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Abstract: Gut microbiota refers to a complex network of microbes, which exerts a marked influence
on the host’s health. It is composed of bacteria, fungi, viruses, and helminths. Bacteria, or collectively,
the bacteriome, comprises a significant proportion of the well-characterized microbiome. However,
the other communities referred to as ‘dark matter’ of microbiomes such as viruses (virome), fungi
(mycobiome), archaea (archaeome), and helminths have not been completely elucidated. Development
of new and improved metagenomics methods has allowed the identification of complete genomes
from the genetic material in the human gut, opening new perspectives on the understanding of
the gut microbiome composition, their importance, and potential clinical applications. Here, we
review the recent evidence on the viruses, fungi, archaea, and helminths found in the mammalian gut,
detailing their interactions with the resident bacterial microbiota and the host, to explore the potential
impact of the microbiome on host’s health. The role of fecal virome transplantations, pre-, pro-, and
syn-biotic interventions in modulating the microbiome and their related concerns are also discussed.
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1. Introduction

The human gut contains a collection of microbes that include commensal, symbiotic, and
pathogenic bacteria, as well as fungi, viruses, archaea, and helminths. Collectively, the microbes in
the gut are known as gut microbiota, and their respective genomes are collectively known as the
gut microbiome [1]. The normal human gut is unique to each individual and influenced by factors
such as diet, early-life microbiota exposure, changing hygiene status, pollution, socioeconomic status,
and other environmental factors [2,3]. During the past decade, the gut microbiota has been implicated
as an essential factor in the pathogenesis of inflammatory bowel disease (IBD), cancer, cardio-metabolic
diseases, obesity, and diabetes [2–6].

The human gut microbiome diversity is characterized in ecological terms by its species evenness
(the number of different kinds of species present in an ecological community) and richness (the
number of different species represented in an ecological community) [7]. Next-generation sequencing
(NGS) revolutions enabling the 16S DNA-based quantitative identification of enteric bacteria sparked
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numerous microbiome-wide studies that correlated gut bacterial diversity and its composition shifts,
termed as ‘dysbiosis’, with human disease [8]. Most of the available research literature on the
microbiome has focused on bacteria or bacteriome but not the other components [4]. The number of
studies on the gut microbiome (many correspond to bacteriome only) have skyrocketed, reaching up to
3500 papers in 2018 (Figure 1) (Supplemental Table S1). Although bacteria dominate microbial
communities, viruses, archaea, and fungi may also play pivotal roles in maintaining the gut
homeostasis [9], as evidenced by a more recent steep increase in studies assessing the role of viral
and fungal components of the microbiome. However, the viral and fungal biomes remain relatively
uncharacterized thus far, due to their lower abundance as well as lack of optimized tools and curated
reference databases for their identification and classification [10,11].
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Figure 1. Scientific publications on various microbial communities of the gut microbiome. The number of
peer-reviewed scientific publications for (A) microbiome, (B) virome (C) mycobiome and (D) archaeome
studies. The list of peer-reviewed literature was collated in a non-systematic manner from the web
of science (WOS) all database collection (MEDLINE, Inspec, Biological abstracts, scIELO, KCI, WOS
core collection, Russian science index) from 2009 to 2019. The research of literature was performed
using keywords like "microbiome”, “gut microbiome”, “gut virome”, “virome”, “gut fungi”, and “gut
mycobiome”. * For careful selection of gut archaeome studies, we used PubMed only with keywords
like “gut archaea”, “gut archaeon” and “gut archaeome/archaeon” and “archaeome” which includes
whole microbiome analysis studies but not limited to only archaeome. Document types excluded were
review of the literature (including systematic and meta-analysis), case studies, reports, and abstracts in
conferences, workshops, and book chapters.

Owing to advances in NGS technologies, researchers are now starting to understand the dark
matter of the microbiota as summarized in Table 1. Emerging studies indicate that the gut virome
mainly includes DNA or RNA bacteriophages [12]. In addition, fungi, which primarily comprises
Aspergillus, Candida, Fusarium, Penicillium, and Saccharomyces [13], and likewise gut archaea, especially
methanogens [14], represent notable members of the microbiome. Data on the role of helminth species
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in human health is very limited and more population-based studies are required to evaluate their role
in the gut [15,16]. Clearly, though, viruses, fungi, archaea, and helminths also comprise a significant
composition of the gut ecosystem, and their existence could account for host–microbe interactions [12].
In this review, we used human and animal studies to discuss gut virome, mycobiome, archaeome,
helminths, and their interaction and health impacts.

Table 1. Summary of a few significant clinical studies on the viral, fungal, and archaeal microbiomes.

Microbial
Component Samples Sorting/Analysis

Method Reads/Contigs */Sequences Ref.

Viral

21 Hidden Markov
Models/STAR

Assembled: 107,307 contigs.
Total taxonomically assigned: 12,751 contigs

(29.62% only)
[17]

10
Assembled: 294,211 contigs

Alignment of reads to contigs: 57,721
Final catalogue: 39,254 contigs

[18]

32 CD-Hit-est
Total reads: 1,386,331 (32 datasets)

Date normalized: 14,000 reads/dataset
Annotated yield: 5004 contigs

[19]

Fungal

317
(147 subjects)

Internal Transcribed
Spacer 2 (ITS)

Total reads per 1 sample/subject: 756,316 reads
Total reads/sample: 17,189 [20]

14
ITS1 (IonPGM, MiSeq,

PacBio Sequence
comparisons)

IonPGM: 219,756 reads
MiSeq: 181,436 reads
PacBio: 2984/sample
Total: 41,776 reads

[21]

49 ITS 106,185 reads [22]

Archaeal
(Methanogens)

21
16S gene analysis

1521 sequences [23]
10 10,000 reads/sample [24]
49 109,561 reads [22]

* Contigs = either a DNA segment or set of overlapping DNA sequences.

2. Gut Virome

The bacterial and fungal communities residing in the gastrointestinal (GI) tract have undeniable
far-reaching effects in regulating host health [1,12]. In contrast, the composition and dynamics of the
gut virome are largely unknown, mainly due to limitations in identification. This is likely because of the
lack of availability of viral genomes in the NCBI databases due to diverse global viral populations and
their size. However, the impediments to identify and classify the virome have been now overcome with
advancements in NGS, allowing us to make more substantial analyses of viromes [25]. Bioinformatics
tools, such as the Metavir (versions 1 and 2) [26], bioinformatics pipeline VIROME (Viral Informatics
Resource for Metagenome Exploration) [27], VIROMEScan [28], PHACCS (Phage Communities from
Contig Spectrum) [29], CLAssification of Mobile genetic Elements (ACLAME) [30], VirusSeeker [31],
the Phage SEED, and OptItDBA (Optimized Iterative de Bruijn Graph Assembly) have greatly improved
the breadth and accessibility of virome analysis by improving assembly and annotating viromes against
multiple annotated sequence databases, which improves the analytic capabilities beyond the constraints
of individual sequence databases [32,33].

