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ABSTRACT
We	previously	identified	529	proteins	that	had	been	reported	by	multiple	different	
studies to change their expression level with age in human plasma. In the present 
study,	we	measured	 the	q-value	 and	 age	 coefficient	 of	 these	 proteins	 in	 a	 plasma	
proteomic	dataset	derived	from	4263	individuals.	A	bioinformatics	enrichment	analy-
sis of proteins that significantly trend toward increased expression with age strongly 
implicated	diverse	inflammatory	processes.	A	literature	search	revealed	that	at	least	
64 of these 529 proteins are capable of regulating life span in an animal model. Nine 
of	these	proteins	 (AKT2,	GDF11,	GDF15,	GHR,	NAMPT,	PAPPA,	PLAU,	PTEN,	and	
SHC1)	significantly	extend	life	span	when	manipulated	in	mice	or	fish.	By	performing	
machine-learning	modeling	 in	a	plasma	proteomic	dataset	derived	 from	3301	 indi-
viduals,	we	discover	an	ultra-predictive	aging	clock	comprised	of	491	protein	entries.	
The Pearson correlation for this clock was 0.98 in the learning set and 0.96 in the test 
set while the median absolute error was 1.84 years in the learning set and 2.44 years 
in	the	test	set.	Using	this	clock,	we	demonstrate	that	aerobic-exercised	trained	indi-
viduals have a younger predicted age than physically sedentary subjects. By testing 
clocks	associated	with	1565	different	Reactome	pathways,	we	also	show	that	pro-
teins associated with signal transduction or the immune system are especially capable 
of	predicting	human	age.	We	additionally	generate	a	multitude	of	age	predictors	that	
reflect	different	 aspects	of	 aging.	For	example,	 a	 clock	 comprised	of	proteins	 that	
regulate life span in animal models accurately predicts age.
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1  |  INTRODUC TION

A	panel	of	molecules	capable	of	predicting	chronological	age	when	
modeled	is	referred	to	as	an	aging	clock	(Galkin	et	al.,	2020a).	Existing	
examples of human aging clocks include those comprised of methyl-
ated	DNA	(Hannum	et	al.,	2013;	Horvath,	2013),	RNA	(Mamoshina	
et	al.,	2018),	proteins	(Johnson	et	al.,	2020),	metabolites	(Rist	et	al.,	
2017;	Robinson	et	al.,	2020),	biochemical	markers	(Putin	et	al.,	2016;	
Sagers	et	al.,	2020),	or	microbiota	(Galkin,	et	al.,	2020b).	For	a	more	
detailed	discussion	of	different	types	of	aging	clocks,	we	recommend	
a	comprehensive	review	by	Galkin	et	al.	(2020a).	A	recent	proteomic	
aging clock found that individuals with a lower predicted age than 
their chronological age performed better on cognitive and physical 
tests	(Lehallier	et	al.,	2019).	An	RNA	clock	demonstrated	that	the	dif-
ference between predicted and actual age was associated with body 
mass	 index,	blood	pressure,	 fasting	glucose,	and	cholesterol	 levels	
(Peters	et	al.,	2015).	A	much	larger	body	of	work	using	DNA	methyl-
ation	clocks	has	shown	that	patients	with	age-related	disease	often	
have	a	higher	predicted	age	than	their	chronological	age	(Horvath	&	
Raj,	2018).	These	data	suggest	that	aging	clocks	have	the	ability	to	
measure	biological	age,	which	can	be	conceptualized	as	a	composite	
measure that correlates with various health outcomes.

Given that it is not realistic to perform life span studies in hu-
mans,	a	prominent	appeal	of	aging	clocks	is	their	potential	ability	to	
accelerate	anti-aging	clinical	trials	 (Horvath	&	Raj,	2018).	Prior	to	
and	after	testing	of	an	anti-aging	intervention,	biological	age	could	
be	measured	in	a	patient	cohort.	Theoretically,	a	therapy	that	suc-
cessfully combats aging would be one where biological age is re-
duced compared to controls at the end of the treatment period. 
Repeated measurements of biological age also have the potential 
to	be	highly	informative	on	an	individual	level.	They	could,	for	ex-
ample,	 suggest	 whether	 or	 not	 someone	 ought	 to	 more	 aggres-
sively	 pursue	health-promoting	 interventions	 to	 slow	down	 their	
rate	of	aging.	The	requirement	for	repeat	sampling	necessitates	a	
sample	type	that	can	be	measured	safely	and	easily,	such	as	blood	
or	saliva.	Since	the	aging	clock	field	is	nascent,	much	work	remains	
to be done to confidently determine if these theoretical applica-
tions are feasible.

In	addition	to	existing	drugs	whose	promising	anti-aging	poten-
tial	 should	be	 safely	 tested	 in	humans	 (Partridge	et	 al.,	2020),	de-
signing novel therapies capable of improving human health span 
will	 require	 well-considered	 molecular	 targets.	 A	 wide	 variety	 of	
approaches	 have	 been	 historically	 utilized	 to	 identify	 aging-rele-
vant	 targets	 and	 therapeutics,	 including	RNAi	 screening	 in	worms	
(Hansen	et	al.,	2005),	computational	screening	of	the	protein–drug	
interactome	 (Fuentealba	 et	 al.,	 2019),	 and	 omics-level	 expression	
screening	in	mice	(Villeda	et	al.,	2011).	As	an	example	of	the	latter,	
young mice exposed to the blood of old mice via heterochronic para-
biosis exhibit decreased synaptic plasticity as well as impairments 
in	memory	and	learning.	A	proteomics	expression	screen	identified	
that the chemokine Ccl11 was the most significantly altered protein 
in	 these	 heterochronic	 parabionts.	 Subsequently,	 treating	 young	

mice with Ccl11 was found to induce various deleterious effects in 
the	brain	(Villeda	et	al.,	2011).

With	the	ultimate	objective	of	 improving	human	health	span	
in	mind,	we	sought	to	better	understand	proteomic	aging	clocks	
and	 to	 identify	high-quality	protein	 targets	 that	exhibit	 anti-ag-
ing	 clinical	 potential.	 Since	 systematic	 factors	 are	 powerful	
regulators	 of	 aging	 (Pluvinage	 &	Wyss-Coray,	 2020),	 we	 aimed	
to achieve these goals by comprehensively data mining human 
plasma proteins.

2  |  RESULTS

2.1  |  Analysis of all 529 common plasma aging 
proteins in a large proteomics dataset

Our recent systematic review identified 529 proteins that were re-
ported to change their expression level with age in human plasma 
by	two	or	more	different	studies	(Johnson	et	al.,	2020).	In	the	pre-
sent	 study,	we	began	 analyzing	 these	proteins	by	measuring	 their	
q-value	and	age	coefficient	 in	a	plasma	proteomic	dataset	derived	
from	 4263	 healthy	 individuals	 with	 an	 age	 range	 of	 18–95	 years.	
Proteomic measurements were previously performed using the 
SOMAscan	assay,	which	utilizes	 individual	SOMAmers	 to	measure	
different	proteins	(Lehallier	et	al.,	2019).	Our	529	proteins	(Table	S1)	
were	condensed	 into	523	protein	entries	 (Table	S2)	 in	this	dataset	
due to some measurements containing multiple different proteins. 
For	example,	the	heterotrimeric	enzyme	AMPK	was	measured	using	
the	 single	 SOMAmer	 “PRKAA1.PRKAB1.PRKAG1.”	 Twenty-seven	
proteins	were	not	available	for	measurement	and,	of	the	496	protein	
measurements,	476	 (95.97%)	 significantly	 (q	 <	0.05)	 changed	 their	
expression	level	with	age.	Of	these	476	significant	protein	entries,	
115	(24.16%)	trended	toward	a	decreased	expression	level	with	age	
while	 361	 (75.84%)	 trended	 toward	 an	 increased	 expression	 level	
with	age.	These	and	other	statistics	are	summarized	in	Table	S3.	The	
six protein measurements with the lowest q-values	 are	 shown	 in	
Figure	1	and	are	as	follows:	CGA.FSHB,	SOST,	GDF15,	MLN,	RET,	
and PTN.

2.2  |  Many common aging plasma proteins have 
highly intriguing links to aging and/or health

We	next	looked	up	each	common	aging	plasma	protein	in	the	Human	
Ageing	Genomic	Resources	 (HAGR)	database	 (Tacutu	et	 al.,	 2018)	
and	found	that	103	(19.47%	of	all	529	proteins)	had	a	HAGR	listing.	
After	performing	a	comprehensive	 literature	search,	we	were	also	
able to find a tangible connection to aging and/or health for all 523 
protein	entries	(Table	S2).

Many	of	the	connections	we	identified	are	highly	intriguing.	For	
example,	 injecting	B2M	into	young	mice	 impairs	neurogenesis	and	
cognitive	function	(Smith	et	al.,	2015)	while	treating	aged	mice	with	
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Timp2	enhances	cognition	and	synaptic	plasticity	(Castellano	et	al.,	
2017).	Ablating	Cdon in satellite cells hinders muscle regeneration 
in	mice	(Bae	et	al.,	2020),	mice	lacking	Il6 exhibit impaired liver re-
generation	 (Cressman	 et	 al.,	 1996),	 and	 the	 myeloid	 cell-specific	
ablation of Plxnb2 in mice impairs motor recovery following spinal 
cord	injury	(Zhou	et	al.,	2020).	Cardiac	hypoplasia	is	caused	by	the	
deletion of tmem87b	 in	 zebrafish	 (Russell	 et	 al.,	 2014)	while	mice	
overexpressing Nab1 are resistant to cardiac hypertrophy (Buitrago 
et	al.,	2005).	Diabetes	 in	mouse	models	of	 insulin	resistance,	 insu-
lin	 deficiency,	 and	obesity	 can	be	 reversed	by	 the	overexpression	
of Igfbp2	 (Hedbacker	et	al.,	2010)	and,	 in	contrast,	mice	harboring	
a mutation in Lep	become	obese	and	diabetic	 (Zhang	et	al.,	1994).	
More	broadly,	connections	pertinent	to	age-related	disease,	the	ca-
nonical	insulin/IGF1,	AMPK,	and	TOR	aging	pathways	(Singh	et	al.,	
2019),	 and	 lipid	 metabolic	 pathways	 that	 directly	 regulate	 aging	
(Johnson	 &	 Stolzing,	 2019)	 were	 identified.	 We	 selected	 the	 fol-
lowing 20 proteins to highlight that prominently impact longevity 
and/or	 age-related	disease	when	manipulated	 in	 an	 animal	model:	
ADAMTS5,	BDNF,	CCL11,	CGA.FSHB,	FGA.FGB.FGG,	IL15RA,	IL6,	
LIFR,	 LILRB2,	 MMP12,	 NAB1,	 NTN1,	 PAK4,	 PLA2G2A,	 PLXNB2,	
POMC,	 PRKAA1.PRKAB1.PRKAG1,	 RBM3,	 SIRT5,	 and	 UFM1.	

