 5.69e-02

KEGG ID description Ductal pancreatic cancer

hsa05212 Pancreatic cancer 9.71 4.66 1.12e-02 –

hsa05200 Pathways in cancer – – 1.10e-02 –

KEGG ID description Pancreatitis

hsa05212 Pancreatic cancer 13.28 12.36 2.14e-05 1.10e-02

hsa05200 Pathways in cancer – – 5.11e-05 1.27e-03

KEGG ID description Other pancreatic tumors and diseases

hsa05212 Pancreatic cancer 11.93 15.51 2.20 e-04 1.01e-03

hsa05200 Pathways in cancer – – 3.67 e-05 2.90e-03

KEGG ID description Prostate cancer

hsa05200 Pathways in cancer – 1.53e-04 1.44e-02

hsa05215 Prostate cancer 8.12 8.98 – 4.04e-04

KEGG ID description Melanoma

hsa05218 Melanoma 6.32 9.21 – –

A list of cancer-specific KEGG pathways enriched in up- and/or downregulated miRNA target genes between normal controls and corresponding cancer patients.
DIANA-mirpath gave {log10P-values while Starbase gave adjusted P-values.
doi:10.1371/journal.pone.0066714.t005
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diseases and healthy controls in spite the lack of classification

information being considered explicitly.

One may wonder whether other unsupervised clustering

methods, e.g., hierarchical clustering and k-means, could have

worked as well. However, for these methods, well-defined clusters

must exist. This requirement is not always fulfilled. For example,

although we tried to apply the feature extraction methods

proposed by Chaussabel et al [4,5] and based on k-means

clustering of transcriptome, which was successfully applied for

their purposes, we could not get enough clusters within each

disease (at most 10 clusters, often only a few). That is, k-means

failed to converge when a large number of clusters of miRNAs was

assumed. This prevents us from effectively applying the method of

Chaussabel et al to our data set of miRNAs. From this point of

view, PCA, which does not require any clustering, is better than

other unsupervised clustering methods.

Validation Analysis
In order to demonstrate that our proposed method is not

specific to present data set treated here, we added two small scale

validation analyses for independent data sets (See Tables S10 and

S11 in Text S4). The good performance in the validation analysis

suggests the robustness of our methodology.

Conclusion
In this paper, we proposed a new feature extraction method

based on PCA for biomarker identification from miRNAs in the

blood. With simulation data, our method outperformed conven-

tional methods in detecting informative components from a

mixture of informative components and noise. When our method

was applied to miRNA expression in the blood of patients with

cancers or other diseases and normal controls, we identified 10

common miRNAs independent of the cancer or other disease

considered. PCA-based LDA using these 10 miRNAs could

discriminate patients with cancers or other diseases from healthy

controls as well as or slightly better than discrimination using 10

miRNAs selected by t-test-based feature selection. We have shown

for the first time that the most distinctive feature of cancers and

other diseases was not the expression of specific miRNAs, but that

of common miRNAs in a cancer- or disease-specific manner.

However, this conclusion may change if more samples are

considered and with cost of any technology coming down and the

highthroughputs methods getting smaller to fit benchtops,

detecting 100s of miRNA biomarkers identified through miR-

NAome studies might be much efficient and cost effective clinical

application soon.

Supporting Information

Figure S1 Heat map of miRNA expression for miRNAs
shown in Table 2. Heat map of miRNA expression for miRNAs

selected to discriminate between patients with diseases or cancers and

normal controls. No miRNAs were shown to be specific to any disease.

Thus, it is clear that we need a combination of miRNAs to discriminate

between controls and patients with cancers or other diseases.

(EPS)

Figure S2 Percentages of performances shown in Fig.
S3. Percentages of discriminant performances (i.e., either of

precision, sensitivity, specificity or accuracy shown in Fig. S3) for

all pairs of diseases and pairs of normal controls and diseases. The

total number of pairs was 15|14=2~105. Percentages are based

on the classifications, greater than 0.9 (magenta), between 0.9 and

0.8 (blue), 0.8 and 0.7 (cyan), 0.7 and 0.6 (green), 0.6 and 0.5

(yellow) and less than 0.5 (red).