2.1. Gut Phages

The gut virome includes diverse commensal and pathogenic viruses that have abilities to infect
host cells as well as other microbes, both avenues are able to directly affect the host’s health (Table 2).
With a high inter-individual variation, the gut virome is mostly dominated by bacteriophages [34].
It also includes prophages, eukaryotic viruses, and retroviruses (Table 3). Very recently, studies on
metagenomic sequencing of fecal DNA have begun to consistently unravel the extremely complex
composition of the gut virome [10,35]. The DNA and RNA viruses that collectively make up the
gut virome are at least comparable in number to bacterial cells, but on the gut mucosal surfaces and
within the mucous layers; they may outnumber bacterial cells by 20:1 [36,37]. Each gram of human
gut content is estimated to contain at least 108–109 virus-like particles, the vast majority of which are
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cross-assembly phage (DNA) phages belonging to the family Podoviridae [38,39]. Several studies have
characterized the gut phage communities in newborn children, demonstrating a high richness and
diversity and low stability during the initial days of life [17,40]. This diversity diminishes over the first
two years, contrary to what has been observed in bacterial populations, which shift from low to high
diversity [41]. Gut phages are primarily classified as members of the double-stranded (ds) DNA virus
families such as Myoviridae, Podoviridae, and Siphoviridae within the order Caudovirales, or of the
single-stranded (ss) DNA Microviridae family [12]. Recognizing the high abundance of phages in the
gut, a Bacteroidetes-infecting phage family was identified and its founding phage alone represented
up to 22% of all reads in the human gut metagenome project [42]. Another study characterizing
Microviridae from healthy human donors also clustered with the Bacteroides and Prevotella prophages
72, suggesting that Microviridae could be an important viral family in the human gut. These prophages
are considered lytic phages, which can integrate into bacterial hosts in an environment that encourages
a temperate (lysogenic) viral-host lifestyle [39,41,43].
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Table 2. Summary of significant study findings on the gut virome.

Model Type Study Type Findings Ref

Human

Healthy infant 1 week old infant N = 1 Taxa identified: Siphoviruses and prophages (the majority (72%) [41]

Infants/mothers (healthy)

Healthy adult female monozygotic co-twins and their
mothers at three time points over a one-year period N = 12

Eukaryotic viral genomes: 73.3%, phages and prophages: 25.8%
dsDNA phage (Caudovirales): 76.9% [19]

N = 8 (4 twin pairs) Taxa identified: Siphoviridae, Inoviridae,
Myoviridae and Podoviridae [43]

N = 24 longitudinal fecal samples Taxa identified: Microviridae, Podoviridae,
Myoviridae, and Siphoviridae [44]

Healthy vs. malnourished
infants/children

Time-series from fecal samples (Malawian) healthy control
(HC)= twins, Mal Nutr = 12 twin pairs

↑ Anelloviridae (ssDNA eukaryotic viruses) in healthy infants and
children (up to 15–18 mo), With age: ↑ Alpavirinae (ssDNA phages),
↑ Siphoviridae in 0 to 10 mo of age and then slowly decrease.

[45]

Obese children N = 20 (HC = 10, Obese = 10) Obese to HC: ↑ Human herpesvirus 4 [46]

Human (Healthy)

Longitudinal metagenomics analysis (Ireland) of fecal
viruses N = 6 (3 Males, 3 Females)

Taxa identified: ↑ Virulent crAss-like and
Microviridae bacteriophages [18]

Uncultured viral community from human feces. N = 1 Taxa identified: Bacteriophages A118 of Listeria monocytogenes,
E125 of Burkholderia thailandensis, and bIL285 of Lactococcus lactis [47]

Analysis of the RNA viruses (N = 2) Pepper mild mottle virus = 109 virions/gram of dry fecal matter,
↑ RNA viruses

[48]

Virome of the ELDERMET First-ever in elders (>65 yrs) Taxa identified:Gokushovirinae (Microviridae) [49]

Diet variations sequencing (N = 6) high-fat/low-fiber diet High fat to low fiber: Siphoviridae (18%), 686 (10%) to Myoviridae,
344 (4.8%) to Podoviridae, 68 (0.9%) to Microviridae, and 0.4% others [50]

Human Virome (IBD)

Virus-like particle preparations on the rectal mucosa
(N = 167, (UC = 91; HC = 76)). (Chinese study)

UC to HC = ↓mucosal Caudovirales diversity, richness
and evenness relative to HC [51]

metagenomics sequencing of stool filtrates using the Roche
454 platform (UK)

The viromes of CD and UC patients were disease- and
cohort-specific. ↑ Caudovirales bacteriophages compared to HC [52]
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Table 2. Cont.

T2D vs. HC Type II diabetes (T2D) patients (n = 71) and normal
Chinese adults (HC) n = 74)).

T2D to HC: ↑ phages (Siphoviridae (55.3 ± 9.8%) Myoviridae
(21.7 ± 9.9%), Podoviridae (10.6 ± 8.4%)) [53]

HIV study (N = 122, untreated HIV = 42, HIV ART= 40,
HIV uninfected= 40) HIV to uninfected: ↑ Anelloviridae, Adenoviruses [54]

Animal

Gorilla simian
immunodeficiency virus

infection (SIV).
(N = 22, SIV = 11, HC = 11) SIV to HC: ↑ Herpesviridae and Reoviridae

Identified: Siphoviridae, Myoviridae and Podoviridae [55]

Rodents

N = 314 wild rodent Taxa identified: Parvovirus, Dicistrovirus, Iflavirus, and Iridovirus [56]

viral RNA and DNA in the feces of 105 wild rodents
Taxa identified:Circoviridae, Picobirnaviridae, Picornaviridae,

Astroviridae, Parvoviridae, Papillomaviridae,
Adenoviridae, and Coronaviridae.

