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In the 1940s, Alfred Jost demonstrated the necessity of testicular secretions, particularly
androgens, for male internal and external genitalia differentiation. Since then, our
knowledge of androgen impacts on differentiation of the male internal (Wolffian duct)
and external genitalia (penis) has been drastically expanded upon. Between these two
morphologically and functionally distinct organs, divergent signals facilitate the
establishment of tissue-specific identities. Conversely, conserved actions of androgen
signaling are present in both tissues and are largely responsible for the growth and
expansion of the organs. In this review we synthesize the existing knowledge of the cell
type-specific, organ specific, and conserved signaling mechanisms of androgens.
Mechanistic studies on androgen signaling in the Wolffian duct and male external
genitalia have largely been conducted in mouse model organisms. Therefore, the
majority of the review is focused on mouse model studies.

Keywords: androgen, androgen receptor (AR), external genitalia (ExG), wolffian duct, penis, masculinization
INTRODUCTION

Androgen signaling pathway is essential for development of male organs across vertebrate animals
(1). This pathway is responsible for the growth and differentiation of the prostate, penis, epididymis,
vas deferens and seminal vesicle during embryonic development for normal structural development
and function. Since the 1940s, we have known that the loss of testis-derived androgens disrupts male
reproductive development. XY embryos without the testes develop into female sexual characteristics
due to the absence of male-specific reproductive structures (2, 3).

Due to the dependency on androgen signaling, male reproductive structures are particularly
sensitive to disrupted fetal development and adulthood dysfunction (4, 5). The incidence rate of
children born as intersex, a condition where patients contain a combination of male and female
reproductive organs, is relatively common, with incidence ranging from 0.37-1.7% cases per year
(6). The intersex spectrum includes defects of the penis (e.g. hypospadias and micropenis) and
defects in the reproductive tract (e.g. cryptorchidism). Often times the androgen-related congenital
n.org June 2022 | Volume 13 | Article 9109641

https://www.frontiersin.org/articles/10.3389/fendo.2022.910964/full
https://www.frontiersin.org/articles/10.3389/fendo.2022.910964/full
https://www.frontiersin.org/articles/10.3389/fendo.2022.910964/full
https://www.frontiersin.org/articles/10.3389/fendo.2022.910964/full
https://www.frontiersin.org/articles/10.3389/fendo.2022.910964/full
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:amato.ciro27@gmail.com
mailto:Fei.zhao@wisc.edu
https://doi.org/10.3389/fendo.2022.910964
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2022.910964
https://www.frontiersin.org/journals/endocrinology
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2022.910964&domain=pdf&date_stamp=2022-06-30


Amato et al. Androgen Receptor’s Diverse Functions
defects of the external genitalia and Wolffian duct lead to
compromised reproductive functions and infertility.

In this review, we discuss the diverse and conserved androgen
actions in two critical reproductive organs, the Wolffian duct-
derived tissues and the male external genitalia, specifically the
penis, during embryonic development. We review the literature
with the goal of understanding the pleiotropic nature of AR. To
do this, we tease apart the cell populations of each organ. Then
we investigate the androgen signaling programs that are specific
to each cell population. By reviewing the literature in this way, we
can begin to discern the molecular determinants that specify the
distinct androgen signaling programs in each cell population. To
further understand the general functions of AR, we discuss
common androgen signaling events in both the Wolffian duct
and male external genitalia. Because our knowledge about
androgen signaling in male sexual differentiation derive largely
from mouse studies, the majority of the following sections focus
on mouse models. Reviewing both the internal and external
reproductive tract provides a roadmap for future studies and
allows us to investigate the many diverse and conserved action of
androgen signaling.
MECHANISMS OF ANDROGEN
SIGNALING PATHWAY

Androgen signaling pathway is mediated by the androgen
receptor (AR), which mainly acts as a ligand-activated
transcriptional factor (7). Loss of function mutations of AR in
mice lead to feminization of internal reproductive tract organs
and external genitalia even though the fetal production
of androgens is unaffected (8). Human XY individuals with
androgen insensitivity syndrome caused by disruptions in
the androgen signaling cascade develop phenotypically female
internal and external genitalia (9). Conversely, XX patients with
congenital adrenal hyperplasia, a disorder characterized by
excessive production of androgens in adrenal glands, develop
masculinized external genitalia (10). Thus, androgens are the
driving force for male sexual differentiation.

Androgens are first produced by the Leydig cells in the fetal
testis, in which express the key steroidogenic enzymes for
androgen production Cytochrome P450 17a1 (Cyp17a1) and
3b-Hydroxysteroid (3b-HSD) (11). These two enzymes and
other enzymes in the cascade of steroidogenesis convert
cholesterol to androgens (11, 12). The testis-derived androgens
then enter the blood circulation and reach the target organs.
Once androgen reaches an organ that expresses AR, it passively
diffuses through the cell membrane and either bind directly to
AR in the cytosol, or be converted into a more potent androgen,
dihydrotestosterone, by the 5-a reductase (SRD5a1 and SRD5a2)
enzymes (13). Binding of testosterone or dihydrotestosterone to
AR triggers the release of AR from molecular chaperones and
translocation of AR to the nuclei, where it regulates target
gene expression.