Interesting literature connections for these proteins are listed in 
Table 1 and graphs visualizing how the expression level of these pro-
teins	changes	with	age	are	shown	in	Figure	S1.

2.3  |  A large proportion of common aging plasma 
proteins affect animal life span

Among	the	literature	connections	 identified	for	all	of	our	common	
aging	plasma	proteins	 (Table	S2),	at	 least	64	proteins	 (12.1%	of	all	
529	 proteins)	 increase	 or	 decrease	 life	 span	when	manipulated	 in	
normal animal models. 35 of these 64 proteins affect life span in a 
vertebrate model. The number of life span regulators is expanded to 
108	(20.42%	of	all	529	proteins)	when	disease	models,	stress	mod-
els,	and	models	harboring	multiple	different	genetic	alterations	are	
included. The following nine proteins were found to significantly ex-
tend	 life	 span	when	manipulated	 in	 normal,	 non-diseased	mice	 or	
fish:	 AKT2,	 GDF11,	 GDF15,	 GHR,	 NAMPT,	 PAPPA,	 PLAU,	 PTEN,	
and	SHC1.	Vertebrate	life	extension	details	for	all	nine	of	these	pro-
teins are provided in Table 2 and graphs visualizing how the expres-
sion	level	of	these	proteins	changes	with	age	are	shown	in	Figure	S2.

F I G U R E  1 529	proteins	that	were	previously	identified	to	change	their	expression	level	with	age	in	human	plasma	were	analyzed	in	a	
large,	proteomic	dataset	derived	from	4263	healthy	individuals	with	an	age	range	of	18–95	years.	The	six	proteins	that	exhibited	the	most	
significant	change	in	plasma	expression	level	with	age	were	CGA.FSHB	(a),	SOST	(b),	GDF15	(c),	MLN	(d),	RET	(e),	and	PTN	(f).	The	expression	
trend over time is visually shown for each protein. RFU = relative fluorescent unit
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TA B L E  1 20	examples	of	common	aging	plasma	proteins	with	highly	intriguing	links	to	aging	and/or	disease

Protein q-value, age coefficient Intriguing connections to aging and/or disease

ADAMTS5 7.69E−65,	1.88E−03 •	 Mice	lacking	Adamts5 are protected from cartilage destruction following joint instability induced 
by	surgery	(Glasson	et	al.,	2005)

• ADAMTS5	is	overexpressed	in	osteoarthritic	cartilage	from	mice	and	humans	(Lin	et	al.,	2009)
•	 Wwp2	promotes	the	maintenance	of	cartilage	homeostasis	via	the	suppression	of	Adamts5	in	
mice	(Mokuda	et	al.,	2019)

BDNF 2.78E−30,	2.84E−03 •	 Treating	Huntington's	disease	mice	with	human	mesenchymal	stem	cells	that	overexpress	BDNF	
extends	life	span	and	increases	neurogenesis-like	activity	(Pollock	et	al.,	2016)

•	 Exercise	elevates	BDNF	levels	and	induces	adult	hippocampal	neurogenesis	in	Alzheimer's	
disease	mice	(S.	H.	Choi	et	al.,	2018)

•	 In	a	zebrafish	model	of	Alzheimer's	disease,	BDNF	enhances	neurogenesis	and	neural	stem	cell	
plasticity	(Bhattarai	et	al.,	2020)

CCL11 8.87E−94,	3.34E−03 •	 In	a	cohort	of	non-diabetic	women,	plasma	levels	of	CCL11	are	associated	with	central	obesity	
and	are	reduced	in	response	to	an	exercise	program	(Choi	et	al.,	2007)

• Injecting recombinant Ccl11 into young mice reduces neurogenesis and impairs both memory 
and	learning	(Villeda	et	al.,	2011)

•	 Administering	recombinant	Ccl11	to	young	mice	results	in	synaptic	loss	and	increased	microglial	
reactivity	(Das	et	al.,	2019)

CGA.FSHB 2.89E−320,	1.64E−02 •	 Long-lived	mice	deficient	in	growth	hormone	receptor	exhibit	decreased	plasma	levels	of	follicle-
stimulating	hormone	(V.	Chandrashekar	et	al.,	2007)

• Bone loss is mitigated in ovariectomized mice treated with an antibody specific to the β-subunit	
of	follicle-stimulating	hormone	(Zhu	et	al.,	2012)

•	 An	antibody	specific	to	the	β-subunit	of	follicle-stimulating	hormone	decreases	body	fat,	
stimulates	brown	adipose	tissue,	and	promotes	thermogenesis	in	mice	(Liu	et	al.,	2017)

FGA.FGB.
FGG

8.38E−11,	7.25E−04 • Treating mice with fibrinogen causes demyelination via the induction of adaptive immune 
responses	and	the	recruitment	of	peripheral	macrophages	(Ryu	et	al.,	2015)

• Inhibiting fibrin with the monoclonal antibody 5B8 attenuates neurodegeneration and innate 
immunity	in	mouse	models	of	multiple	sclerosis	and	Alzheimer's	disease	(Ryu	et	al.,	2018)

•	 In	Alzheimer's	disease	mice,	genetically	deleting	a	binding	motif	in	fibrinogen	reduces	
neuroinflammation	and	cognitive	decline	(Merlini	et	al.,	2019)

IL15RA 1.31E−43,	1.57E−03 •	 Mice	lacking	Il15ra	have	a	higher	body	temperature,	consume	more	oxygen,	and	are	leaner	
despite	increased	food	intake	(He	et	al.,	2010)

• Fast skeletal muscles in Il15ra−/− mice are more resistant to fatigue and have a greater exercise 
capacity	(Pistilli	et	al.,	2011)

• Il15ra−/−	mice	are	protected	from	diet-induced	obesity	and	exhibit	enhanced	fatty	acid	oxidation	
(Loro	et	al.,	2015)

IL6 4.13E−05,	7.16E−04 • The ability to ward off bacterial or viral infection is impaired in Il6	knockout	mice	(Kopf	et	al.,	
1994)

• Genetically disrupting Il6 in mice impairs liver regeneration and causes liver failure (Cressman et 
al.,	1996)

• Transgenic mice overexpressing human IL6 are substantially smaller and have reduced levels of 
circulating	Igf1	(De	Benedetti	et	al.,	1997)

LIFR 5.43E−08,	−6.27E−04 • Increasing the expression of LIFR in malignant cells suppresses tumor metastasis in mice (D. Chen 
et	al.,	2012)

• Inoculating mice with breast cancer cells lacking LIFR	promotes	bone	destruction	(R.	W.	Johnson	
et	al.,	2016)

•	 Mouse	Lifr	contains	separate	protein	domains	that	either	maintain	stem	cell	self-renewal	or	
induce	differentiation	(X.	J.	Wang	et	al.,	2017)

LILRB2 9.22E−21,	1.07E−03 • The genetic deletion of Lilrb3 (mouse ortholog of human LILRB2)	protects	mice	from	Aβ-induced	
memory	impairment	(Kim	et	al.,	2013)

•	 Small	molecule	inhibitors	targeting	the	binding	site	of	LILRB2	disrupt	LILRB2-Aβ interactions and 
reduce	Aβ	cytotoxicity	(Cao	et	al.,	2018)

•	 The	anti-tumor	effects	of	T-cell	immune	checkpoint	inhibitors	are	enhanced	by	the	blockade	of	
LILRB2	(Chen	et	al.,	2018)

(Continues)
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Protein q-value, age coefficient Intriguing connections to aging and/or disease

MMP12 2.53E−92,	3.64E−03 •	 A	single	nucleotide	polymorphism	in	MMP12 is associated with a reduced risk of chronic 
obstructive	pulmonary	disease	(Hunninghake	et	al.,	2009)

•	 Large	artery	atherosclerosis	is	associated	with	a	genetic	variant	in	the	MMP12 locus and this 
gene	is	overexpressed	in	carotid	plaques	(Traylor	et	al.,	2014)

• In mice deficient in Ldlr,	the	deletion	of	Mmp12 protects male mice from both arterial stiffness 
and	atherosclerosis	(Liu	et	al.,	2019)

NAB1 1.14E−26,	−2.01E−03 •	 NAB1	is	upregulated	in	human	heart	failure	and	mice	overexpressing	Nab1 are protected from 
induced	hypertrophy	(Buitrago	et	al.,	2005)

•	 In	dogs	with	moderate	heart	failure,	treatment	with	rosuvastatin	reduces	the	expression	of	
NAB1	in	left	ventricular	tissue	(Zaca	et	al.,	2012)

•	 A	single	nucleotide	polymorphism	in	NAB1	is	associated	with	systemic	lupus	erythematosus,	
rheumatoid	arthritis,	systemic	sclerosis,	and	idiopathic	inflammatory	myopathies	(Acosta-
Herrera	et	al.,	2019)

NTN1 2.09E−50,	2.32E−03 • Overexpressing Ntn1 in the mouse gut suppresses intestinal cell apoptosis and promotes tumor 
development	(Mazelin	et	al.,	2004)

•	 In	mice	lacking	the	low-density	lipoprotein	receptor,	deleting	Ntn1 in macrophages attenuates 
atherosclerosis	(van	Gils	et	al.,	2012)

•	 In	a	mouse	model	of	obesity,	the	hematopoietic	deletion	of	Ntn1 enhances insulin sensitivity and 
decreases	inflammation	(Ramkhelawon	et	al.,	2014)

PAK4 2.47E−04,	9.28E−04 •	 Knocking	down	PAK4 in ovarian cancer cells prior to inoculation impedes tumor growth and 
dissemination	in	nude	mice	(Siu	et	al.,	2010)

• Overexpressing or depleting Pak4	in	mice	promotes	or	delays	mammary	cancer,	respectively	
(Costa	et	al.,	2019)

• Growth is suppressed and invasive potential is decreased by the inhibition of PAK4 in human 
bladder	cancer	cells	(D.	S.	Chandrashekar	et	al.,	2020)

PLA2G2A 1.56E−03,	7.11E−04 • The size and multiplicity of intestinal tumors are reduced in mice overexpressing Pla2g2a 
(Cormier	et	al.,	1997)

• The expression of PLA2G2A is positively correlated with survival in patients with gastric 
adenocarcinoma	(Leung	et	al.,	2002)

• In Muc2−/−	mice,	the	transgenic	expression	of	Pla2g2a suppresses intestinal tumorigenesis 
(Fijneman	et	al.,	2008)