[57]

viral content in rat fecal matter (N = 29) Picornaviridae [58]

Mouse N = 416 mice Taxa identified: Parvovirinae, Chapparvovirus, Polyomavirus,
Astroviruses, Sapovirus, Picornavirus [59]

Mouse model of IBD C57BL6/J mice (HC) and C57BL6/J Rag1-/-

mice (IBD induced)
IBD to HC= ↑ Spounaviridae, ↓ Clostridiales phages [60]

Gulf War illness (GWI)
mouse model (IBD) (N = 22, HC = 11, GWI = 11) GWI mice to HC = ↓Microviridae bacteriophages, ↑ Siphoviridae

and Myoviridae bacteriophages [61]

Gnotobiotic mouse model
of phage-bacterial host

dynamics
(N = 5 per group). T7 phages are undetectable for 1 wk in germ-free animals before they

rise in abundance after gavage of a bacterial host. [62]

↑ increase; ↓ decrease; HC = healthy control; IBD = inflammatory bowel disease; ss = single stranded; T2D = type 2 diabetes.
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Table 3. Viral communities identified in the mammalian gut.

Phages ds DNA ss DNA ds RNA ss RNA

Microviridae Papillomaviridae Circoviridae Reoviridae Retroviridae
Podoviridae Polyomaviridae Anelloviridae Togaviridae
Siphoviridae Poxviridae Astroviridae

Adenoviridae Virgaviridae
Iridoviridae Caliciviridae

Marseilleviridae

ds = double stranded; ss = single stranded.

2.2. Enteric Viruses

While the number of eukaryotic viruses present in the gut is lesser than that of phages, they are
detected in metagenomic studies by PCR-based fecal shedding analyses in healthy individuals [45,63].
For example, viruses from the Anelloviridae, Picobirnaviridae, Adenoviridae, and Astroviridae families
and species such as Bocavirus, Rotavirus, Enterovirus, and Sapovirus were identified in the fecal DNA
samples of healthy children [41,45]. As the presence of eukaryotic viruses in the gut is far less well
characterized, some studies have shed light on the dynamics of these viruses, with at least 16 different
DNA viral families and 10 RNA families having been detected in gut samples [64]. These observations
demonstrate that intestinal colonization with eukaryotic viruses, some of which are known to have
pathogenic potential, can be tolerated without apparent symptomatic disease.

2.3. Role of the Gut Virome in Gastrointestinal Health and Disease

When considering the role of the enteric virome in the pathophysiology of GI diseases, the bridge
from association to causation needs to be crossed. The gut virome, including enteric eukaryotic viruses
and bacteriophages, can elicit chronic inflammation by infecting and killing the host cell as well as
bacteria [65]. The first gut virome studies linked the presence or absence of certain viral components to
diseases such as IBD and type 1 diabetes (T1D) [9,66]. The decreasing richness of gut bacteria occurring
with IBD (both Crohn’s disease (CD) and ulcerative colitis (UC)) patients is well established [2].
In contrast, the fecal virome component’s richness was increased in those disease states when compared
to healthy controls [67,68]. Specifically, the number of Caudovirales bacteriophages were increased
and associated with viral richness relative to healthy controls [66,68]. Similar results were reported
by another study that found reduced Caudovirales phages in healthy individuals when compared to
CD and UC patients [51]. Studies of viral communities of diarrheic specimens for unknown causes
in individuals from the Americas and Europe resulted in finding a common group of viruses that
included Anelloviruses, Picobirnaviruses, and Aichivirus [69,70]. The role of these viruses, as well as if
their presence is the cause or a consequence of a diseased GI tract, remains undetermined. In contrast
to the richer gut virome observed in IBD patients, the gut viromes of individuals developing T1D were
found to be less diverse than the ones from healthy controls, with the latter harboring significantly
more viruses of the Circoviridae family [67], suggesting that viruses in the GI tract, such as Circoviridae
in T1D, may alternatively exert beneficial functions for preserving host health [71].

2.4. Viromes in Fecal Microbial Transplants and Fecal Virome Transplants

Fecal microbiota transplantation (FMT) has played a significant role in treating recurrent Clostridium
associated diarrhea. FMT or a nature-tailored probiotic treatment appears to restore normal or donor-like
gut microbial (specifically bacterial) diversity. However, understanding the complex nature of gut
microbiome, investigation into the presence and contribution of viromes in such fecal transplants has
also begun, shown in Table 4. It is now certain that fecal microbiota contains a high abundance of
viruses, primarily bacteriophages (90%) helping to repopulate gut bacterial diversity. As discussed,
phages outnumber bacteria on mucosal surface and concerns persist about the unwanted transfer of
pathogenic viruses from donor to recipient. The findings from a study by Chehoud and colleagues
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on FMT treatment in children with UC confirmed the transfer of viral-like particles [72]. Specifically,
the members of Siphoviridae (temperate phages) were transferred with greater efficiency; however,
none of the viral groups infected human cells. Zuo et al. investigated the presence and role of virome
in patients with C. difficile infection (CDI) [73]. This particular study [73] confirmed the presence of
phages from Caudovirales (tailed bacteriophages) before FMT treatment, but lower diversity, richness,
and evenness compared to healthy controls. More recently, it was found that the impact of a successful
FMT on the virome lasted for 12 months and resultant colonization of specific phages depended on
donor-recipient combination [74]. This is consistent with a pilot study in which FMT devoid of bacteria
was effective in CDI treatment, and increases the possibility that phages may be involved in the success
of FMT [75].