In addition to the classic genomic action, binding of
androgens to AR in the cytoplasm initiate signal transduction
Frontiers in Endocrinology | www.frontiersin.org 2
pathways to modulate cellular proliferation and migration,
which is also known as non-genomic actions of the AR (14).
When the DNA-binding domain, which transmit the genomic
action of AR, is removed from AR, male mice display a complete
androgen insensitive phenotype with feminized external genitalia
and loss of internal reproductive tracts (Wolffian duct and
prostate) (15). These results underscore the genomic actions of
the AR are indispensable for normal male sexual differentiation.
Another study generated transgenic mice expressing mutant Ar
with only genomic or non-genomic actions in the absence of
endogenous AR (16). They found that seminal vesicle and
epididymis are degenerated in both mutant mice, suggesting
both genomic and non-genomic actions are required for normal
development of Wolffian duct-derived tissues. On the other
hand, main actions of AR in external genitalia are mediated
through the genomic actions based on the observation that mice
with a mutated non-genomic region of Ar develop normal
penises (17).
HETEROGENEITY OF ANDROGEN
ACTIONS IN THE WOLFFIAN DUCT

Ontology of Wolffian Duct-Derived Organs
Wolffian ducts are paired embryonic structures that give rise to
male internal reproductive tract organs including the epididymis,
vas deference and seminal vesicles (18). In both XY and XX mice
embryos, the Wolffian duct derives from the intermediate
mesoderm at around embryonic day 8.5 (E8.5) and elongates
craniocaudally till it reaches the cloaca by E9.5 (19). The
Wolffian duct is surrounded by its mesenchyme, which
expresses AR first on E12.5 in both sexes (20, 21). In XX
embryos, where ovaries do not produce androgens, AR action
does not take place, leading to degeneration of Wolffian ducts
(18). In addition to the lack of AR action, Wolffian duct
degeneration in XX embryos requires COUP-TFII (Chicken
ovalbumin upstream promoter transcription factor II or
NR2F2), an orphan nuclear receptor specifically expressed in
the Wolffian duct mesenchyme (22). On the other hand, in XY
embryos, fetal testes produce androgens starting from E12.5 (23).
Under the influence of testis-derived androgens, the Wolffian
ducts are stabilized and then undergo regionalization and
differentiation into the epididymis, vas deferens and seminal
vesicle in a craniocaudal fashion.

Mesenchymal AR Actions Are Critical for
Wolffian Ducts Differentiation
Although the AR is expressed in both the epithelium and
mesenchyme during Wolffian duct differentiation, AR action in
the mesenchyme appears to govern fetal Wolffian duct
development. Ablation of AR in the Wolffian duct epithelium
does not affect Wolffian duct maintenance or morphogenesis
(20). The specific role of AR in Wolffian duct mesenchyme has
not been determined directly by mesenchyme-specific AR
knockout model; however, classic tissue recombination studies
imply that the mesenchymal AR actions govern androgen-
June 2022 | Volume 13 | Article 910964
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induced epithelial morphogenesis. For example, the epithelium
of upper Wolffian ducts (future epididymis) develops seminal
vesicle-like structures when combined with lower Wolffian duct
mesenchyme (prospective seminal vesicle) (24). The urogenital
sinus is another androgen target tissue, which undergoes
prostatic morphogenesis upon androgen actions but develops
vagina-like morphology in the absence of androgen. When wild-
type mesenchyme is grown adjacent to either wild-type or Tfm
(testicular feminized mice that lacks functional AR) epithelium,
the urogenital sinus still undergoes prostatic morphogenesis. In
contrast, when urogenital sinus epithelium is recombined with
the mesenchyme from Tfm embryos, the epithelium develops
vagina-like structures (25). These results demonstrate that
mesenchymal AR actions dictate Wolffian duct differentiation.

How Do Mesenchymal AR Actions Induce
the Stabilization of Wolffian Ducts?
One possible signal downstream of mesenchymal AR actions in
promoting Wolffian duct survival is epidermal growth factor
(EGF), which regulates a wide range of cellular events including
cell survival and proliferation (26). Egf expression is elevated in
the whole mesonephric tissue during fetal male reproductive
tract differentiation and flutamide (AR antagonist) exposure
during sexual differentiation decreased Egf in male mice
embryos (27). Receptors for EGF or EGFR is an integral
membrane tyrosine kinase that is activated upon binding of
multiple ligands including EGF. Expression of EGFR is also
induced by testosterone and inhibition of EGFR using an anti-
EGFR antibody blocks Wolffian duct growth in cultured murine
mesonephros (28). Global Egfr knockout in mice causes genetic
background dependent placental abnormalities and embryonic
lethality before E11.5, preventing analysis of Wolffian duct
development in male embryos (29). Egf knockout mice have
normal phenotype (30), suggesting other ligands for EGFR might
compensate for the loss of Egf in Wolffian ducts.
Frontiers in Endocrinology | www.frontiersin.org 3
To promote Wolffian duct stabilization, mesenchymal AR
actions need to antagonize inhibitory effects of another
mesenchymal transcriptional factor, COUP-TFII. COUP-TFII
is an orphan nuclear receptor expressed in the mesenchymal
compartment of many developing organs (31, 32), including the
mesonephros in XX and XY embryos (33). In XX embryos, the
absence of Coup-tfII increased expression of two mesenchymal
growth factors Fgf7 and Fgf10, which activated their receptor
FGFR2 in Wolffian duct epithelium to promote Wolffian duct
survival in XX embryos in the absence of AR actions (22). These
results suggest that under normal conditions, COUP-TFII action
in the Wolffian duct mesenchyme is to inhibit Wolffian duct
survival by suppressing FGF signaling. In XY embryos, to
promote the stabilization of Wolffian ducts, the mesenchymal
AR is speculated to induce the EGFR-mediated signaling
pathway in Wolffian duct stabilization, therefore, providing
another survival signal different from Fgfs that are suppressed
by COUP-TFII. Genome-wide binding of COUP-TFII in the XX
and XY mesonephros reveals that COUP-TFII binding motif is
different from established AR binding motifs, providing another
evidence that these two mesenchymal transcriptional factors
target differential genes in regulating Wolffian duct survival (34).