(EPS)

Table 6. miRNAs used for discrimination between diseases.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Lung cancer 140-3p 15b 16 185 191 19b 30d 320a 425 486-5p 92a

Multiple selerosis 106b 140-3p 15b 16 185 191 19b 30d 320a 425 486-5p 92a

Other pancreatic
tumors and diseases

106b 140-3p 15b 16 185 191 19b 320a 425 486-5p 92a

Pancreatitis 106b 140-3p 15b 16 185 191 19b 30d 320a 425 486-5p 92a

Ductal pancreatic
cancer

106b 140-3p 15b 16 185 191 19b 320a 425 486-5p 92a

Gastric cancer 106b 140-3p 15b 16 185 191 19b 22 30d 320a 425 486-5p 92a

Sarcoidosis 140-3p 15b 16 185 191 19b 30d 320a 425 486-5p 720 92a

Melanoma 140-3p 15b 16 185 191 19b 30d 320a 425 486-5p 92a

Wilm’s tumor 103 106b 140-3p 15b 16 185 191 19b 30d 320a 425 486-5p 720 92a

Prostate cancer 106b 140-3p 15b 16 185 191 19b 30d 320a 425 486-5p 92a

Acute myocardial
infarction

106b 140-3p 15b 16 185 191 19b 30d 320a 425 486-5p 92a

Periodontitis 15b 185 140-3p 320a 486-5p 16 92a 425 106b 191 19b 103 30d

Ovarian cancer 106b 140-3p 15b 16 185 191 19b 22 30d 320a 425 486-5p 92a

COPD 106b 140-3p 15b 16 185 191 19b 30d 320a 425 486-5p 92a

Each row lists the miRNAs used for discrimination between the diseases. A set of 10 miRNAs among the miRNAs listed in each row was used for discrimination between
the disease shown in the left most column and any of other 13 diseases or normal control. Since 10 miRNAs were selected for each of 14 discrimination analyses, a total
of 140 miRNAs were selected as biomarkers. However, there are at most 14 miRNAs listed in each row. In addition to this, miRNAs shown in each row overlapped
significantly with each other. This means that miRNAs to be used as biomarkers to discriminate between diseases are highly disease-independent. More detailed
information about which 10 miRNAs discriminated between each pair of diseases or control/disease can be found in Table S2. All miRNAs excluding the mRNAs
underlined are also in Table 2.
doi:10.1371/journal.pone.0066714.t006
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Figure S3 Performances of discrimination between
diseases using the optimal number of PCs. Accuracy,

sensitivity, specificity, and precision of each discrimination

between diseases using the optimal number of PCs. The 15

columns correspond to, from left to right, lung cancer, control,

multiple sclerosis, other pancreatic tumors and diseases, pancre-

atitis, ductal pancreatic cancer, gastric cancer, sarcoidosis,

melanoma, Wilm’s tumor, prostate cancer, acute myocardial

infarction, periodontitis, ovarian cancer, and COPD. Actual

values can also be found in Table S3.

(EPS)

Table S1 Frequency of miRNAs selected by several
feature selections. Frequency of miRNA selection within 90%

sampling by feature selection based on PCA (100), t-test (100),

SAM (100), gsMMD_up (100), gsMMD_down (100), RFE (100),

RFE ensemble (100), and UFF (100). Numbers in parentheses are

the numbers of subsamplings. Cells filled with ‘‘100’’ indicate that

the miRNA was always selected by feature extraction for

discrimination between patients with the disease denoted at the

top of column and healthy controls.

(XLSX)

Table S2 Frequency of miRNAs selected for discrimi-
nation between diseases. The pair discriminated is the

intersection of the table and column names, e.g., if an miRNA

was selected by feature extraction for discrimination between lung

cancer and control, 1 was substituted in the cell located in the row

named for the miRNA and in the column named as the control in

the table named as ‘‘lung cancer’’.

(XLSX)

Table S3 Performance of discrimination between dis-
eases using the optimal number of PCs. Accuracy,

specificity, sensitivity, and precision of discrimination between

diseases using the optimal number of PCs. The pair discriminated

is the intersecting table and row names, e.g., the accuracy in the

row named control in the table named ‘‘lung cancer’’ is the

accuracy between control and lung cancer.

(XLSX)

Text S1 Previous reports describing miRNAs selected
by the proposed feature selection method. Selected

papers/reports describing the relationship between the miRNAs

reported here and several diseases. PubMed IDs, if available, are

reported with brief descriptions of the findings.

(PDF)

Text S2 Supplementary analysis. Detail discussions about

simulation, disagreement between tissue miRNA and miRNAs in

blood, and KEGG pathway analysis. Fig. S4 and Tables S4 to S9

are included in Text S2.

(PDF)

Text S3 R code. R code that generates simulation data used in

this study.

(R)

Text S4 Validation Analyses. Two small scale validation

analyses using two independent data sets. It includes Tables S10

and S11. Table S10, Validation analysis for breast cancer.
Validation of our method using independent sets for breast cancer.

Table S11, Validation analysis for carcinoma in situ/
squamous cell carcinoma. Validation of our method using

independent sets for carcinoma it in situ/squamous cell carcinoma.

(PDF)
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