In line with the studies mentioned above [75], a few researchers have recently developed a
novel therapeutic intervention known as fecal virome transplantation (FVT), where only the viral
component from FMT is transplanted [76–78]. Draper et al. confirmed the role of the virome in health
and disease and showed that FVT, primarily consisting of phages, ameliorated antibiotic-induced
bacterial dysbiosis [74]. FVT in mice resulted in a significant impact on not only abundance and
diversity of bacteriome, but also the virome. The transplanted phages were able to colonize the gut
and reshape the bacteriome similarly to a pre-antibiotic state. Likewise, a study by Rasmussen et
al. utilized FVT in a type-2-diabetes and murine-obesity model [78], whereby only the virome in
transplants from lean mice fed with a low-fat diet (LFD) to both obese mice (diet-induced obesity
(DIO)) and mice fed a high-fat diet (HFD) + antibiotics, unlike Turnbaugh et al. [79]. FVT from lean
donors partially reshaped the gut microbial composition in both of the recipient groups and decreased
weight gain in DIO mice. In both these FVT studies [78], the gut viral composition was dominated
by order Caudovirales and family Microviridae viruses. In another study, treatment with FVT (lytic
and temperate gut phages) modulated gut microbial composition; the lytic phages enhanced the
beneficial species of gut microbiota, and temperate phages stimulated the growth of commensal in
the gut [76]. Interestingly, Hsu et al. confirmed that phages not only modulate the microbiome but
also its associated metabolome [80]. In this particular study [80], gnotobiotic mice were subjected to
lytic phages (FVT) after they were colonized with commensals, resulting in the finding that phage-led
microbiome modulation was indeed due to intense microbe–microbe (intra- and inter-microbial)
interactions which led to changes in the metabolome. More recently, Lin et al. compared FVT against
FMT treatment on the ileal microbiome in mice fed with HFD [77], which promoted small intestinal
bacterial overgrowth. They found reduced bacterial diversity in HFD mice receiving either FMT or
FVT, compared to controls. Moreover, fecal transplants to control mice from HFD donor mice subjected
to FVT shifted the ileal microbial composition similar to HFD mice, suggesting a causative role for FVT.
Indeed, virome transplants could be beneficial as a therapy for many metabolic diseases related to gut
microbiota, in addition to recurrent CDI.

Table 4. Summary of studies and their findings involving in viromes from fecal microbial
transplantations (FMT).

Model Study Details Findings Ref.

Infant IBD N = 4, Infant UC = 3, HC = 1
(22 to 30 FMT treatments UC to HC: ↑ Siphoviridae [72]

Adult IBD N = 15, UC= 9, HC = 8

UC to HC: ↓ DNA phage,
richness of donor viromes , outcome of therapy

Most abundant: Anelloviridae, Circoviridae,
Picobirnaviridae and Virgaviridae

[81]

Clostridium difficile
infection (CDI) N = 44, CDI= 24, HC = 20 CDI to HC: ↑ Caudovirales (may play a role in FMT

efficacy in CDI) [73]

Recurrent CDI (rCDI)
1-year follow-up rCDI = 14; donors (D) = 3 rCDI to D: ↑ Caudovirales,

Anelloviridae ↓Microviridae [74]

↑ = increase; ↓ = decrease; N = total; HC = healthy control; IBD = inflammatory bowel disease; UC = ulcerative
colitis; CDI = Clostridium difficile infection; rCDI= recurrent CDI.
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3. Mycobiome

Mycobiome, mycome, fungeome, or mycobiota is the collection of the fungal community and
their respective genomes associated with the human body. Fungi are detected within the gut of
many mammals, including humans, mice, rats, pigs, and numerous ruminant and non-ruminant
herbivores [82]. NGS of the internal-transcribed-spacer (ITS) regions to identify the fungal ribosomal
genes indicated the mycobiome as a third important dimension of the gut microbiomes [20]. However,
the characterization of the mycobiome is complicated by the lack of comprehensive, accurate,
and high-resolution taxonomic annotation within fungal databases [83]. Existing databases containing
fungal targets include UNITE fungal ITS (1 and 2) database [84], Findley, ITSoneDB, RefSeq targeted
loci (RTL), targeted host-associated fungi (THF) database, International Society for Human and Animal
Mycology (ISHAM) ITS database, and SILVA [83–91]. The bioinformatics tools used in data analyses
include MaAsLin [92] and MEGA software [93].

Several studies in recent years have detailed the importance of fungi within the human gut
(Table 5) [82]. Shotgun metagenomics sequencing approaches suggest that fungi account for
approximately 0.1% of the gut microbiome. An early study by Quin and colleagues that included 96
stool samples from healthy volunteers found 66 genera [94]. Fungi are detectable in all sections of the
GI tract of about 70% of healthy adults, normally at up to 103 cfu per mL or g of intestinal contents [82].
Fungal genera commonly detected in mycobiome include Candida, Saccharomyces, Fusarium, Debaromyces,
Penicillium, Galactomyces, Pichia, Cladosporium, Malassezia, Aspergillus, Cryptococcus, Trichosporon,
and Cyberlindnera [95]. The potential roles played by these microbes in the human gut, however,
is poorly understood.

Recent findings support the notion that a competitive association exists between bacterial and
fungal microorganisms in the gut [6]. As an example, studies have shown that prolonged antibiotic
usage is linked to fungal infection and overgrowth, particularly in the gut, and that germ-free mice
are susceptible to infection with fungi such as Candida spp. [96]. Mycobiome dysbiosis is relevant
in diseases such as IBD; the gut mycobiome of IBD patients has been characterized by reduced
fungal diversity and a dysbiosis in community populations relative to healthy controls [97]. At the
phylum level, the fungal ratio of Basidiomycota to Ascomycota was altered, with significantly
higher relative abundance of Basidiomycota and a corresponding lower abundance of Ascomycota.
More specifically, these trends have been attributed to higher relative abundances of the taxa Candida,
Filobasidiaceae, and Malasseziales and a concurrent lower abundances of Saccharomyces, Penicillium,
and Kluyveromyces [82,95].

Some emerging factors thought to be associated with composition of the mycobiota include host
genotype and host physiology, including sex, age, and presence of comorbid conditions, lifestyles
such as diet, hygiene, and occupation, and the immune system [98]. Diet represents a significant
factor influencing the fungal mycobiome composition [6,99]. For example, Candida abundance is
found to be strongly associated with the recent ingestion of carbohydrates [100]. However, further
research is needed to establish the causality and explore the importance of additional factors that may
influence the mycobiota, such as other lifestyle factors (e.g., exercise), medications (e.g., antibiotics or
antifungals), and comorbid conditions.
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Table 5. Summary of significant studies and their findings on the gut mycobiome.

Model type Study details Findings Ref

Human

Mycobiome of Human
microbiome project

(HMP)
N = 317 Taxa identified: Saccharomyces, Malassezia,

and Candida. (↓Mycobiome diversity) [20,101]

Mother/offspring
(prospective cohort)

N = 298 pairs
(mothers and offspring)

From Mothers to off springs: ↑
Debaryomyces hansenii (breast-feeding)
↑ S. cerevisiae (after weaning)

[101]

The New Zealand
human healthy gut

mycobiome

N = 21 healthy, non-obese
(age: 18–65 yr)

Taxa identified: Candida albicans, Candida
parapsilosis, and S. cerevisiae.