How Do Mesenchymal AR Actions Induce
Region-Specific Gene Expression and
Differentiation in Wolffian Ducts at the
Fetal Development?
AR actions in the mesenchyme drive the differentiation of the
Wolffian duct into three morphologically and functionally
distinct organs: the epididymis, vas deferens and seminal
vesicle during fetal development from rostral (i.e. anterior) to
caudal (i.e. posterior) regions (Figure 1). Regionalization of the
Wolffian duct along the rostral-caudal axis is regulated by
region-specific expressed HOX genes in the epididymis (Hoxa9
(36), Hoxd9 (36) and Hoxa10 (37), vas deference (Hoxa10 (37)
FIGURE 1 | Expression of genes critical for the regionalization of the Wolffian duct and potentially involved in region-specific androgen actions. Hox, homeobox;
Inhba, inhibin b A; Gdf7, growth differentiation factor 7; Fgf10, fibroblast growth factor 10; Fgfr2, fibroblast growth factor receptor 2. Adapted from (35).
June 2022 | Volume 13 | Article 910964

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Amato et al. Androgen Receptor’s Diverse Functions
and Hoxa11 (38)), and the seminal vesicle (Hoxa13 and Hoxd13)
(39) (Figure 1). Deletion of these region-specific Hox genes can
often cause homeotic transformations. For example, Hoxa10
mutant males have anterior transformation of the cauda
epididymis and the proximal vas deferens (37, 40). The vas
deferens in either individual Hoxa11 knockout or Hoxa11 and
Hoxd11 (a paralog toHoxa11) double males (38, 41) resemble an
epididymis. Seminal vesicles become hypoplastic in both
Hoxd13-/- and Hoxa13 +/–; Hoxd13–/– compound mutant mice
(42). In addition to Hox9-13, additional region-specific Hox
transcripts, such as Hoxc4, Hoxc6, Hoxc9 have been identified
in the epididymis by comparing gene transcriptional profiles of
the epididymis, vas deferens and efferent duct at E14.5, E16.5,
E18.5 and P1 (43). Although roles of Hox genes in the
regionalization of the Wolffian duct is well recognized, it is still
unknown how these Hox transcription factors interact with AR
actions and determine region-specific AR actions.

Mesenchymal AR actions induce region-specific paracrine
mesenchymal growth factors for regulating epithelial
morphogenesis in Wolffian duct differentiation. In the rostral
(anterior) region, AR action promotes epididymal coiling which
relies on the action of inhibin b A (Inhba) (44). Inhba is a critical
component of inhibins and activins (members of TGFb
superfamily ligand) and is highly expressed in the mesenchyme
of the anterior Wolffian duct before the initiation of epididymal
morphogenesis (Figure 1) (44). Androgen partially increased
Inhba expression after E13.5 based on ex vivo organ culture
studies (44). Male embryos lacking Inhba fail to develop
epididymal coiling due to a dramatic decrease in epithelial
proliferation even if AR expression is intact (44).

In addition to INHBA, mesenchyme-derived WNT ligands or
WNT signaling activators may also play a role in epididymal
morphogenesis. TheWNT signaling pathway is an evolutionarily
conserved pathway that regulates organogenesis (45). The WNT
signaling pathway includes the extracellular WNT ligands, which
stimulate intracellular signal transduction cascades to regulate
gene expression and cellular differentiation in target cells (46).
Two intracellular pathways in the target cells mediate WNT
signaling: b-catenin (CTNNB1)-dependent or -independent
pathways (46). The WNT/b-catenin signal also depends on the
Wnt signaling activators, R-spondins (RSPOs), which elicit their
functions by binding to the WNT co-receptors (Lgr4-6, the
leucine-rich repeat-containing G-protein-coupled receptors)
and preventing the destabilization of the Wnt receptors. As a
result, RSPOs act in concert with WNTs to promote the
activation of the b-catenin-mediated intracellular signaling
(46). Wolffian duct epithelium displays high WNT/b-catenin
activity during epididymal coiling (47). When b-catenin is
deleted specifically in the Wolffian duct epithelium before the
region-specific patterning, the epididymis fails to coil at birth
with significant reduction in proliferation and increases in cell
death (47, 48). The defective morphogenesis (cystic formation)
in the epididymal region is also observed when Pkd1 (a receptor
for mediating WNTs actions) is deleted in the epithelium (49,
50). The WNT receptor LGR4 is specifically expressed in the
cranial region of fetal Wolffian ducts and postnatal epididymides
Frontiers in Endocrinology | www.frontiersin.org 4
(51, 52). Inactivation of Lgr4 caused the cystic formation in the
epididymis (51). Given the critical roles of WNT/b-catenin
activities in the epithelium and AR actions in the mesenchyme
in epididymal morphogenesis, mesenchymal AR might induce
WNT ligands or activator as paracrine signals to regulate
epididymal morphogenesis.