PLXNB2 9.33E−40,	1.17E−03 •	 Inhibiting	PLXNB2	suppresses	the	development	of	xenograft	tumors	in	mice	(Yu	et	al.,	2017)
•	 Inhibiting	PLXNB2	makes	prostate	cancer	stem	cells	more	sensitive	to	chemotherapy	(Li	et	al.,	
2020)

•	 Motor	sensory	recovery	following	spinal	cord	injury	is	impaired	in	mice	lacking	Plxnb2 in myeloid 
cells	(X.	Zhou	et	al.,	2020)

POMC 1.53E−07,	9.34E−04 •	 Mutations	in	POMC	cause	early-onset	obesity	and	adrenal	insufficiency	in	humans	(Krude	et	al.,	
1998)

• Blocking the expression of Pomc in hypothalamic neurons causes hyperphagia and obesity in 
mice	(Bumaschny	et	al.,	2012)

• In obese patients with defects in POMC,	treatment	with	a	melanocortin-4	receptor	agonist	
reduces	hunger	and	induces	weight	loss	(Kuhnen	et	al.,	2016)

PRKAA1.
PRKAB1.
PRKAG1

4.11E−02,	3.24E−04 •	 Worms	constitutively	expressing	aakg-2 (worm ortholog of PRKAG1)	are	more	resistant	to	
oxidative	stress	and	live	longer	(Greer	et	al.,	2007)

•	 Ampk	elevates	cellular	NAD+	levels	and	enhances	the	activity	of	Sirt1	in	mouse	skeletal	muscle	
(Canto	et	al.,	2009)

• Overexpressing AMPKα (fly ortholog of PRKAA1)	in	neurons	induces	autophagy	and	extends	life	
span in Drosophila	(Ulgherait	et	al.,	2014)

RBM3 6.61E−20,	2.21E−03 • Cold stress increases the expression level of RBM3 in multiple different human cell lines (Danno 
et	al.,	1997)

• Overexpressing Rbm3	prevents	neuronal	loss	and	prolongs	survival	in	Alzheimer's	disease	mice	
(Peretti	et	al.,	2015)

•	 In	response	to	hypoxic	ischemia,	Rbm3	promotes	the	proliferation	of	neural	stem/progenitor	
cells	in	the	subgranular	zone	(X.	Zhu	et	al.,	2019)

Table	1 (Continued)

(Continues)
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2.4  |  Well-known anti-aging drugs and 
interventions are implicated by our common aging 
plasma proteins

Many	of	our	529	common	aging	plasma	proteins	were	also	implicated	
by	established	anti-aging	drugs	and	interventions	(Table	S2),	includ-
ing	glycine	(Miller	et	al.,	2019),	rapamycin	(Bitto	et	al.,	2016),	sper-
midine	(Eisenberg	et	al.,	2016),	nicotinamide	riboside	(Zhang	et	al.,	
2016),	 metformin	 (Kulkarni	 et	 al.,	 2020),	 caloric	 restriction	 (Most	
et	al.,	2017),	intermittent	fasting	(de	Cabo	&	Mattson,	2019),	and	ex-
ercise	(Garatachea	et	al.,	2015).	These	connections	prompted	us	to	
analyze	our	identified	vertebrate	longevity	proteins	in	the	GLAD4U	
drug	 database	 (Jourquin	 et	 al.,	 2012).	 For	 our	 nine	 vertebrate	 life	
extension	proteins,	the	three	enriched	terms	were	“insulin	recombi-
nant,”	“somatropin	recombinant,”	and	“egfr	inhibitors”	(Figure	S3A).	
Among	the	enriched	terms	for	all	35	vertebrate	 longevity	proteins	
was	the	immunosuppressant	“sirolimus,”	which	is	another	name	for	
rapamycin	 (Figure	S3B).	Other	aging-relevant	enriched	drug	 terms	
included	 “cardiovascular	 system”	 as	 well	 as	 the	 anti-cancer	 drugs	
“doxorubicin”	and	“erlotinib”	(Figure	S3B).

2.5  |  Diverse processes pertinent to the immune 
system are strongly implicated by plasma proteins 
that trend toward an increased expression level 
with age

We	 next	 performed	 enrichment	 analyses	 in	 the	 Gene	 Ontology	
Biological	Process	(GO	BP)	database	(The	Gene	Ontology,	2019)	for	
different sets of proteins. For the proteins that significantly trend 
toward	 increased	expression	with	age,	a	very	prominent	 theme	of	
the	immune	system	was	apparent.	Among	the	top	30	GO	BP	terms	
(Figure	2),	 the	 following	 six	 terms	 relevant	 to	 the	 immune	 system	
were	 identified:	 “leukocyte	 migration,”	 “response	 to	 molecule	 of	
bacterial	 origin,”	 “response	 to	 interleukin-1,”	 “granulocyte	 activa-
tion,”	 “leukocyte	cell-cell	 adhesion,”	and	 “viral	 life	cycle.”	The	pro-
teins that significantly trend toward decreased expression with age 

were	associated	with	the	following	enriched	terms:	“positive	regula-
tion	of	response	to	external	stimulus,”	“protein	activation	cascade,”	
“protein	 kinase	 B	 signaling,”	 “extracellular	 structure	 organization,”	
and	“neutrophil	mediated	immunity”	(Figure	S4A).

For the plasma proteins that can impact longevity in normal 
animals,	 the	 enriched	 terms	 were	 quite	 diverse	 (Figure	 S4B).	
Themes	of	nutrient	intake	and	metabolism	(i.e.,	“response	to	nu-
trient	levels,”	“regulation	of	carbohydrate	metabolic	process,”	and	
“response	to	ketone”)	and	the	immune	system	(i.e.,	“response	to	
transforming	 growth	 factor	 beta”	 and	 “neutrophil	mediated	 im-
munity”)	 were	 present.	 Terms	 relevant	 to	 protein	 homeostasis	
(i.e.,	 “positive	 regulation	 of	 proteolysis”)	 and	 stress	 resistance	
(i.e.,	 “response	 to	 oxidative	 stress”)	were	 also	 identified	 (Figure	
S4B).	For	 the	 larger	 list	of	proteins	 that	can	 impact	 longevity	 in	
any	 animal	model,	we	 collated	 the	 top	30	GO	BP	 terms	 (Figure	
S5).	 Prominent	 themes	 pertinent	 to	 cell	movement,	 cell	 growth	
and	proliferation,	the	immune	system,	and	the	circulatory	system	
were	identified	(Figure	S5).

2.6  |  Machine-learning analyses uncover numerous 
aging clocks reflecting different aspects of aging

Having	established	that	these	common	plasma	proteins	have	impor-
tant	connections	to	aging	and	disease,	we	were	curious	if	different	
protein combinations could be utilized to accurately predict human 
age.	 To	 do	 this,	we	 tested	 different	 clocks	 in	 a	 plasma	 proteomic	
dataset derived from 3301 healthy individuals with an age range of 
18–76	years.	Proteins	in	this	dataset	were	previously	measured	using	
the	SOMAscan	assay	 (Sun	et	al.,	2018).	We	started	by	 testing	 the	
following seven clocks: proteins that can extend life span in normal 
vertebrates,	 proteins	 that	 can	modify	 life	 span	 in	 a	 normal	 verte-
brate	animal	model,	proteins	that	can	modify	 life	span	 in	a	normal	
animal	model,	proteins	with	an	entry	in	the	HAGR	database,	proteins	
that	 can	 modify	 life	 span	 in	 any	 animal	 model	 (including	 disease,	
stress,	and	genetically	complex	models),	proteins	 that	 significantly	
change	their	expression	level	with	age,	and	all	common	aging	plasma	

Protein q-value, age coefficient Intriguing connections to aging and/or disease

SIRT5 9.61E−10,	8.53E−04 • Creating a Sirt5	deficiency	in	Parkinson's	disease	mice	exacerbates	motor	deficits	and	
dopaminergic	degeneration	(Liu	et	al.,	2015)

•	 Knocking	out	Sirt5 in mice leads to the development of hypertrophic cardiomyopathy 
(Sadhukhan	et	al.,	2016)

•	 Mice	deficient	in	Sirt5 exhibit cold intolerance and a reduced browning capacity in white adipose 
tissue	(Shuai	et	al.,	2019)

UFM1 2.51E−03,	5.82E−04 •	 Deletion	mutations	that	affect	the	ufm-1	cascade	result	in	reduced	fecundity	and	life	span	in	
worms	(Hertel	et	al.,	2013)

•	 RNAi	knockdown	against	Ufm1 decreases life span and causes locomotive defects in fruit flies 
(Duan	et	al.,	2016)

•	 A	homozygous	mutation	in	UFM1	causes	early-onset	encephalopathy	with	progressive	
microcephaly	in	humans	(Nahorski	et	al.,	2018)

For	each	protein,	the	q-value	and	age	coefficient	(measured	in	a	human	proteomic	dataset	derived	from	4263	individuals	aged	18–95	years)	as	well	as	
three relevant connections to aging and/or disease are provided.

Table	1 (Continued)
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proteins	(Table	S4).	We	additionally	tested	the	following	five	clocks	
based on the top weighted set cover enrichment result (for all 529 
proteins)	in	the	Reactome	(Jassal	et	al.,	2020),	Panther	(Mi	&	Thomas,	
2009),	KEGG	(Kanehisa	&	Goto,	2000),	WikiPathways	(Slenter	et	al.,	
2018),	and	GO	BP	 (The	Gene	Ontology,	2019)	databases:	proteins	
associated	with	“peptide	hormone	biosynthesis”	 in	Reactome,	pro-
teins	associated	with	 “plasminogen	activating	cascade”	 in	Panther,	
proteins	 associated	 with	 “complement	 and	 coagulation	 cascades”	
in	KEGG,	proteins	associated	with	“human	complement	system”	 in	

WikiPathways,	 and	proteins	associated	with	 “leukocyte	migration”	
in	GO	BP	(Table	S5).