New species identified: C. bracarensis,
Coniochaeta hoffmannii, Hanseniaspora

pseudoguilliermondii, Aspergillus foetidus,
A. tubingensis, and Paecilomyces

dactylethromorphus

[102]

Healthy Aging study:
Gut mycobiome of

elderly Danish people
(Age: 65–81 yr)

N = 99 (age:65 to 81 yr)
Phyla: Ascomycota, Basidiomycota

and Zygomycota
Genera: Penicillium, Candida, and Aspergillus

[103]

Mycobiota among
Eutrophic, overweight,

and obese

N = 72, Eutrophic = 24,
Overweight = 24, Obese = 24).

Eutrophic: Zygomycota and Basidiomycota,
Overweight: Zygomycota and

Basidiomycota,
Obese: Zygomycota, Basidiomycota and

Syncephalastrum sp. (Zygomycota)
Taxa identified include:

↑ Ascomycota (species): Paecilomyces sp.,
Penicillium sp., Candida sp., Aspergillus sp.,

Fonsecaea sp., and Geotrichum sp.
↑ Basidiomycota (species): Trichosporon sp.

and Rhodotorula sp.
↑ Zygomycota (species) Rhizopus sp.

and Mucor sp.

[104]

Healthy Japanese gut
Mycobiota N = 14 Taxa identified: ↑ Candida

and Saccharomyces [21]

Intestinal mycobiome of
patients with irritable
bowel syndrome (IBS).

N = 57, HC = 18 healthy IBS = 39 S. cerevisiae and C albicans identified in all
samples/groups [105]

Animal

Rat model of visceral
hypersensitivity N = 6 S. cerevisiae and C. albicans in all samples. [105]

Bat N = 14 ↑ Ascomycota and Basidiomycota [106]

Dog N = 19, HC= 12, acute diarrhea
(AD)= 7

Ascomycota (HC: 97.9% and AD: 98.2%)
and Basidiomycota (HC: 1.0%, AD: 0.5%) [107]

Mouse Pancreatic ductal adenocarcinoma
(PDA) and C57BL/6 mice (HC).

PDA to HC: ↑Malassezia species
promote PDA [108]

Tibetan macaque n.a
Taxa identified:Zygomycota,

Chytridiomycota, Glomeromycota
and Rozellomycota

[109]

↑ = increase; ↓ = decrease; N = total; HC = healthy control.

4. Gut Archaea

Like bacteria, archaea are prokaryotes and categorized under the single-cell domain. Although
morphologically they resemble bacteria, archaea have genes and metabolic pathways like other
eukaryotes. The archaeal part of the gut microbiome is referred to as archaeome (Table 6). A range
of human fecal NGS studies worldwide has reported archaeal prevalence up to 0.8 to 0.10% of
the whole gut microbiome [5,94,110]. The most prominent archaeal microbes are methanogens
(methane producers) and less prominent are halophilic (salt-loving microbes) archaea [110]. Molecular
studies have indicated the presence of members of the orders Methanosarcinales, Thermoplasmatales,
Methanomicrobiales, and Nitrososphaerales in the human gut microbiota; however, to date these
microbes have not been isolated [14,111].

Methanogens are strict anaerobes that belong to the order Methanobacteriales, the most common
genera being the closely related Methaonbrevibacter and Methanosphaera [110,112]. The abundance
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of methanogens increases from 0.03% to 11% of total gut microbes present between the proximal
and distal colon [112]. M. smithii produces methane from the byproducts of bacterial fermentation
and is present in up to 95% of fecal samples from human subjects [113]. Interestingly, M. smithii’s
abundance was found to be stable over time, even after major changes in diet [14,114]. In the human
gut, methanogenic archaea may impact host metabolism, especially energy homeostasis and may
contribute to obesity [79], by syntrophic interactions with gut bacteria, which increase short-chain
fatty acid production and contribute to an excess of calories available to the host [115]. Moreover,
methanogens produce methane, shown to slow intestinal transit and lead to constipation [116]. In the
case of IBD, methanogens like M. smithii and Methanosphaera stadtmanae have been most prevalent and
shown to induce strong pro-inflammatory responses via monocyte-derived dendritic cells [117–119].
Halophilic archaea, or halophiles, are salt-loving microbes; the human gut environment is moderately
salty, and a few IBD studies have isolated halophilic archaea from intestinal mucosal samples [120].
Currently, the studies on archaeal association with human disease are limited and further investigation
is needed to elucidate its role in human health.

Table 6. Significant studies and their findings on the gut archaeome.

Model type Study details Findings Ref

Human

Healthy infants N = 15, Cesarean section-delivered
(CSD) = 8, Vaginally-derived(VD) = 7 CSD to VD: ↑Methanosphaera spp. [121]

Infants/mothers (healthy) N = 8 (4 twin pairs) Lipothrixviridae [43]
Obese children N = 20 (HC = 10, Obese = 10) Obese to HC: ↑Methanobrevibacter spp. [46]

N = 476 Obese to HC: ↑M. smithii [122]

Healthy adults N = 8 M. smithii (99–100%) [123]

N = 15 (Finnish) Taxa identified:
Methanobrevibacter–specific [124]

Population-based

Belgian Flemish Gut Flora Project
(FGFP; discovery cohort; N = 1106)

and the Dutch LifeLines-DEEP study
(LLDeep; replication; N = 1135)

↑Methanobrevibacter spp.
in all samples [125]

Aging study N = 500
Taxa identified: M. smithii
Methanosphaera stadtmanae

Methanomassiliicoccus luminyensis
[126]

Archaea of ELDERMET study N = 371 Taxa identified:
Methanomassiliicoccales [127]

Type 2 diabetes N = 49 HC= 19, New (type 2) = 14,
Known (type 2)= 16

NGTs to Known = ↓
Methanobrevibacter [22]

Human IBD N = 58, HC = 29, IBD = 29 IBD to HC: ↑M. stadtmanae [128]
N = 108, HC= 47, IBD = 61 IBD to HC: ↓M. smithii [129]

Animal

Human/ape study

Humans (N = 10) Apes:
Pan troglodytes (chimpanzee = 14),

Pan paniscus (bonobo = 18),
Gorilla gorilla (gorilla = 20),

and Pongo pygmaeus (orangutan = 8)

Taxa identified: M. smithii and
M. stadtmanae in all samples

(more in humans)
[24]

Rabbit cecal archaea N = 40
Taxa identified: Methanobrevibacter

and Methanosphaera spp.
in all samples

[130]

↑ = increase; ↓ = decrease; N= total; HC = healthy control; IBD = inflammatory bowel disease; NGT= long-standing
diabetic subjects.