In the caudal region, another secreted ligand of TGFb
superfamily GDF7 is required for seminal vesicle growth,
morphogenesis, and epithelial differentiation (Figure 1) (53).
Gdf7 is expressed in the seminal vesicle mesenchyme but its
expression in other regions of Wolffian duct is not reported (53).
Gdf7-/- males develop normal testis, epididymis, vas deferens and
prostate; however, seminal vesicles are dramatically smaller and
lack epithelial folding with decreased number of basal cells (53).
In addition to Gdf7, AR actions in caudal Wolffian duct
development are mediated by FGF10/FGFR2 signaling (54, 55).
Fgf10 (fibroblast growth factor 10) is a member in a gene family
of generally extracellular signaling peptides, which are key
regulators in organ development. The mesenchyme of the
caudal Wolffian ducts expressed high Fgf10, which is increased
by androgen treatment (Figure 1) (56). Global knockout of Fgf10
led to the absence of seminal vesicle and distal vas deferens
despite of normal testicular development (55). FGF10 has a high
specificity for FGFR2, which is the major FGF receptor in the
Wolffian duct epithelium (54). Wolffian duct-specific deletion of
Fgfr2 led to the degeneration of the caudal Wolffian ducts (54).
FGF7 was also considered as a key mesenchymal paracrine
growth factor for seminal vesicle development in ex vivo
culture condition (57, 58). However, Fgf7 knockout males does
not display any reproductive phenotype (MGI: 95521),
suggesting that Fgf7 is dispensable in AR actions in promoting
Wolffian duct development in vivo. These observations
demonstrate that mesenchymal AR actions regulate region-
specific morphogenesis via paracrine growth factors.
How Are Mesenchymal AR Actions
Affected by Epithelium-Derived Signals?
The crosstalk between the mesenchyme and epithelium during
organogenesis is never a one-way street. The Wolffian duct
epithelium-derived signal also has reciprocal inductive effects
on the mesenchyme and can potentially influence mesenchymal
AR actions. Wolffian duct epithelium specifically synthesizes a
paracrine factor WNT9B, a member of the WNT ligands (45).
Wnt9b-/- male embryos fail to formWolffian duct derived organs
at birth despite of normal testis development (59). The loss of the
Wolffian duct-derived organ is also observed in male embryos
that lack the direct upstream regulator ofWnt9b, HNF1B (60). In
the Hnf1b-/- mice, the Wolffian duct are still partially present on
E14.5 during sexual differentiation of Wolffian ducts. These
observations suggest that Wolffian ducts in Hnf1b-/- or
Wnt9b-/- male embryos could be in process of degeneration on
E14.5 when androgen actions are supposed to promote Wolffian
duct stabilization. These observations indicate that signals
derived from Wolffian duct epithelium are required for
mesenchymal actions in stabilizing Wolffian ducts.
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HETEROGENEITY OF ANDROGEN
SIGNALING IN THE EXTERNAL GENITALIA

Androgen signaling is absolutely essential for sex differentiation of
the external genitalia, making it susceptible to disruptions of
androgen signaling as a result of genetic mutations or exposure
to anti-androgenic chemicals. Defects of external genitalia are
some of the most common birth defects in the world (61).
Hypospadias, which is where the urethra exits not at the tip but
along the shaft of the penis, is one of the most common birth
defects of penis (61). Even though the requirement of androgen
signaling in penis development has been known since the 1940’s,
the causes for more than 70% of hypospadias cases remain
unknown (62). One possible explanation for the unknown
nature of hypospadias, is that penis formation is a product of
hormone action and local cell-cell interactions. The intertwined
actions of these pathways make the penis susceptible to genetic
mutations and environmental exposure (62, 63). Researchers are
only beginning to understand how all the cell types of the penis
coordinate under the control of androgen to form a normal penis.
Establishment of the Unique
Androgen Responsive Programs
in Penis Cell Populations
Penis development can be divided into two major phases,
androgen-independent and androgen-dependent development
(Figure 2) (66). The androgen-independent phase involves the
transformation of the primitive cloaca into the genital tubercle,
the precursor of the penis. At the end of embryonic development,
the genital tubercle morphs into the penis that consists of the
distal dorsal glans, distal ventral glans, proximal glans, prepuce,
corporal bodies, and urethra epithelium (67). The distal dorsal
glans, distal ventral glans, and urethral epithelium have distinct
cellular origins. It is not elucidated whether the proximal glans,
prepuce, and corporal bodies come from diverse cell origins, or a
derived population of mesenchymal cells. It is the diverse origins
of the cells and their cell states from the androgen-independent
Frontiers in Endocrinology | www.frontiersin.org 5
phase that imparts diverse androgen responsiveness during the
androgen-dependent phase.