The	Pearson	correlation	for	predicted	vs.	actual	age	(Figure	3a)	
and	the	median	absolute	error	(MAE)	(Figure	3b)	for	all	12	of	these	
clocks	is	shown.	For	each	clock,	two-thirds	of	the	dataset	(n	=	2178)	
was used for the training model and one third of the dataset 
(n	=	1123)	was	used	for	the	validation	model.	We	also	fitted	a	LASSO	
model for each clock to determine if there was a subset of highly pre-
dictive	proteins	within	the	full	protein	list.	We	additionally	compared	

Protein q-value, age coefficient Life span effect

AKT2 1.61E−16,	1.04E−03 Mice	deficient	in	Akt2 display a 9.1% increase 
in median survival and an improvement in 
myocardial	contractile	function	(Ren	et	al.,	
2017)

GDF11 1.92E−02,	−7.20E−04 In	killifish,	levels	of	gdf11	decrease	with	age	and	
treating aged animals with recombinant gdf11 
lengthens mean life span by 8.3%	(Zhou	et	al.,	
2019)

GDF15 1.71E−249,	5.26E−03 The overexpression of human GDF15 in female 
mice extends median life span (19.5% for 
transgenic line 1377 and 12.9% for transgenic 
line	1398)	and	protects	against	weight	gain	
and	insulin	insensitivity	(Wang	et	al.,	2014)

GHR 7.56E−24,	−1.53E−03 Ghr−/− mice live longer (8.7%–28.2% increase 
in median life span depending on the sex 
and	mouse	strain),	weigh	less,	and	exhibit	
reduced levels of fasting glucose and insulin 
(Coschigano	et	al.,	2003)

NAMPT 5.39E−04,	1.12E−03 Wheel-running	activity	is	enhanced	and	longevity	
is boosted (10.2% increase in median life 
span)	in	aged	female	mice	treated	with	
extracellular vesicles containing Nampt 
(Yoshida	et	al.,	2019)

PAPPA 9.29E−05,	8.09E−04 The incidence of spontaneous tumors is reduced 
and life is prolonged (37.5% increase in mean 
life	span)	in	mice	lacking	Pappa	(Conover	&	
Bale,	2007)

PLAU 6.46E−11,	8.67E−04 Overexpressing Plau in mice elongates median 
life span (36%,	16%,	and	23%	for	75th,	50th,	
and	25th	percentile	survivors,	respectively),	
reduces	food	intake,	and	decreases	body	
weight	(Miskin	&	Masos,	1997)

PTEN 2.41E−02,	4.06E−04 Longevity	is	enhanced	(12.4% increase in median 
life	span),	cancer	incidence	is	decreased,	
and insulin sensitivity is improved in mice 
harboring additional copies of Pten	(Ortega-
Molina	et	al.,	2012)

SHC1a  7.18E−04,	8.53E−04 Median life span is extended by 27.9% and 
oxidative stress resistance is enhanced in 
Shc1−/−	mice	(Migliaccio	et	al.,	1999)

For	each	protein,	the	q-value	and	age	coefficient	(measured	in	a	human	proteomic	dataset	derived	
from	4263	individuals	aged	18–95	years)	as	well	as	the	life	span	effect	are	included.	Bolded	words	
and numbers highlight the lifespan effect in response to a given intervention.
aA	follow-up	study	assessed	life	span	in	Shc1	knockout	mice	at	two	different	locations.	At	one	
location,	Shc1−/−	mice	on	a	40%	calorie	restriction	diet	exhibited	a	survival	benefit	(median 70th 
percentile survival was increased by 8%).	At	the	other	site,	no	longevity	benefit	was	observed	in	
Shc1	knockout	mice	fed	ad	libitum	(Ramsey	et	al.,	2014).	

TA B L E  2 Examples	of	common	aging	
plasma proteins that can significantly 
extend life span in a vertebrate animal 
model when manipulated
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these results to a clock comprised of all 2978 proteins available for 
measurement in our plasma proteomic dataset. Detailed information 
for	each	clock	is	provided	in	Table	S6.

Of	our	12	proposed	plasma	proteomic	aging	clocks	 (Tables	S4	
and	S5),	the	most	predictive	clock	received	all	common	aging	plasma	
proteins	as	the	input.	For	this	clock,	the	learning	set	had	a	Pearson	
correlation of 0.96 and the test set had a Pearson correlation of 0.94 
(Figure	3a).	The	 respective	MAE	values	 for	 the	 learning	and	 tests	
sets	were	2.4	 and	2.85	years	 (Figure	3b).	The	 clock	 comprised	of	
all significant proteins was a close second with a Pearson correla-
tion	of	0.96	in	the	learning	set	(Figure	3a),	a	Pearson	correlation	of	
0.94	in	the	test	set	(Figure	3a),	a	MAE	of	2.42	years	in	the	learning	
set	(Figure	3b),	and	a	MAE	of	2.93	years	in	the	test	set	(Figure	3b).	
Clocks comprised of proteins that regulate life span in any animal 
model	or	have	a	HAGR	entry	had	a	Pearson	correlation	>0.8	in	the	
test	 set	 (Figure	 3a).	 Proteins	 that	 either	 impact	 longevity	 in	 any	
normal	animal	model,	affect	life	span	in	a	normal	vertebrate	model,	
or make up the top GO BP pathway result had a Pearson correla-
tion	 >0.7	 in	 the	 test	 set	while	 the	 proteins	 that	make	 up	 the	 top	

WikiPathways	result	had	a	Pearson	correlation	>0.6	in	the	test	set	
(Figure	 3a).	 The	 proteins	 capable	 of	 extending	 life	 span	 in	 a	 nor-
mal vertebrate animal model had a Pearson correlation of 0.65 in 
the	learning	set	and	0.59	in	the	test	set	(Figure	3a).	The	least	pre-
dictive	clocks	were	the	top	KEGG,	Reactome,	and	Panther	results,	
which	had	a	respective	Pearson	correlation	of	0.49,	0.27,	and	0.15	in	
the	test	set.	For	all	measurements,	the	Pearson	correlation	ranged	
from	 0.15	 to	 0.98	 (Figure	 3a)	 and	 the	MAE	 ranged	 from	 1.84	 to	
11.93	years	 (Figure	3b).	Clock	 accuracy	positively	 correlated	with	
the	number	of	SOMAmer	inputs	(Figure	S6).	Two	examples	of	more	
minimalistic aging clocks—proteins that regulate life span in any an-
imal model or proteins that regulate life span in a normal vertebrate 
animal	model—are	shown	in	Figure	S7.

The	most	predictive	clock	was	identified	by	LASSO	model	testing	
of	all	2978	proteins	available	for	measurement.	This	clock,	which	uti-
lized	491	SOMAmers,	had	a	Pearson	correlation	of	0.98	and	a	MAE	
of	1.84	years	in	the	learning	set	(Figure	4a)	as	well	as	a	Pearson	cor-
relation	of	0.96	and	a	MAE	of	2.44	years	in	the	test	set	(Figure	4b).	
We	additionally	provide	the	SOMAmer	name,	UniProt	ID,	gene	name,	

F I G U R E  2 An	overrepresentation	analysis	in	the	Gene	Ontology	Biological	Process	database	was	performed	for	all	proteins	that	
significantly (q	<	0.05)	change	their	expression	level	with	age	in	human	plasma	and	have	a	positive	age	coefficient.	The	top	30	enrichment	
results	are	presented	as	–log10(fdr)
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and protein name for each component of our most predictive clock 
in	Table	S7.	Intercept	and	coefficient	information	is	provided	in	Table	
S8.	The	set	of	491	protein	entries	 that	make	up	this	ultra-accurate	
clock contains multiple common aging plasma proteins that are direct 
regulators	of	aging	and	health	(Table	S2),	such	as	ADAMTS5,	CCL11,	
GDF15,	LEP,	and	SOD3.	Out	of	the	491	protein	entries	that	make	up	
this	clock,	a	total	of	102	(20.77%)	contained	a	common	aging	plasma	
protein. For those entries that did not contain a common aging 
plasma	protein,	 several	were	direct	 regulators	of	 animal	 life	 span—
such	as	the	DNA	repair	protein	ERCC1	(de	Waard	et	al.,	2010),	the	
glycine-relevant	protein	GNMT	(Tain	et	al.,	2020),	the	lipase	enzyme	
LIPN	(Johnson,	2020),	and	the	insulin	receptor	protein	(Blüher,	2003).	
An	enrichment	analysis	of	the	proteins	in	this	clock	heavily	implicated	
various	immune	and	inflammatory	processes	(Figure	S8).	This	clock	is	
predictive	in	both	men	and	women	(Table	S9).

We	additionally	 tested	 the	ability	of	 this	ultra-predictive	 clock	
to measure age in two independent plasma proteomic datasets that 
were previously generated. The first dataset is comprised of 171 in-
dividuals	with	an	age	range	of	21–107	years	(Lehallier	et	al.,	2019),	

and the second dataset is comprised of 47 healthy individuals with 
an	age	range	of	19–77	years	(Santos-Parker	et	al.,	2018).	For	the	for-
mer	dataset,	the	Pearson	correlation	was	0.9	(Figure	S9A).	For	the	
latter	dataset,	the	Pearson	correlation	was	0.91	(Figure	S9B).	Thus,	
this clock is able to accurately predict age with a Pearson correlation 
≥0.9	in	three	different	human	cohorts	(Figure	4	and	Figure	S9).

2.7  |  Physically inactive subjects exhibit a higher 
predicted age than their chronological age

Previously,	Santos-Parker	et	al	used	the	SOMAscan	assay	to	measure	
the	plasma	proteome	in	47	healthy	adults	(Santos-Parker	et	al.,	2018).	
This patient cohort contained individuals that were sedentary as well 
as	individuals	that	were	aerobic	exercise-trained.	Using	our	most	pre-
dictive	clock	(Figure	4),	we	demonstrate	that	the	sedentary	individuals	
from this cohort exhibit a higher predicted age than their chronologi-
cal	age	(Figure	5).	In	contrast,	those	that	are	aerobic	exercise-trained	
displayed a predicted age that was more similar to their chronological 

F I G U R E  3 The	ability	of	13	different	protein	sets	to	predict	age	in	a	plasma	proteomic	dataset	derived	from	3301	human	participants	
(age	range	of	18–76	years)	was	tested	using	machine	learning.	For	each	clock,	the	learning	set	utilized	2178	subjects	and	the	test	set	utilized	
1123	subjects.	LASSO	modeling	was	also	performed	for	each	clock	to	determine	if	a	smaller	set	of	proteins	within	the	larger	set	could	
accurately	predict	human	age.	For	each	of	these	clocks,	the	Pearson	correlation	(a)	and	median	absolute	error	(b)	are	reported.	The	two	
numbers	in	parenthesis	for	each	clock	indicate	the	number	of	available	SOMAmers	used	for	the	subset	of	proteins	identified	by	LASSO	
modeling or the full list of proteins



10 of 19  |     LEHALLIER Et AL.

age	 (Figure	5).	For	sedentary	 individuals,	 the	respective	chronologi-
cal and predicted ages were 37.54 ± 20.88 and 46.34 ± 26.48 years. 
For	aerobic	exercise-trained	individuals,	the	respective	chronological	
and predicted ages were 37.35 ± 19.82 and 40.91 ± 18.48 years. The 
delta between chronological and predicted age was significantly dif-
ferent	 between	 the	 sedentary	 and	 aerobic	 exercise-trained	 groups	
(p-value	 =	 6.7E–5).	 The	 predicted	 age	 difference	 between	 aerobic	
exercise-trained	and	sedentary	individuals	was	5.43	years.