5. Helminths

Helminths are a type of multicellular parasitic intestinal worms found in various locations
such as intestinal lumen, blood, or muscles of the host, and are usually referred to as macrobiome,
and are known to be present in one-third of the global human population. Enteric helminths should
be considered as a part of the gut microbiota as they co-reside in the gut with bacteria, viruses,
and fungi [131]. Most of the helminth’s lifecycle is completed in the host’s intestine by disrupting the
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intestinal microbial ecosystem and imparting epithelial damage (Table 7). To control this damage,
hosts promote the rapid expansion of intestinal epithelial cell numbers, mucus production, promotion
of Th2 responses, and activation of T regulatory (Treg) cells to limit inflammation and increase wound
healing capacity. Although most of these worms are considered parasitic, Allen et al. [132] suggested
a symbiotic relation between helminths and host, whereby helminths are tolerated, and intestinal
tissue damage is minimized. In a Malaysian population-based study, individuals with helminths had
higher microbial diversity as compared to individuals without helminths [16,133]. Increasing evidence
suggests that helminths also regulate mucosal inflammation [134,135]. Infection with helminths may
lead to anti-inflammatory effects in the gut; specifically, in the case of IBD with Trichiuris suis, helminthic
worms have ameliorated disease activities [136,137]. However, the exact mechanism of how helminths
may protect the host from the development of IBD remains unknown. More studies on helminths and
their relationship with host immune responses could lead to highly effective therapeutic strategies for
human IBD, and other autoimmune disorders.

Table 7. Summary of significant study findings on the role of helminths in health and disease.

Model Type Study Details Findings Ref.

Rat model
(2, 4, 6 Trinitrobenzene
sulphonic acid (TNBS)
induced colitis model

N = 24: HC = 6, Schistosoma
mansoni group = 6,

TNBS group = 6 and
S. mansoni + TNBS group= 6

S. mansoni group: ↑ IL-2, IL-4
TNBS group: ↑ IL-2 ↑ T helper 1 (Th1)

S. mansoni plus TNBS group:
↑ Th2 ↓ Th 1 (↓ Inflammation)

Concurrent infection with S. mansoni
significantly attenuates TNBS induced

colitis in the rats.

[138]

Rhesus macaques with
idiopathic chronic diarrhea
(ICD) w/o T suis infection

N = 7, ICD = 5
ICD with T suis = 5, HC = 2

ICD group = ↓Mucosal bacterial diversity,
↓ Th2

ICD with T suis = ↑Mucosal bacterial
diversity (Cyanobacteria), ↑ Th2

[139]

Human (Tetanus toxoid (TT)
and S mansoni infection)

TT + S. mansoni = 11
HC= 5

TT + S. mansoni group: ↓ Interferon gamma
(IFN-
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↑ = increase; ↓ = decrease; HC = healthy control; N = total, RCT = randomized control trial, TT = Tetanus toxoid,
UC = ulcerative colitis, CD = Crohn’s disease, DAI = disease activity index, IL = interleukins; Th = T helper cells;
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6. Cross-Kingdom Interactions

Advances in ‘omics’ technologies have enabled researchers to better describe host–microbiome
and microbiome–microbiome interactions, including the insight that different strains and species
of microbes typically compete with each other for limited space and nutrients [145]. Emerging
research suggests that the gut microbial system is densely colonized, promoting intense niche
competitions for adhesion sites and nutrients (their limitations), and cooperation within and between
microbial species [146]. Microbial competition occurs during initial encounters and gradually numbers
reduce by co-exclusion, or niche separation or through spatial separation, enabling the coexistence
of diverse communities [145]. Like environmental ecosystems, the gut microbial community is
dynamic and regulated by cross-kingdom interactions (Figure 2). These intricate microbe–microbe
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and microbe–host–microbe interactions enable one microbial species to influence another and induce
host response. Determining the role of the host in regulating these interactions and maintenance of
homeostasis is vital to understanding species-level interactions in the gut.
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Figure 2. The microbial cross-kingdom interactions between members of microbiome. All the microbes
in the gut interact with each other; Microbes interact with each other (A), with helminths (B) and their
hosts, establishing trophic relationship (either symbiotic or parasitic). These interactions are categorized
as competition or cooperation for survival, nutrients (C) and adhesion sites (D) on the mucosa. Most of
these microbes produce specific metabolites (Short chain fatty acids) (E) and supply energy to intestinal
epithelial cells (IEC), influencing the immune system (F–G), and overall homeostasis. DC = Dendritic
cells; Mo = Macrophages.

It is clear that interdependence between bacteriome, virome, and mycobiome exist and any
imbalance in the gut microbial composition can impact overall human health [1,136]. For example, the
phage can lyse commensal or pathogenic bacteria and drive bacterial evolution in the gut, molding
the gut bacteriome [36]. In turn, the bacteriome inhibits pathogen colonization via competition,
produces secondary metabolites, energizes host intestinal epithelium and enhances immune responses
by host–microbe cross talk. For example, metabolites produced by bacteria can inhibit C. albicans
colonization and translocation across the intestinal barrier [20]. Moreover, the efficacy of FMT was
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reduced due to the presence of C. albicans in donor stool, suggesting a strong relationship between
fungal dysbiosis and FMT outcome [147].

Most of the studies on the microbiome suggest common themes between bacteriome, virome,
mycobiome, and host genetics; however, there is no study indicating their direct relationships. Multiple
factors determine the effect of the microbiome on homeostasis. Until recently, most of the studies have
characterized interactions between bacteria and the host, while the relationships involving virome and
mycobiome have received less attention. A few studies reported that interactions between components
of microbiome and host could modulate the infectivity of viruses, such as the interaction between
bacteria, poliovirus, and reovirus [10]. Bacteria can enable viral replication and cellular binding,
facilitating chronic infections [37], or can also negatively affect viral infections. Most studies utilizing
lactic acid probiotic bacteria such as Lactobacillus have efficiently blocked virus infections caused by
rotavirus [148]. Conversely, the introduction of fungi can alter the composition of local, downstream,
and upstream bacterial microbiota, while bacterial microbiota and the intestinal epithelium influence
the ability of fungi to colonize the gut [13]. The commensal mycobiome-associated metabolites and
products can also influence immune homeostasis, while helminths have immuno-regulatory effects
evolved from host–parasite interactions [96]. Together, the above findings suggest that each member
of the microbiome can individually affect the host immune system via basal stimulation (Table 8).