During the androgen-independent phase of fetal
development, the cloaca arises between the hindlimbs of the
embryo of both sexes (Figure 2). The cloaca is an ancestral
structure present in most vertebrates where both the
gastrointestinal and genitourinary tracts merge. Around mid-
gestation or E10.5 in the mouse, the cloaca is a single chamber
lined with epithelium, which is surrounded by mesenchymal
cells. The mesenchymal cells contain two major populations that
are associated with penis development, abdominal mesenchyme,
and tailgut mesenchyme (Figure 2). The abdominal
mesenchyme eventually differentiates into the distal dorsal
glanular mesenchyme and the ta i lgut mesenchyme
differentiates into the ventral glanular mesenchyme. The
abdominal mesenchyme is specifically marked with the
expression of Alx4 gene while the tailgut mesenchyme is
enriched for Six1 and Six2 genes (68, 69). Mutations of Alx4 in
mice lead to severe defects of the distal dorsal glans (68).
Cultured genitalia with the abdominal mesenchyme removed,
develop with an absent dorsal glans, displaying the importance of
these progenitor cells in normal penis development (68).
Mutations in the Six1 and Six2 genes cause defects in the
ventral glans and urethra closure defects (69). Six2 expressing
cells at E13.5 and E14.5 comprise the distal ventral glans by E17.5
(64). These observations of Alx4 and Six2 expressing cells reveal
that before the penis is formed, the distal dorsal glanular and
distal ventral glanular mesenchyme have already established
their unique identities in the cloaca.

Once the cloaca is separated into the gastrointestinal and
genitourinary tracts around E13.5, the urethra epithelium
appears along the ventral aspect of the genital tubercle. At this
same time in development, two preputial buds form on either
side of the established genital tubercle and the proximal glanular
mesenchyme becomes present at the base of the genital tubercle
(65). It is not clear if the preputial buds and the proximal
glanular mesenchyme are derived from the abdominal or
tailgut mesenchyme or if they originate from other sources.
FIGURE 2 | Developmental origins of the penis cell populations in the embryonic mouse penis. The colors represent conserved cell populations through time.
Blue=cloacal/urethra epithelium, yellow=tailgut/distal ventral glanular mesenchyme, light orange=abdominal/distal dorsal glanular mesenchyme, purple=prepuce,
green=proximal glanular mesenchyme, and grey= undefined penile cell population. The E10.5 depiction is looking at the lower half of the embryo, while the other
time points are focused on the genitalia. E10.5 depiction was adapted and redrawn from (64). E12.5, 14.5, and 16.5 were adapted from whole mount, scanning
electron microscope images from (65).
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The above described androgen-independent phase ends
around E13.5, when androgen production by the testis starts.
Simultaneous with androgen production, AR protein is most
present in the cytoplasm of the urethral epithelium and the
surrounding mesenchyme (70). One day later on E14.5, AR
protein become localized in the nucleus of the proximal glanular
mesenchyme, distal dorsal glanular mesenchyme, distal ventral
glanular mesenchyme, prepuce, and urethral epithelium (71).
From E14.5 through the rest of embryonic development, AR
protein steadily increase in all mesenchymal cells of the penis
and remains present in portions of the urethra epithelium (48).
Disruptions in androgen signaling by fetal exposure to anti-
androgenic chemicals or genetic knockouts of Ar cause severe
cases of hypospadias, underlining the importance of androgen
signaling in penis development.

Androgen-Dependent Closure of the
Proximal Urethra
The closure of the proximal urethra starts at E13.5 and E14.5 in
the mouse embryo when the urethra is still an open sulcus at the
base of the penis (72). By E15.5, the proximal portion of the
urethra starts to close and form an internalized tube (72). To
accomplish this event, extensive androgen-dependent
communication occurs between the urethral epithelium and
proximal glanular mesenchyme. Although the urethral
epithelium expresses Ar mRNA and protein throughout
development (67, 73), AR in the urethral epithelium is not
required for urethral closure and proper penis formation (70,
74) (Figure 3). Conversely, inactivation of Ar in the surrounding
mesenchyme causes severe cases of hypospadias, indicating the
necessity of mesenchymal androgen signaling for urethra closure
(70, 74–76).

The proximal glanular mesenchyme is a group of mesenchymal
cells that surrounds the urethra. These mesenchymal cells are sites
of strong androgen signaling, largely due to abundant expression
of Srd5a2 that convert testosterone to the more potent
Frontiers in Endocrinology | www.frontiersin.org 6
dihydrotestosterone (77). As a result, dihydrotestosterone is
twice as concentrated in the proximal glanular mesenchyme
compared to other areas of the penis (77). The abundance of
androgens facilitates the expression of key androgen responsive
genes in the proximal glanular mesenchyme, like the transcription
factor Mafb and the AR co-chaperone Fkbp5, both essential for
urethra closure (75, 78). The expression of Mafb is not only
dependent on AR binding to the ARE, but also requires the co-
regulator SP1 to bind at the Mafb enhancer element. Loss of SP1
binding motif in the Mafb enhancer element results in severe
urethra closure defects (79) (Figure 3). The combination of the
high concentration of androgens and unique presence of co-
activator provide the proximal glanular mesenchyme with the
unique ability to orchestrate urethra closure.