Interestingly,	many	of	 the	proteins	 contained	 in	our	491-entry	
clock	 were	 previously	 used	 by	Williams	 et	 al	 to	 generate	 plasma	
protein models that can accurately predict various health outcomes 
(Williams	 et	 al.,	 2019).	We	 found	 that	many	 of	 the	 proteins	 used	
to predict the following health outcomes were also present in our 
highly	predictive	 clock:	 alcohol	 consumption,	 cardiopulmonary	 fit-
ness,	cardiovascular	primary	event	 risk,	current	cigarette	smoking,	
diabetes	diagnosis	within	10	years,	energy	expenditure	from	physi-
cal	activity,	kidney	filtration,	lean	body	mass,	liver	steatosis,	percent	
body	fat,	and	visceral	adipose	tissue.	The	specific	overlapped	pro-
teins	for	each	health	outcome	predictor	are	listed	in	Table	S10.

2.8  |  Proteins associated with signal 
transduction or immune system pathways are 
especially adept at predicting human age

Our	 aging	 clock	 data	 (Figure	 3)	 demonstrate	 that	 some	 pathways	
are more capable of predicting human age than others. To test this 

F I G U R E  4 Plots	of	predicted	age	vs.	chronological	age	are	shown	for	the	most	predictive	aging	clock	identified.	The	most	accurate	
aging	clock	was	identified	by	LASSO	modeling	of	all	2978	proteins	available	for	measurement	in	the	plasma	proteomic	dataset	derived	from	
3301	human	participants	(age	range	of	18–76	years).	This	clock	used	491	SOMAmers,	had	a	Pearson	correlation	of	0.98	in	the	learning	
set	(a),	a	median	absolute	error	of	1.84	years	in	the	learning	set	(a),	a	Pearson	correlation	of	0.96	in	the	test	set	(b),	and	a	median	absolute	
error	of	2.44	years	in	the	test	set	(b).	2178	subjects	were	utilized	for	the	learning	set	(a)	and	1123	subjects	were	utilized	for	the	test	set	(b).	
MAE	=	median	absolute	error

F I G U R E  5 We	used	our	ultra-predictive	aging	clock	to	predict	
age in a human plasma proteomic dataset containing sedentary 
subjects	as	well	as	individuals	that	are	aerobic	exercise-trained.	For	
sedentary	subjects,	their	respective	chronological	and	predicted	
ages were 37.54 ± 20.88 and 46.34 ± 26.48 years. For aerobic 
exercise-trained	subjects,	their	respective	chronological	and	
predicted ages were 37.35 ± 19.82 and 40.91 ± 18.48 years. Results 
are presented as mean ± standard deviation. The difference in 
delta	age	(i.e.,	the	difference	between	chronological	and	predicted	
age)	between	sedentary	and	aerobic	exercise-trained	subjects	was	
statistically significant (p-value	=	6.7E−5)
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more	 comprehensively,	 we	 assessed	 the	 predictive	 performance	
of aging clocks comprised of proteins associated with 1565 differ-
ent pathways in the Reactome database. Detailed information for 
each	Reactome	clock	 is	 provided	 in	Table	S11.	For	 especially	 pre-
dictive	Reactome	pathways,	we	visually	show	the	Pearson	correla-
tion	 (Figure	6a)	and/or	MAE	 (Figure	6b).	Specifically,	we	show	the	
19	pathways	with	the	highest	Pearson	correlations	(Figure	6a)	and	
the	19	pathways	with	 the	 lowest	MAEs	 (Figure	6b)	 in	 the	 LASSO	
test sets. The Reactome pathways with the five highest Pearson cor-
relations	were	 as	 follows:	 “signal	 transduction,”	 “immune	 system,”	
“metabolism	of	proteins,”	“innate	immune	system,”	and	“extracellular	
matrix	 organization.”	 Among	 the	 19	Reactome	 pathways	with	 the	
highest	Pearson	correlations	(Figure	6a),	the	following	five	were	all	
immune-related:	“immune	system,”	“innate	immune	system,”	“adap-
tive	 immune	 system,”	 “cytokine	 signaling	 in	 immune	 system,”	 and	
“neutrophil	degranulation.”	The	most	predictive	clock	(“signal	trans-
duction”)	had	a	Pearson	correlation	of	0.94	in	the	 learning	set	and	
0.89	in	the	test	set	(Figure	6a)	as	well	as	a	MAE	of	3.27	years	in	the	

learning	set	and	4.14	years	in	the	test	set	(Figure	6b).	The	“immune	
system”	clock	was	a	close	second	with	a	Pearson	correlation	of	0.93	
in	the	 learning	set	and	0.88	 in	the	test	set	 (Figure	6a)	as	well	as	a	
MAE	of	3.59	years	in	the	learning	set	and	4.44	years	in	the	test	set	
(Figure	6b).	 Plots	 of	 predicted	 age	 vs.	 chronological	 age	 for	 these	
two	clocks	are	shown	in	Figure	S10.

Out	of	all	1565	Reactome	clocks	tested	(Table	S11),	seven	had	a	
Pearson	correlation	>0.8	in	the	test	set,	25	had	a	Pearson	correlation	
>0.7	 in	 the	 test	 set,	 and	20	had	a	Pearson	correlation	>0.6	 in	 the	
test	 set.	Thus,	only	a	 small	percentage	of	Reactome	pathways	are	
able to accurately predict human age. Compared to the two most 
predictive	Reactome	clocks	 (Figure	S10)—each	of	which	contained	
over	 600	 SOMAmers—some	 of	 these	 more	 accurate	 clocks	 were	
relatively	minimalistic.	The	Reactome	pathway	“Extracellular	matrix	
organization”	utilized	133	SOMAmers	and	had	a	Pearson	correlation	
of	0.83	and	a	MAE	of	5.23	years	in	the	test	set.	A	total	of	nine	clocks	
used	less	than	100	SOMAmers	and	had	a	Pearson	correlation	>0.7	
in	 the	 test	 set.	For	example,	 the	 “Degradation	of	 the	extracellular	

F I G U R E  6 The	ability	of	1565	protein	sets	associated	with	different	Reactome	pathways	to	predict	age	in	a	plasma	proteomic	dataset	
derived	from	3301	human	participants	(age	range	of	18–76	years)	was	tested	using	machine	learning.	For	each	clock,	the	learning	set	utilized	
2178	subjects	and	the	test	set	utilized	1123	subjects.	LASSO	modeling	was	also	performed	for	each	clock	to	determine	if	a	smaller	set	of	
proteins	within	the	larger	set	could	more	accurately	predict	human	age.	We	visualize	the	Pearson	correlation	(a)	for	the	19	pathways	with	the	
highest	Pearson	correlation.	We	also	visualize	the	median	absolute	error	(b)	for	the	19	pathways	with	the	lowest	median	absolute	error.	The	
two	numbers	in	parenthesis	for	each	clock	indicate	the	number	of	available	SOMAmers	used	for	the	subset	of	proteins	identified	by	LASSO	
modeling	or	the	full	list	of	proteins.	The	full	name	of	the	pathway	abbreviated	with	ellipses	is	“Regulation	of	insulin-like	growth	factor	(IGF)	
transport	and	uptake	by	insulin-like	growth	factor	binding	proteins	(IGFBPs)”
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matrix”	 clock	 contained	54	SOMAmers	 and,	 in	 the	 test	 set,	 had	a	
Pearson	correlation	of	0.76	and	a	MAE	of	6.18	years.	While	less	ac-
curate,	another	 interesting	outlier	was	the	“Negative	regulation	of	
TCF-dependent	signaling	by	WNT	ligand	antagonists”	clock,	which	
contained	8	SOMAmers	and	had	a	Pearson	correlation	of	0.63	and	a	
MAE	of	8.07	years	in	the	test	set.

3  |  DISCUSSION

In	the	present	study,	we	discover	a	novel,	ultra-predictive	clock	com-
prised	of	491	SOMAmers.	Compared	to	a	much	larger	array	of	exist-
ing	aging	clocks	recently	collated	by	Galkin	et	al.	(2020a),	this	protein	
clock is especially predictive. This clock was capable of accurately pre-
dicting human age in three different plasma proteomic datasets and 
was used to demonstrate that physically inactive patients have a much 
higher	 predicted	 age	 than	 their	 chronological	 age.	 In	 contrast,	 pa-
tients	that	engage	in	frequent	aerobic	exercise	exhibited	a	predicted	
age	that	was	more	similar	to	their	chronological	age.	Since	exercise	is	
one	of	the	most	effective	anti-aging	interventions	(Garatachea	et	al.,	
2015),	these	data	suggest	that	this	plasma	protein	age	predictor	can	
capture	aspects	of	patient	health.	Moreover,	we	unveiled	a	multitude	
of novel aging clocks that are made up of a smaller set of proteins. 
Since	proteomics	screening	can	be	quite	costly	(Graham	et	al.,	2005),	
the ability to predict human age using a minimal set of proteins ob-
viates a financial barrier to performing aging clock measurements. It 
also makes the prediction of patient age logistically much simpler and 
therefore	more	conducive	to	widespread	use.	We	additionally	dem-
onstrate that proteins tangibly associated with different aspects of 
aging	(e.g.,	proteins	that	impact	animal	longevity,	proteins	that	change	
their	expression	level	with	age,	or	proteins	with	a	listing	in	the	HAGR	
database)	are	able	to	robustly	predict	human	age.

In	total,	we	tested	13	custom	clocks	and	1565	different	Reactome	
pathway	clocks.	While	our	data	make	it	clear	that	the	accuracy	of	a	
given	clock	 is	 correlated	with	 the	number	of	protein	entries	used,	
there	were	 several	notable	exceptions.	For	example,	 a	 clock	com-
prised of proteins that significantly change their expression level 
with	 age	 (which	 used	 561	 SOMAmers)	 had	 a	 higher	 Pearson	 cor-
relation	and	a	 lower	MAE	 than	a	 clock	 comprised	of	 all	measured	
proteins	(which	used	3283	SOMAmers).	Thus,	while	the	availability	
of more proteins tends to increase the predictive power of a given 
clock,	the	proteins	chosen	also	influence	the	overall	accuracy.