Table 8. The immune responses associated with different members of the microbiome ([1,149,150]).

Microbial Constituent Response Type Immune
Cells/Expressions Cytokines Initiation

Bacteria (intracellular):
Systemic commensals,

Proteobacteria, pathogens

Inflammatory response
(IR) 1 T helper 1 (Th 1) cells

Interferon gamma
(IFN-
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), Tumor necrosis
factor (TNF-α)

Microbe-associated
molecular patterns
(Pro-inflammatory)

Virus IR 1 CD4, CD8 T cells IFN-α/β, IFN-λ

Segmented filamentous
bacteria (extracellular),

Fungi
IR 2 Th 17 cells Interleukins (IL) 17A,

IL-22 Mucosal epithelial cells

Helminths IR 2 Th 2 cells IFN-
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evidence suggests that helminths also regulate mucosal inflammation [134,135]. Infection with 
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Trichiuris suis, helminthic worms have ameliorated disease activities [136,137]. However, the exact 
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More studies on helminths and their relationship with host immune responses could lead to highly 

effective therapeutic strategies for human IBD, and other autoimmune disorders. 

Table 7. Summary of significant study findings on the role of helminths in health and disease. 

Model Type Study Details Findings Ref. 

Rat model  

(2, 4, 6 Trinitrobenzene 

sulphonic acid (TNBS) induced 

colitis model 

 N = 24: HC = 6, Schistosoma mansoni 

group = 6, TNBS group = 6 and S. 

mansoni + TNBS group= 6 

S. mansoni group: ↑IL-2, IL-4 

TNBS group: ↑IL-2 ↑T helper 1 

(Th1) 

S. mansoni plus TNBS group:  

↑Th2 ↓Th 1 (↓Inflammation) 

 

Concurrent infection with S. mansoni 

significantly attenuates TNBS 

induced colitis in the rats. 

[138] 

Rhesus macaques with 

idiopathic chronic diarrhea 

(ICD) w/o T suis infection 

N = 7, ICD = 5 

ICD with T suis = 5, HC = 2 

ICD group= ↓ Mucosal bacterial 

diversity, ↓ Th2 

 

ICD with T suis = ↑Mucosal 

bacterial diversity (Cyanobacteria), 

↑Th2  

[139] 

Human (Tetanus toxoid (TT) 

and S mansoni infection) 

TT + S. mansoni = 11 

HC= 5 

TT + S. mansoni group: ↓Interferon 

gamma (IFN-ɤ), ↑Th 2 

HC: ↑IFN-ɤ ↓Th1 

[140] 

Human  

(helminthic ova in the treatment 

of active IBD) 

N = 4 (IBD), 2500 live Trichuris suis 

eggs/12 weeks/subject 

IBD:↑Inflammation:↑Th1 

T. suis treated:↓Inflammation: ↑

Th2 and ↓Th1 

[141] 

Human (RCT T suis therapy for 

ulcerative colitis (UC)) 
N = 54, Therapy group= 30, HC = 24 

Therapy group =↓UC disease 

activity index (DAI) 
[137] 

Human (RCT T suis therapy for 

Crohn’s disease (CD)) 
N = 36, Treated group= 27, HC= 9  T. suis therapy was well tolerated [142] 

Human (Necator americanus 

therapy for CD) 
N = 18, (inoculation) 

CD:↑DAI 

N. americanus treated:↓CD (DAI) 
[143] 

Human (T suis therapy multiple 

sclerosis) 
N = 5 

Multiple sclerosis: ↑Inflammation 

T. suis treated:↑IL-4, ↑IL-10  

(↓Inflammation =↑Th 2?) 

[144] 

↑= increase; ↓= decrease; HC = healthy control; N= total, RCT = randomized control trial, TT= 

Tetanus toxoid, UC= ulcerative colitis, CD= Crohn’s disease, DAI= disease activity index, IL= 

interleukins; Th= T helper cells; IFN= interferon. 

6. Cross-Kingdom Interactions 

Advances in ‘omics’ technologies have enabled researchers to better describe host–microbiome 

and microbiome–microbiome interactions, including the insight that different strains and species of 

microbes typically compete with each other for limited space and nutrients [145]. Emerging research 

suggests that the gut microbial system is densely colonized, promoting intense niche competitions 

for adhesion sites and nutrients (their limitations), and cooperation within and between microbial 

species [146]. Microbial competition occurs during initial encounters and gradually numbers reduce 

by co-exclusion, or niche separation or through spatial separation, enabling the coexistence of diverse 

GATA 3

Archaea
((Methanomassiliicoccus

luminyensis, Methanosphaera
stadtmanae and M. smithii))

Inflammatory/regulatory
response T cells- CD86, CD197

Monocyte-derived
dendritic cells (MODC),

type 1 IFN
Mucosal epithelial cells

Clostridia, Bacteroides fragilis,
archaea and helminths Regulatory response T regulatory cells

(Foxp3 + Tregs)

IL-10, Transforming
growth factor beta

(TGF-β)
Resolution of IR 1, 2

IR = Inflammatory response; Th = T helper cells; IFN = Interferon gamma; TNF = Tumor necrosis factor;
IL = Interleukins; MODC = Monocyte-derived dendritic cells; TGF = Transforming growth factor.

Host immune responses are determined based on the characteristics of an individual member
of the microbiome and its location (intra or extracellular) [149]. Bacteria, viruses, and fungi activate
the innate part of the immune system via macrophages, which in turn actuate the adaptive immune
system by employing T cells (pro-inflammatory) and their subsets such as T helper (Th) 1 and Th17
cells, respectively [150–152]. Similarly, helminths can activate macrophages and Th2 cells, leading to
worm expulsion and inflammation. Excessive pro-inflammatory responses can cause damage to the
host and thus are regulated by initiation tolerogenic regulatory responses via Treg cells [132] which
reduce inflammation (Figure 3). Thus, the immunomodulatory effect of the microbiome promotes
microbiome–immune tolerance and immune homeostasis. However, imbalance in the commensal
microbial composition may play an important role in the development of autoimmune and chronic
inflammatory responses. Trans-kingdom interplay, therefore, adds a layer of complexity in terms
of host–microbial and immune homeostasis. Apart from bacteria, more definitively elucidating the
roles of human gut virome, mycobiome, and helminths may have the potential to augment detection
of disorders and act as disease markers. New developments in metagenomics, enrichment cultures,
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and bioinformatics tools are urgently required to improve our ability to define and characterize
these biomes.