Two possible mechanisms of androgen-dependent urethra
closure are proposed between the proximal glanular
mesenchyme and the urethral epithelium. One is through
mechanical forces that help push the urethra closed, and the
other is cell-cell interactions through morphogens that instruct
structural changes of the epithelium and mesenchyme.
Androgen signaling in the proximal glanular mesenchyme
induces contractility and expression of several muscle related
genes such as myosin heavy chain 10 (Myh10), Myh9, and F-
actins (80, 81). Myosin and F-actin provide the cells the capacity
to contract and impart physical lateral forces on surrounding cell
populations. Inactivation of Myh9/10 in the proximal glanular
mesenchyme in mice causes severe urethra closure defects arise
due to the loss of capability to exert physical forces on the urethra
(80) (Figure 3).

The contractility capability of the proximal glanular
mesenchyme is not only induced directly by androgens, but
also by androgen-dependent morphogen pathways from the
urethra and proximal mesenchyme. The WNT signaling
pathway, identified through the Gene Ontology analyses on the
proximal mesenchyme, is specifically enriched in the proximal
glanular mesenchyme of the penis (67). The main WNT ligands,
FIGURE 3 | Distinct androgen responsiveness of the penile cell populations. Representative sagittal section depiction of an E16.5 mouse penis. Each color
represents a distinct cell population, displaying the localization of the cell populations in the penis. Boxes are the androgen-related programs for each subpopulation.
Depiction was generated from sagittal sections of mouse penises generated in the Yao laboratory.
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Wnt5a, Wnt6, Wnt7a, Wnt10a and Wnt2, are expressed
throughout the penis, with Wnt5a being the main effector in
the proximal glanular mesenchyme (82, 83). Removal of Wnt5a
expression in the proximal glanular mesenchyme disrupts the
contractility phenotypes of the proximal glanular mesenchymal
cells and caused severe hypospadias-like phenotypes in the mice
(84). However,Wnt5a expression does not seem to be controlled
directly by androgens (84). Several of the WNT receptors and
transcription factors, in contrast to Wnt5a, are induced by
androgen signaling (85). The WNT receptor, FRZD6, and the
WNT-related transcription factor such as LEF1 are significantly
enriched in the male proximal mesenchyme, when compared to
the female (85). Exposure of female embryos to androgen
(methyltestosterone) increases expression of both FRZD6 and
LEF1 proteins (86). Other WNT receptor gene expression, Frzd1,
Frzd2, Frzd3, and Frzd4, are also significantly elevated in
methyltestosterone exposed female (85). In addition, the WNT
ligands and receptors, WNT inhibitors, Dkk2 and Sfrp2, are
higher in female genitalia compared to males, and the expression
of these WNT inhibitors significantly lessen with androgen
exposure (Figure 3) (74). These findings reveal that closure of
the proximal urethra requires a complex WNT signaling
crosstalk between the proximal glanular mesenchyme and
urethral epithelium in an androgen-dependent fashion.

A Role for Estrogen Receptor
Coordination With AR in Distal
Urethra Closure
The closure of the urethra occurs in a proximal (base) to distal
(tip) fashion along the ventral aspect of the penis (87). At E16.5
in the mouse embryo, the urethra is largely closed in the
proximal portion, but remains open in the distal portion of the
penis (65). The distal ventral glanular mesenchyme subsequently
interacts with the urethra to form a tube and complete the
closure of the urethra. Similar to the proximal glans, the distal
ventral glans express myosin light chain 12a (Myl12a) and Myl6
and is enriched with actin-cytoskeleton signaling pathway
components, suggesting that it may exert similar mechanical
forces on the distal urethra (67). The expression of these genes
are also elevated in the male distal ventral glans compared to the
female, an indication that they could be controlled by androgens.

Other than the androgen signaling, the distal ventral glans has
the highest expression of estrogen receptor (ER) compared to the
rest of the penis (67). Estrogen receptor and AR can be both
antagonistic and agnostic to one another depending on hormone
levels and tissue types (Figure 3) (88). For example, the estrogenic
chemicals such as estradiol benzoate, diethylstilbesterol, and 17b-
estradiol, cause only distal hypospadias (70, 89, 90). The degree of
defects in urethra closure drastically differs among different anti-
androgen exposure, which induces severe hypospadias where the
urethra exits at the base of the penis (91). ER may be antagonizing
AR at hormone response elements along the DNA within the
distal ventral glans. Or estrogen-dependent signaling could result
in gene expression that inhibits androgen-dependent signals
(Figure 3). Although aberrant exposure to exogenous estrogens
causes distal hypospadias, the ER signaling pathway appears to be
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essential for normal penis development in some capacity. Estrogen
receptor a or Esr1 knockout mice develop mild hypospadias in
adulthood, similar to estrogen exposed mice (90). These data
suggest that a properly tuned estrogen signaling in the penis is
essential, where too little or too much estrogen is detrimental to
penis development.