We	 additionally	 found	 nine	 proteins	 that	 both	 significantly	
change their expression level with age in human plasma and extend 
life	span	in	normal	vertebrates	when	manipulated.	More	broadly,	we	
were	 able	 to	 identify	 a	 tangible	 connection	 to	 aging,	 disease,	 and	
health for all 523 protein entries that were comprehensively ana-
lyzed.	It	is	important	to	note	that,	while	some	of	these	connections	
demonstrated	a	direct	role	in	regulating	the	aging	process	(e.g.,	a	ge-
netic	manipulation	which	impacts	longevity	and	health	span),	others	
were	more	tangential	and	loosely	associated	with	aging	(e.g.,	protein	
expression	levels	were	altered	in	patients	with	a	specific	age-related	
disease).	Of	the	connections	we	highlighted,	19.47%	had	an	entry	in	

the	HAGR	database	and	12.1%	were	capable	of	impacting	longevity	
in a normal model organism. The percentage of life span regulators 
increases	to	20.42%	when	disease,	stress,	and	genetically	complex	
models	are	included.	These	findings	suggest	that,	in	human	plasma,	
proteins which significantly change their expression level with age 
are	 also	 often	 proteins	 that	 directly	 impact	 longevity	 and	 age-re-
lated	disease.	Thus,	proteomic	aging	expression	screens	 in	plasma	
may	 double	 as	 screens	 for	 anti-aging	 drug	 targets.	 Future	 studies	
are warranted to determine if any of these aging plasma proteins are 
viable,	safe	targets	for	human	health	span	extension.

Our enrichment analysis revealed that a diverse set of processes 
relevant to inflammation and the immune system were strongly im-
plicated by proteins that increase their expression level with age in 
human	plasma.	Furthermore,	we	found	that	proteins	associated	with	
immune system enrichment terms are especially adept at predicting 
human	age.	These	findings	corroborate	an	ever-growing	body	of	data	
that	intimately	link	aging	with	immune	system	dysfunction	(Nikolich-
Zugich,	 2018).	 Atypically	 long-lived	 animals	 exhibit	 unique	 gene	
change	relevant	to	 inflammation	(Johnson	et	al.,	2019)	and	genomic	
(Shen	et	al.,	2020),	transcriptomic	(Peters	et	al.,	2015),	and	proteomic	
(Tanaka	et	al.,	2018)	analyses	in	humans	have	all	connected	immuno-
logical	changes	with	aging.	Interestingly,	our	“innate	immune	system”	
Reactome	 clock	 was	 almost	 as	 predictive	 as	 our	 “immune	 system”	
clock,	despite	containing	438	fewer	SOMAmers.	This	would	suggest	
that the innate immune system is especially pertinent to human aging. 
With	these	data	in	mind,	it	is	quite	intriguing	that	one	of	the	most	ef-
fective	anti-aging	drugs	capable	of	extending	life	span	and	health	span	
in	mice	is	rapamycin	(Bitto	et	al.,	2016),	which	is	clinically	used	as	an	
immunosuppressant.	Thus,	clinical	therapies	that	correct	immune	dys-
function may be particularly capable of improving human health span.

In	 summary,	we	propose	 and	validate	 a	plethora	of	 novel	 aging	
clocks that are capable of predicting individual age in a large human 
cohort.	Using	the	most	predictive	clock	we	identified,	we	show	that	
sedentary subjects have a higher predicted age than their chronolog-
ical	 age.	We	 additionally	 discover	 that	 proteins	 which	 significantly	
change	their	expression	level	with	age	in	human	plasma	are	frequently	
direct	regulators	of	age-related	disease	and/or	life	span	in	animal	mod-
els.	Thus,	many	of	these	proteins	are	worthy	of	further	exploration	as	
potential therapeutic targets for the extension of human health span. 
We	also	show	that	diverse	processes	relevant	to	inflammation	and	the	
immune	 system	 are	 strongly	 implicated	 by	 aging-relevant	 proteins.	
Future studies should build upon these data to help develop effective 
anti-aging	therapies	that	can	be	safely	utilized	in	the	clinic.

4  |  E XPERIMENTAL PROCEDURES

4.1  |  Statistical measurements for common aging 
plasma proteins

We	previously	identified	529	proteins	that	were	reported	to	signifi-
cantly change their expression level with age by two or more dif-
ferent	studies	 (Johnson	et	al.,	2020).	These	common	aging	plasma	
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proteins were analyzed in a plasma proteomic dataset derived from 
4263	healthy	individuals	with	an	age	range	of	18–95	years	(Lehallier	
et	al.,	2019).	This	4263-person	dataset	reflects	the	combination	of	
two	different	cohorts:	3301	individuals	from	the	INTERVAL	cohort	
and	 962	 individuals	 from	 the	 LonGenity	 cohort.	 All	 plasma	 pro-
teomes	were	acquired	using	the	SOMAscan	assay.	For	each	protein,	
the	q-value	and	age	coefficient	were	measured	using	an	online	soft-
ware	tool	developed	by	Lehallier	et	al	(Lehallier	et	al.,	2019).	Using	
this	tool,	a	“Linear”	regression	line	and	an	“All”	subset	were	chosen	
to make graphs showing how the expression level of select pro-
teins	 changes	with	age	 in	human	plasma.	When	multiple	different	
SOMAmer	measurements	were	available	for	a	given	protein	entry,	
the first measurement listed was selected.

4.2  |  Database and literature search for 
connections relevant to aging and health

For	each	of	our	common	plasma	aging	proteins,	we	performed	a	com-
prehensive database and literature search to identify connections 
relevant to aging and health. This included searching for individual 
protein	entries	in	the	HAGR	database	(Tacutu	et	al.,	2018).	UniProt	
(UniProt,	2019)	was	utilized	to	identify	default	and	alternative	name	
recommendations	 and	 Alliance	 of	 Genome	 Resources	 (Alliance	 of	
Genome	Resources,	2020)	was	used	to	find	gene	orthologs	in	differ-
ent	organisms.	PubMed	was	employed	to	search	for	protein	names	
in	conjunction	with	the	terms	“lifespan”	and	“life	span.”	Other	search	
combinations included the protein name by itself or in combination 
with	“aging,”	“disease,”	and/or	“survival.”

4.3  |  Overrepresentation analyses

Overrepresentation analyses were performed similarly to before 
(Johnson	et	al.,	2020)	using	WebGestalt	(Liao	et	al.,	2019).	UniProt	
IDs	were	provided	as	the	inputs,	the	background	was	set	to	all	pro-
tein-coding	genes,	and	the	FDR	significance	level	was	set	to	0.05.

4.4  |  Proteomic aging clock generation

The creation of proteomic aging clocks was performed similarly 
to	before	 (Johnson	et	 al.,	 2020;	 Lehallier	 et	 al.,	 2019).	Proteomics	
measurements	 (performed	using	 the	SOMAscan	assay)	 from	3301	
human	plasma	samples	collected	during	the	INTERVAL	clinical	trial	
were used to test whether aging proteins can predict chronologi-
cal	 age.	 Participants	 in	 the	 INTERVAL	 randomized	 controlled	 trial	
(ISRCTN24760606)	 were	 recruited	 with	 the	 active	 collaboration	
of	the	National	Health	Service	(NHS)	Blood	and	Transplant	(http://
www.nhsbt.nhs.uk),	which	supported	fieldwork	and	other	elements	
of	the	trial.	DNA	extraction	and	genotyping	were	co-funded	by	the	
National	Institute	for	Health	Research	(NIHR),	the	NIHR	BioResource	
(http://biore	source.nihr.ac.uk/),	 and	 the	 NIHR	 Cambridge	

Biomedical	Research	Centre	at	the	Cambridge	University	Hospitals	
NHS	Foundation	Trust.	The	 INTERVAL	 study	was	 funded	by	NHS	
Blood	 and	 Transplant	 (11-01-GEN).	 The	 academic	 coordinating	
center	for	INTERVAL	was	supported	by	core	funding	from	the	NIHR	
Blood	and	Transplant	Research	Unit	in	Donor	Health	and	Genomics	
(NIHR	BTRU-2014-10024),	the	UK	Medical	Research	Council	(MR/
L003120/1),	 the	British	Heart	 Foundation	 (RG/13/13/30194),	 and	
the	NIHR	Cambridge	Biomedical	Research	Centre	at	the	Cambridge	
University	Hospitals	NHS	Foundation	Trust.	Proteomic	assays	were	
funded	 by	 the	 academic	 coordinating	 center	 for	 INTERVAL	 and	
Merck	Research	Laboratories	(Merck	&	Co.).	A	complete	list	of	the	
investigators	and	contributors	to	the	INTERVAL	trial	was	previously	
reported	 (Di	 Angelantonio	 et	 al.,	 2017).	 The	 academic	 coordinat-
ing center would like to thank blood donor center staff and blood 
donors	for	participating	in	the	INTERVAL	trial.	Age	ranged	from	18	
to	76	years	with	a	median	age	of	45	years	(first	quartile	=31;	third	
quartile	=55).	1616	participants	were	female	and	1685	were	male.	
Sample	selection,	processing,	and	preparation	were	detailed	previ-
ously	(Sun	et	al.,	2018).

To analyze the accuracy of the plasma proteome to predict 
chronological aging and the relative predictive power of specific 
signatures,	we	used	glmnet	(Friedman	et	al.,	2010)	and	fitted	ridge	
regression models for the different lists of proteins (alpha = 0; 100 
lambda	 tested;	 “lamda.min”	 as	 the	 shrinkage	 variable	 estimated	
after	tenfold	cross-validation).	Input	variables	consisted	of	z-scaled	
log10–transformed	 RFUs	 (relative	 fluorescence	 units)	 and	 two-
thirds (n	=	2178)	of	the	samples	were	used	for	training	the	model.	
The	remaining	1123	samples	were	used	as	a	validation.	In	addition,	
we	fitted	a	LASSO	model	(alpha	=	1)	to	identify	a	subset	of	proteins	
potentially outperforming the full list.

Altogether,	we	compared	12	different	lists	of	proteins	and	1565	
different	 Reactome	 pathways	 targeted	 by	 at	 least	 2	 SOMAmers	
(out	of	2271	Human	Reactome	pathways)	 to	the	full	panel	of	pro-
teins available for measurement (2978 proteins measured by 3283 
SOMAmers).	 The	 lists	 of	 Human	 Reactome	 pathways	 and	 cor-
responding genes were obtained from the reactome.db package 
(Ligtenberg,	2019)	and	mapped	to	UniProt	 ID	using	 the	org.Hs.eg.
db	package	(Carlson,	2019).	Prediction	accuracy	of	each	model	was	
estimated	for	the	training	and	validation	datasets,	separately,	using	a	
Pearson correlation coefficient between chronological age and pre-
dicted	age	in	addition	to	the	corresponding	MAE.