Microorganisms 2020, 8, 483 14 of 23 

 

 

Figure 3. The known microbe–immune interactions in inflammation and homeostasis. A. Certain 

members of bacteria (intracellular, systemic commensals, Proteobacteria, and opportunist pathogens) 

and viruses induce inflammatory responses (IR 1) by promoting T cells and their subsets T helper 1 

cells (Th 1) releasing pro-inflammatory cytokines such as interferon-gamma (IFN-), tumor necrosis 

factor-alpha (TNF-α), etc., initiated by microbe-associated molecular patterns (Black arrow). B–C. 

Segmented filamentous bacteria (extracellular), member of Fungi, and helminths (GATA 3) induce 

inflammatory responses initiated at the mucosal sites, which promote the expansion of T cells 

expressing Th 17 and Th 2 cells releasing Interleukins (IL) 17A, IL-22, and IFN-, respectively (Brown 

and green). D. Certain members of Archaea (Methanomassiliicoccus luminyensis, Methanosphaera 

stadtmanae and M. smithii) promote surface markers CD86, CD197 expressed on T cells releasing 

Monocyte-derived dendritic cells (MODC), type 1 IFN (Orange). All the factors involving A–D may 

lead to tissue damage and ultimately inflammation. E–F. Certain members of Clostridia, Bacteroides 

fragilis, archaea, and helminths induce regulatory responses by promoting Foxp3-expressing T 

regulatory (Tregs) cells, limiting the activation of Th1, Th2, and Th17 cells (Blue). This regulation and 

tolerance promote homeostasis. 

7. Modulation of the Microbiome and Related Concerns 

To manipulate the microbiota, one should account for all the members of the gut microbial 

community; to that end, diet is considered a vital factor to positively modulate the gut microbiome. 

Figure 3. The known microbe–immune interactions in inflammation and homeostasis. A. Certain
members of bacteria (intracellular, systemic commensals, Proteobacteria, and opportunist pathogens)
and viruses induce inflammatory responses (IR 1) by promoting T cells and their subsets T helper
1 cells (Th 1) releasing pro-inflammatory cytokines such as interferon-gamma (IFN-γ), tumor
necrosis factor-alpha (TNF-α), etc., initiated by microbe-associated molecular patterns (Black arrow).
B–C. Segmented filamentous bacteria (extracellular), member of Fungi, and helminths (GATA 3)
induce inflammatory responses initiated at the mucosal sites, which promote the expansion of T
cells expressing Th 17 and Th 2 cells releasing Interleukins (IL) 17A, IL-22, and IFN-γ, respectively
(Brown and green). D. Certain members of Archaea (Methanomassiliicoccus luminyensis, Methanosphaera
stadtmanae and M. smithii) promote surface markers CD86, CD197 expressed on T cells releasing
Monocyte-derived dendritic cells (MODC), type 1 IFN (Orange). All the factors involving A–D may
lead to tissue damage and ultimately inflammation. E–F. Certain members of Clostridia, Bacteroides
fragilis, archaea, and helminths induce regulatory responses by promoting Foxp3-expressing T regulatory
(Tregs) cells, limiting the activation of Th1, Th2, and Th17 cells (Blue). This regulation and tolerance
promote homeostasis.
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7. Modulation of the Microbiome and Related Concerns

To manipulate the microbiota, one should account for all the members of the gut microbial
community; to that end, diet is considered a vital factor to positively modulate the gut microbiome. Different
diets, such as LFD and HFD, have varied effects on each microbial community of the gut. For instance,
Bacteroides and Prevotella genera were found to correlate with different diets inversely. Abundance of
Bacteroides was associated with high fats, amino acids, and choline consumption, whereas Prevotella is
correlated with carbohydrate consumption [153]. Additionally, the phage community of the gut is significantly
altered by diet based upon pre-existing populations, indicating that individuals with the same diet may have
similar, but not identical, viromes [50]. Similar trends were observed in both mycobiome and archaeome.
Recent and high consumption of carbohydrates is directly linked to abundance of Candida, whereas a long
term patterns of carbohydrates consumption is linked to profusion of Methobrevibacter spp. [100].

A growing body of evidence demonstrates the use of probiotics, prebiotics, synbiotics (pre-
and probiotics together), FMT, and recently FVT, to modulate the microbiome [1–3]. Although these
therapies produced promising outcomes in a few clinical and experimental models, most of them have
not been consistent and may not provide consistent clinical benefits. For example, probiotics (single or
multi-strained) are considered natural, safe, and beneficial modulators of the gut microbial composition,
but their efficacy is strain- and dose-dependent and not all probiotics function against all disorders and
diseases [154]. Fundamentally, to confer health benefits a probiotic needs to survive the acidic gastric
digestion, other digestive enzymes, reach the intestine and colonize on the intestinal epithelium in good
numbers [114]. In most of the probiotic trials, the vehicles for probiotic intake used are yoghurt, biscuits,
bars, and capsules, per oral, which is not consistent across the studies and can potentially confound
the outcomes [155]. While the exact probiotic mechanism is still unknown, the route of administration
and dosage form may influence colonization. The colonization of probiotic strains is also dependent on
competition or cooperation (microbe–microbe interactions) with the resident microbiota. Recently, several
commercially available probiotics are increasingly multi-strain rather than a single strain [155], but how
these multi-strains work and interact with each other to confer health benefits is still unknown. Specific
probiotic strains and their combinations need to be further investigated to deploy them to their full potential.

Synbiotics, combinations of pro- and prebiotics, are also arbitrarily chosen in many studies [156].
Sometimes the selected probiotic may not be able to even ferment the selected prebiotic strains [2,156].
The components of synbiotics are rarely tested individually in clinical or pre-clinical studies. Similarly,
FMT is currently being explored for virome and mycobiome in the donor fecal samples and but also
has not undergone rigorous component-based testing.

8. Conclusions

It is imperative to understand that gut microbiome/macrobiome is not limited to bacteria but
also viruses, fungi, and helminths. All these microbes interacting with each other, and with the host,
in combination or alone, influence the health of the host. Advances in NGS technologies enable
us to study the whole microbiome in an integrative way by exploring the taxonomic profiles and
functional attributes of the various microbial communities. Considerable further study will be required
to understand the development and regulation of gut microbial communities and the factors mediating
the balance between long-term stability and dynamic response to the environment.
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