This proposed role of estrogen signaling in penis
development is likely required to modulate appropriate
morphogen expression. One such morphogen is fibroblast
growth factor or FGF. In the fetal mouse penis, FGF10 ligand
and its receptor FGFR2IIIb are uniquely expressed in the distal
ventral glans (92, 93). Global knockout of Fgf10 causes severe
hypospadias with no urethra closure occurring throughout the
penis (92, 93). Fgf10 is tightly linked to both androgen and
estrogen signaling in many hormone responsive tissues
(Figure 3). In the ventral prostate and the uterus, estrogen
exposure and Esr1 are essential for establishing appropriate
Fgf10 expression (94, 95). In the penis, Fgf10 is induced with
androgen supplementation and not much is known about it
estrogen responsivity (93). The interactions between androgen
and estrogen receptor signaling on gene expression remains to be
elucidated in the distal ventral glans.

Androgen-Dependent Encapsulation
of the Glans by the Prepuce
The prepuce in the male mouse embryo originates as two
bilateral buds on the lateral sides of the glans at the onset of
androgen-dependent development, followed by extensive
outgrowth after androgen production in the fetal testis. Soon
after the preputial buds form on the penis, the prepuce begins to
express Ar (67). In the male embryo, the cells within the prepuce
have a stretched, migratory phenotype with a clear directionality
pointing toward the urethra (80). The prepuce starts to fuse
along the midline of the penis at E15.5. Closely following the
process of urethra closure, the prepuce eventually fuses to the tip
of penis and fully encapsulates the glans and urethra.

Inactivation of the androgen signaling, either through global
Ar knockout or exposure to environmental chemicals, result in
severe aplasia of the prepuce and a lack of fusion along the
ventral aspect of the penis (70, 91). The majority of hypospadias
cases are accompanied with preputial defects (96, 97). When
external genitalia are cultured without androgens, preputial cell
migration does not occur (80). The migratory loss could be due
to the diminished expression of smooth muscle actin (Acta2) and
myosin light chain 9 (Myl9), which are both expressed in the
developing prepuce (67) (Figure 3). The correlations between
preputial fusion and urethra closure suggest a role of the prepuce
in urethra closure.

Estrogen and Androgen-Dependent
Differentiation of the Corporal Bodies
The corporal bodies of the penis are mesenchymal condensations
that arise within the glans of the penis later in development
around E17.5-E18.5 in mice (98). The corporal bodies are
column condensations that run throughout the entire penis. In
adult life, the corporal tissues are essential for erectile function.
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Mice have three major corporal tissues, the corpus cavernosum,
corpus cavernosum glandis, and corpus cavernosum urethrae
(99). The corpus cavernosum is located in the internal portion of
the penis and connects to the penis bone, which maintain
extrusion of the penis from the prepuce during erection (98).
Where the corpus cavernosum ends close to the proximal end (or
base) of the penis, the external portion of the penis (glans)
begins. Within the glans lies the corpus cavernosum glandis as a
muscular ring around the outer edge of the penis. Toward the
center of the glans is where the corpus urethrae located. The
corpus urethrae helps maintain an open urethra during
copulation (98). Development of the three corporal tissues are
androgen-dependent in mice. In the Tfm mice, where AR is
nonfunctional, the corporal tissues are drastically reduced (100).
The corpus cavenosum glandis and corpus urethra express Ar,
Esr1, and Esr2. Esr1 knockout mice fail to develop the corpus
cavernosum glandis, while the Esr2 knockout mice fail to develop
the corpus urethra (101). In humans, both corporal tissues
express AR and ESR2 (102), suggesting a potential interplay
between the androgen and estrogen signaling pathways.

Dorsal Mesenchyme of the Penis as an
Androgen Insensitive Cell Population
In contrast to the tissues in the proximal and ventral penis, the
distal dorsal glans seems to have weak androgen responsiveness
and plays a minor role in the androgen-dependent processes of
penis development. Unique to the male mice, a portion of the
distal dorsal glans differentiates postnatally into a cartilaginous
mating protuberance, or the male urogenital mating
protuberance (MUMP) (99), which is not found in female
mice nor in the human (99). In addition to the MUMP, the
distal dorsal glans is involved in the overall growth and size of the
penis. Genetic mutations of dorsal glans gene Inhba in mice
caused the abnormally enlarged penis (103). The role of
androgen signaling within the distal dorsal glans remains to
be determined.
COMMONALITY OF AR- MEDIATED MALE
SEXUAL DIFFERENTIATION OF WOLFFIAN
DUCT AND EXTERNAL GENITALIA