4.5  |  Validation of the ultra-sensitive proteomic 
clock in independent cohorts and functional relevance

To	validate	the	ultra-sensitive	plasma	proteomic	clock	in	independ-
ent	 cohorts,	we	used	an	aging	proteomic	dataset	 covering	 a	 large	
life	span	range	(Lehallier	et	al.,	2019)	and	a	dataset	investigating	the	
effect	of	exercise	in	young	and	old	individuals	(Santos-Parker	et	al.,	
2018).	In	the	data	generated	by	Lehallier	et	al.	(Lehallier	et	al.,	2019),	
the age ranged from 21 to 107 years with a median age of 70 years 
(first	 quartile	=	58,	 third	quartile	=	89;	84	males	 and	87	 females).	

http://www.nhsbt.nhs.uk
http://www.nhsbt.nhs.uk
http://bioresource.nihr.ac.uk/


14 of 19  |     LEHALLIER Et AL.

The samples originated from four different cohorts from the United 
States	and	Europe	(VASeattle,	PRIN06,	PRIN09,	and	GEHA,	N	=	171).	
RFUs	for	the	1305	proteins	measured	in	these	datasets	were	log10-
transformed	and	z-scored.

In	the	data	generated	by	Santos-Parker	et	al.	 (2018),	31	young	
(aged	19–32	years,	inactive	n	=	16,	aerobic	exercise-trained	n	=	15)	
and	16	healthy	older	(aged	55–77	years,	inactive	n	=	8,	aerobic	ex-
ercise-trained	 n	 =	 8)	 were	measured.	Of	 the	 47	 healthy	 subjects,	
15	were	 female	and	32	were	male.	The	version	of	 the	SOMAscan	
platform used in this study measured 1129 proteins and RFUs were 
similarly	log10-transformed	and	z-scored.

Only	a	 subset	of	 the	491	proteins	constituting	 the	ultra-sensi-
tive proteomic clock was measured in these cohorts: n = 150 for the 
study	by	Lehallier	et	al.	(2019)	and	n	=	115	for	the	study	by	Santos-
Parker	et	al.	 (2018).	No	re-fitting	of	the	model	was	performed	but	
we applied a correction coefficient that was estimated as follows: 
First,	we	predicted	chronological	age	in	the	learning	dataset	of	the	
INTERVAL	cohort	using	the	coefficients	of	the	491-SOMAmer	pro-
teomic clock but with only available proteins measured in the inde-
pendent	cohorts.	Then,	we	fitted	a	linear	model	between	predicted	
age and chronological age and estimated the correction coefficient 
to	correct	for	slope	offset	of	each	subclock,	separately.	This	correc-
tion	coefficient	was	2.62	for	the	study	by	Lehallier	et	al.	 (Lehallier	
et	al.,	2019)	and	4.57	for	the	study	by	Santos-Parker	et	al.	(2018).

To	estimate	whether	aerobic	exercise	has	an	effect	on	aging,	we	
calculated	delta	age,	which	corresponds	to	the	difference	between	
predicted	 age	 and	 chronological	 age,	 and	 tested	 statistical	 signifi-
cance	using	the	Wilcoxon	signed-rank	test.	Finally,	we	compared	the	
proteins	constituting	the	ultra-predictive	clock	with	protein	predic-
tors	of	12	health	traits	such	as	smoking,	percent	body	fat,	and	car-
diopulmonary	fitness	according	to	a	recent	study	from	Williams	et	al.	
(2019).	To	do	this,	we	mapped	protein	names	to	gene	symbols	and	
estimated the percentage of genes measured in our study that were 
involved	in	the	aging	clock	and	in	the	different,	previously	reported	
health outcome predictors.

ACKNOWLEDG EMENTS
AAJ	 would	 like	 to	 thank	 Dr.	 Leili	 Rohani	 (University	 of	 Calgary,	
Calgary,	 Alberta,	 Canada)	 for	 helpful	 correspondence.	 AAJ	 and	
MNS	are	additionally	grateful	 to	 JL,	ES,	BS,	YS,	and	JM.	Although	
this	work	 did	 not	 receive	 any	 financial	 support,	 TW-C	would	 like	
to	express	gratitude	 for	 funding	 from	the	NOMIS	Foundation	and	
Nan	 Fung	 Life	 Sciences.	 In	 addition,	 MNS	 is	 grateful	 for	 support	
from	 NIH	 R01	 GM102491-07,	 NCI	 P30	 CA014195-46,	 and	 NIA	
1RF1AG064049-01.

CONFLIC T OF INTERE S T
The authors have no conflicts of interest to declare.

AUTHOR CONTRIBUTIONS
BL	 performed	 the	 proteomic	 aging	 clock	 analyses	 and	 measure-
ments,	contributed	to	study	design,	and	contributed	to	manuscript	

writing.	MNS	performed	enrichment	analyses	and	edited	the	manu-
script.	TW-C	provided	mentoring	and	essential	resources	for	BL	as	
well	as	reviewed	the	manuscript.	AAJ	conceived	and	designed	the	
study,	performed	the	database	and	literature	review	for	all	common	
aging	plasma	proteins,	wrote	the	manuscript,	and	performed	enrich-
ment analyses.

DATA AVAIL ABILIT Y S TATEMENT
Age	measurements	from	the	plasma	proteomic	dataset	derived	from	
4263	individuals	(aged	18–95	years)	are	accessible	via	an	online	soft-
ware	 tool	 (https://twc-stanf	ord.shiny	apps.io/aging_plasma_prote	
ome/).	The	 full	plasma	proteomic	dataset	derived	 from	3301	 indi-
viduals	 (aged	 18–76	 years)	 is	 available	 in	 the	 European	Genotype	
Archive	(accession	number	EGAS00001002555).

ORCID
Benoit Lehallier  https://orcid.org/0000-0001-7452-3785 
Adiv A. Johnson  https://orcid.org/0000-0002-4740-2635 

R E FE R E N C E S
Acosta-Herrera,	M.,	Kerick,	M.,	Gonzalez-Serna,	D.,	Myositis	Genetics,	C.,	

Scleroderma	Genetics,	C.,	Wijmenga,	C.,	&	Martin,	J.	(2019).	Genome-
wide	meta-analysis	reveals	shared	new	loci	 in	systemic	seropositive	
rheumatic diseases. Annals of the Rheumatic Diseases,	78(3),	311-319.	
https://doi.org/10.1136/annrh	eumdi	s-2018-214127

Alliance	of	Genome	Resources,	C.,	Agapite,	J.,	Albou,	L.-P.,	Aleksander,	
S.,	 Argasinska,	 J.,	 Arnaboldi,	 V.,	 Attrill,	 H.,	 Bello,	 S.	 M.,	 Blake,	 J.	
A.,	Blodgett,	O.,	Bradford,	Y.	M.,	Bult,	C.	 J.,	Cain,	S.,	Calvi,	B.	R.,	
Carbon,	S.,	Chan,	J.,	Chen,	W.	J.,	Cherry,	J.	M.,	Cho,	J.,	…	Yook,	K.	
(2020).	Alliance	of	Genome	Resources	Portal:	Unified	model	organ-
ism research platform. Nucleic Acids Research,	48(D1),	D650-D658.	
https://doi.org/10.1093/nar/gkz813

Bae,	J.	H.,	Hong,	M.,	Jeong,	H.	J.,	Kim,	H.,	Lee,	S.	J.,	Ryu,	D.,	&	Kang,	J.	S.	
(2020).	Satellite	cell-specific	ablation	of	Cdon	impairs	integrin	acti-
vation,	FGF	signalling,	and	muscle	regeneration.	Journal of Cachexia, 
Sarcopenia and Muscle,	11(4),	1089–1103.	https://doi.org/10.1002/
jcsm.12563

Bhattarai,	 P.,	Cosacak,	M.	 I.,	Mashkaryan,	V.,	Demir,	 S.,	 Popova,	 S.	D.,	
Govindarajan,	N.,	Brandt,	K.,	Zhang,	Y.,	Chang,	W.,	Ampatzis,	K.,	&	
Kizil,	C.	(2020).	Neuron-glia	interaction	through	Serotonin-BDNF-
NGFR	axis	enables	regenerative	neurogenesis	in	Alzheimer's	model	
of adult zebrafish brain. PLoS Biology,	18(1),	e3000585.	https://doi.
org/10.1371/journ al.pbio.3000585

Bitto,	A.,	Ito,	T.	K.,	Pineda,	V.	V.,	LeTexier,	N.	J.,	Huang,	H.	Z.,	Sutlief,	E.,	
Tung,	H.,	Vizzini,	N.,	Chen,	B.,	Smith,	K.,	Meza,	D.,	Yajima,	M.,	Beyer,	
R.	P.,	Kerr,	K.	F.,	Davis,	D.	J.,	Gillespie,	C.	H.,	Snyder,	J.	M.,	Treuting,	
P.	M.,	&	Kaeberlein,	M.	(2016).	Transient	rapamycin	treatment	can	
increase	lifespan	and	healthspan	in	middle-aged	mice.	Elife,	5,	1–17.	
https://doi.org/10.7554/eLife.16351

Blüher,	M.	(2003).	Extended	longevity	in	mice	lacking	the	insulin	recep-
tor in adipose tissue. Science,	 299(5606),	 572–574.	 http://dx.doi.
org/10.1126/scien ce.1078223

Buitrago,	M.,	 Lorenz,	 K.,	Maass,	 A.	 H.,	 Oberdorf-Maass,	 S.,	 Keller,	 U.,	
Schmitteckert,	E.	M.,	Ivashchenko,	Y.,	Lohse,	M.	J.,	&	Engelhardt,	S.	
(2005).	The	transcriptional	repressor	Nab1	is	a	specific	regulator	of	
pathological cardiac hypertrophy. Nature Medicine,	11(8),	837-844.	
https://doi.org/10.1038/nm1272

Bumaschny,	 V.	 F.,	 Yamashita,	 M.,	 Casas-Cordero,	 R.,	 Otero-
Corchon,	V.,	 de	Souza,	 F.	 S.,	Rubinstein,	M.,	&	Low,	M.	 J.	 (2012).	

https://twc-stanford.shinyapps.io/aging_plasma_proteome/
https://twc-stanford.shinyapps.io/aging_plasma_proteome/
https://orcid.org/0000-0001-7452-3785
https://orcid.org/0000-0001-7452-3785
https://orcid.org/0000-0002-4740-2635
https://orcid.org/0000-0002-4740-2635
https://doi.org/10.1136/annrheumdis-2018-214127
https://doi.org/10.1093/nar/gkz813
https://doi.org/10.1002/jcsm.12563
https://doi.org/10.1002/jcsm.12563
https://doi.org/10.1371/journal.pbio.3000585
https://doi.org/10.1371/journal.pbio.3000585
https://doi.org/10.7554/eLife.16351
http://dx.doi.org/10.1126/science.1078223
http://dx.doi.org/10.1126/science.1078223
https://doi.org/10.1038/nm1272


    |  15 of 19LEHALLIER Et AL.