Androgen Action Must Be Imposed Within
a Short Developmental Period Known as
Masculinization Programming Window
The action of AR must be imposed within a specific fetal
programming window. For the Wolffian ducts, the masculinization
programming window is E15.5–E17.5 in rat (104), presumably
E14.5-16.5 in mouse given that mouse development is generally 1
day behind that of rat (86), and predicted to be approximately 8-12
weeks of gestation in humans (104). The critical window for the
Wolffian duct overlaps considerably with the critical window for the
penis, with timeframes ranging from E15.5-18.5 in the rat (104),
E14.5-E17.5 in the mouse (105), and 8-12 weeks of gestation in the
human (104) (Figure 4). Only within this programming window,
disruption of androgen actions by AR antagonist flutamide results in
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partial or complete absence ofWolffian ducts by adulthood in rat. AR
action-associated endpoints subside in the presence of flutamide,
including cell proliferation, epididymal coiling, epithelial vimentin
expression, and smooth muscle actin expression in the Wolffian duct
inner stroma (106). Similarly, only within this window does impaired
androgen action result in cryptorchidism and hypospadias (104). The
most severe cases and highest incidence of hypospadias occurs with
flutamide exposure between E15.5 and E16.5 (105). Flutamide
exposures before E15.5 can result in severe hypospadias, but low
incidence rates, while exposures after E16.5 result in both mild
hypospadias cases and low incidence rates (70, 91). The same
degree of hypospadias severity was shown to be true for AR
knockouts at E14.5 and E17.5. The masculinization window also
exists in the female embryos. For example, seminal vesicle formation
in female rats is induced by androgen exposure during E15.5-17.5,
the masculinization program window but not by exposure during
E19.5-E21.5 (104). Female rats develop complete Wolffian ducts and
penis only when they are exposed to androgens during this window.
The window is tightly regulated, where exposure to androgens before
or during the masculinization window does not advance or extend
the timing of the critical window (107). The molecular determinants
of opening/closing the programming window are not completely
understood. It appears that the induction of AR protein in Wolffian
duct and penile tissues (20) coincides with the opening of
the window.

Androgen Action in the Mesenchyme
Regulates Epithelial Morphogenesis
Extensive studies have demonstrated the essential role of AR
action in the mesenchyme of Wolffian ducts and penis
(Figure 4). Epithelial ablation of AR in the Wolffian duct or
the penis do not affect maintenance and coiling of the Wolffian
duct (20), nor urethra closure in the penis (74). The functional
significance of the mesenchymal AR in penis development has
been demonstrated in mesenchymal specific AR knockouts mice
where severe urethral and penile defects were observed (74).
Although the consequences of delating the mesenchymal AR has
not yet been determined in Wolffian duct development in vivo,
classic tissue recombinants studies provide evidence that the
mesenchymal AR actions governs androgen-induced epithelial
morphogenesis (25) (See the sectionMesenchymal AR actions are
critical for Wolffian ducts differentiation).

Androgen Actions Induce Epithelial
Morphogenesis Through Both Growth
Factors and Mechanical Forces
In response to androgens, the mesenchyme produces multiple
mesenchymal growth factors (FGFs, EGF, and WNT) that
mediate mesenchymal AR actions in controlling survival and
differentiation of Wolffian ducts and penis (18, 74, 109). Aside
from growth factor signaling, mesenchymal AR can also regulate
epithelial morphogenesis by inducing expression myosin and
actin related genes, which induce mechanical forces on the
epithelium (108). During Wolffian duct morphogenesis, inner
mesenchymal cells differentiate into smooth muscle on E16.5, the
initiation of Wolffian duct coiling. The smooth muscle is known
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to produce mechanical resistance. Blocking a-smooth muscle
actin (aSMA), a marker of smooth muscle differentiation,
significantly reduces tubule folding without affecting cell
proliferation in the tubule or the length of the epididymal
tubule (108). In the penis, androgen induced expression of
myosin-related genes, Myh10 and actomyosin contractility in
the proximal mesenchyme. In vivo genetic ablation of both
Myh10 and Myh9 in the bilateral or pharmacological inhibition
of actomyosin contractility in ex vivo slice culture system induced
defective urethral masculinization (80). These results suggest that
mesenchyme-derived mechanical force is the other mechanism
by which androgen induce epithelial morphogenesis.
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SUMMARY

Although AR is a singular transcription factor, it can fill many
roles throughout Wolffian duct and male external genitalia
development. In both organs, plenty of research has identified
androgen responsive programs, but there many questions about
the molecular drivers of AR pleiotropy. Future studies that
conduct cell type-specific investigations of AR co-regulator
interactions, chromatin accessibility of AREs, and multi-organ
androgen signaling conservation will bring us drastically closer
to understanding the prevalence of androgen-related human
birth defects.
FIGURE 4 | Divergent and conserved androgen signaling mechanisms in the fetal development of the Wolffian Duct and penis. The Wolffian Duct and penis have
conserved androgen signaling mechanisms that include a window of masculinization, growth factor signaling (EGF,FGF, and WNT) and mechanical forces from the
mesenchyme to the epithelium. However, these two organs also possess divergent androgen signaling mechanisms. In the penis, Srd5a2 is present and converts
testosterone to dihydrotestosterone. AR and SP1 interact along the DNA to elicit both gene expression and chromatin modifications, and the mesenchymal cells of
the penis have a more diverse community of mesenchymal cells from different development origins. In the Wolffian duct, mesenchyme in different regions expresses
region-specific Hox genes that govern the regionalization of the Wolffian ducts. The differentiation of the cranial Wolffian duct to the seminal vesicle depends on Gdf7.
Wolffian duct development requires both genomic and non-genomic androgen signaling while non-genomic androgen signaling is dispensable in the penis
development. The figure summarizes data and reviews from (16, 18, 27, 28, 53, 108) on Wolffian ducts and (67, 77, 79, 80, 91, 93, 104, 106) on external genitalia.
Figure Created with BioRender.com
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