Obesity-programmed	mice	are	rescued	by	early	genetic	 interven-
tion. Journal of Clinical Investigation,	122(11),	 4203-4212.	 https://
doi.org/10.1172/JCI62543

Cantó,	 C.,	 Gerhart-Hines,	 Z.,	 Feige,	 J.	 N.,	 Lagouge,	 M.,	 Noriega,	 L.,	
Milne,	J.	C.,	Elliott,	P.	J.,	Puigserver,	P.,	&	Auwerx,	J.	(2009).	AMPK	
regulates	 energy	 expenditure	 by	 modulating	 NAD+	 metabolism	
and	 SIRT1	 activity.	 Nature,	 458(7241),	 1056-1060.	 https://doi.
org/10.1038/natur e07813

Cao,	Q.,	Shin,	W.	S.,	Chan,	H.,	Vuong,	C.	K.,	Dubois,	B.,	Li,	B.,	&	Jiang,	L.	
(2018).	Inhibiting	amyloid-beta	cytotoxicity	through	its	interaction	
with	 the	 cell	 surface	 receptor	 LilrB2	 by	 structure-based	 design.	
Nature Chemistry,	 10(12),	 1213-1221.	 https://doi.org/10.1038/
s4155	7-018-0147-z

Carlson,	M.	 (2019).	org.Hs.eg.db: Genome wide annotation for Human. R 
package version 3.10.0.

Castellano,	J.	M.,	Mosher,	K.	 I.,	Abbey,	R.	J.,	McBride,	A.	A.,	James,	M.	
L.,	Berdnik,	D.,	Shen,	J.	C.,	Zou,	B.,	Xie,	X.	S.,	Tingle,	M.,	Hinkson,	
I.	V.,	Angst,	M.	S.,	&	Wyss-Coray,	T.	(2017).	Human	umbilical	cord	
plasma proteins revitalize hippocampal function in aged mice. 
Nature,	544(7651),	488-492.	https://doi.org/10.1038/natur	e22067

Chandrashekar,	 D.	 S.,	 Chakravarthi,	 B.	 V.	 S.	 K.,	 Robinson,	 A.	 D.,	
Anderson,	J.	C.,	Agarwal,	S.,	Balasubramanya,	S.	A.	H.,	Eich,	M.-L.,	
Bajpai,	A.	K.,	Davuluri,	S.,	Guru,	M.	S.,	Guru,	A.	S.,	Naik,	G.,	Della	
Manna,	D.	L.,	Acharya,	K.	K.,	Carskadon,	S.,	Manne,	U.,	Crossman,	
D.	 K.,	 Ferguson,	 J.	 E.,	 Grizzle,	 W.	 E.,	 …	 Sonpavde,	 G.	 (2020).	
Therapeutically	actionable	PAK4	 is	amplified,	overexpressed,	and	
involved in bladder cancer progression. Oncogene,	39,	4077–4091.	
https://doi.org/10.1038/s4138	8-020-1275-7

Chandrashekar,	 V.,	 Dawson,	 C.	 R.,	 Martin,	 E.	 R.,	 Rocha,	 J.	 S.,	 Bartke,	
A.,	 &	 Kopchick,	 J.	 J.	 (2007).	 Age-related	 alterations	 in	 pituitary	
and	 testicular	 functions	 in	 long-lived	 growth	 hormone	 receptor	
gene-disrupted	mice.	Endocrinology,	148(12),	 6019-6025.	 https://
doi.org/10.1210/en.2007-0837

Chen,	D.,	Sun,	Y.,	Wei,	Y.,	Zhang,	P.,	Rezaeian,	A.	H.,	Teruya-Feldstein,	J.,	
Gupta,	S.,	Liang,	H.,	Lin,	H.-K.,	Hung,	M.-C.,	&	Ma,	L.	I.	(2012).	LIFR	
is	 a	breast	 cancer	metastasis	 suppressor	upstream	of	 the	Hippo-
YAP	 pathway	 and	 a	 prognostic	 marker.	 Nature Medicine,	 18(10),	
1511-1517.	https://doi.org/10.1038/nm.2940

Chen,	H.-M.,	 van	der	 Touw,	W.,	Wang,	Y.	 S.,	 Kang,	K.,	Mai,	 S.,	 Zhang,	
J.,	 Alsina-Beauchamp,	 D.,	 Duty,	 J.	 A.,	 Mungamuri,	 S.	 K.,	 Zhang,	
B.,	 Moran,	 T.,	 Flavell,	 R.,	 Aaronson,	 S.,	 Hu,	 H.-M.,	 Arase,	 H.,	
Ramanathan,	S.,	Flores,	R.,	Pan,	P.-Y.,	&	Chen,	S.-H.	(2018).	Blocking	
immunoinhibitory	 receptor	 LILRB2	 reprograms	 tumor-associ-
ated myeloid cells and promotes antitumor immunity. Journal of 
Clinical Investigation,	128(12),	5647-5662.	https://doi.org/10.1172/
JCI97570

Choi,	K.	M.,	Kim,	J.	H.,	Cho,	G.	J.,	Baik,	S.	H.,	Park,	H.	S.,	&	Kim,	S.	M.	
(2007).	Effect	of	exercise	 training	on	plasma	visfatin	and	eotaxin	
levels. European Journal of Endocrinology,	157(4),	437-442.	https://
doi.org/10.1530/EJE-07-0127

Choi,	S.	H.,	Bylykbashi,	E.,	Chatila,	Z.	K.,	Lee,	S.	W.,	Pulli,	B.,	Clemenson,	
G.	D.,	Kim,	E.,	Rompala,	A.,	Oram,	M.	K.,	Asselin,	C.,	Aronson,	 J.,	
Zhang,	C.,	Miller,	S.	J.,	Lesinski,	A.,	Chen,	J.	W.,	Kim,	D.	Y.,	van	Praag,	
H.,	Spiegelman,	B.	M.,	Gage,	F.	H.,	&	Tanzi,	R.	E.	(2018).	Combined	
adult neurogenesis and BDNF mimic exercise effects on cognition 
in	 an	 Alzheimer's	 mouse	 model.	 Science,	 361(6406),	 eaan8821.	
https://doi.org/10.1126/scien ce.aan8821

Conover,	C.	A.,	&	Bale,	L.	K.	(2007).	Loss	of	pregnancy-associated	plasma	
protein	A	extends	lifespan	in	mice.	Aging Cell,	6(5),	727-729.	https://
doi.org/10.1111/j.1474-9726.2007.00328.x

Cormier,	R.	T.,	Hong,	K.	H.,	Halberg,	R.	B.,	Hawkins,	T.	L.,	Richardson,	P.,	
Mulherkar,	R.,	Dove,	W.	F.,	&	Lander,	E.	S.	(1997).	Secretory	phos-
pholipase Pla2g2a confers resistance to intestinal tumorigenesis. 
Nature Genetics,	17(1),	88-91.	https://doi.org/10.1038/ng099	7-88

Coschigano,	 K.	 T.,	 Holland,	 A.	 N.,	 Riders,	M.	 E.,	 List,	 E.	 O.,	 Flyvbjerg,	
A.,	&	Kopchick,	 J.	 J.	 (2003).	Deletion,	but	not	antagonism,	of	 the	
mouse growth hormone receptor results in severely decreased 
body	weights,	 insulin,	 and	 insulin-like	 growth	 factor	 I	 levels	 and	
increased life span. Endocrinology,	144(9),	3799-3810.	https://doi.
org/10.1210/en.2003-0374

Costa,	 T.	 D.	 F.,	 Zhuang,	 T.,	 Lorent,	 J.,	 Turco,	 E.,	 Olofsson,	 H.,	 Masia-
Balague,	 M.,	 Zhao,	 M.,	 Rabieifar,	 P.,	 Robertson,	 N.,	 Kuiper,	 R.,	
Sjölund,	J.,	Spiess,	M.,	Hernández-Varas,	P.,	Rabenhorst,	U.,	Roswall,	
P.,	Ma,	R.,	Gong,	X.,	Hartman,	J.,	Pietras,	K.,	…	Strömblad,	S.	(2019).	
PAK4	suppresses	RELB	 to	prevent	 senescence-like	growth	arrest	
in breast cancer. Nature Communications,	10(1),	 3589.	https://doi.
org/10.1038/s4146	7-019-11510	-4

Cressman,	D.	E.,	Greenbaum,	L.	E.,	DeAngelis,	R.	A.,	Ciliberto,	G.,	Furth,	E.	
E.,	Poli,	V.,	&	Taub,	R.	(1996).	Liver	failure	and	defective	hepatocyte	
regeneration	 in	 interleukin-6-deficient	 mice.	 Science,	 274(5291),	
1379-1383.	https://doi.org/10.1126/scien	ce.274.5291.1379

Danno,	S.,	Nishiyama,	H.,	Higashitsuji,	H.,	Yokoi,	H.,	Xue,	J.-H.,	Itoh,	K.,	
Matsuda,	T.,	&	Fujita,	J.	(1997).	Increased	transcript	level	of	RBM3,	
a	member	of	the	glycine-rich	RNA-binding	protein	family,	in	human	
cells in response to cold stress. Biochemical and Biophysical Research 
Communications,	 236(3),	 804-807.	 https://doi.org/10.1006/
bbrc.1997.7059

Das,	 M.	 M.,	 Godoy,	 M.,	 Chen,	 S.,	 Moser,	 V.	 A.,	 Avalos,	 P.,	 Roxas,	 K.	
M.,	 Dang,	 I.,	 Yáñez,	 A.,	 Zhang,	W.,	 Bresee,	 C.,	 Arditi,	M.,	 Liu,	 G.	
Y.,	 Svendsen,	C.	N.,	&	Goodridge,	H.	 S.	 (2019).	 Young	bone	mar-
row transplantation preserves learning and memory in old mice. 
Communications Biology,	 2,	 73.	 https://doi.org/10.1038/s4200	
3-019-0298-5

De	Benedetti,	F.,	Alonzi,	T.,	Moretta,	A.,	Lazzaro,	D.,	Costa,	P.,	Poli,	V.,	
Martini,	A.,	Ciliberto,	G.,	&	Fattori,	E.	 (1997).	 Interleukin	6	causes	
growth impairment in transgenic mice through a decrease in insu-
lin-like	growth	factor-I.	A	model	for	stunted	growth	in	children	with	
chronic inflammation. Journal of Clinical Investigation,	99(4),	 643-
650. https://doi.org/10.1172/JCI11 9207

de	Cabo,	R.,	&	Mattson,	M.	P.	(2019).	Effects	of	intermittent	fasting	on	
health,	aging,	and	disease.	New England Journal of Medicine,	381(26),	
2541-2551.	https://doi.org/10.1056/NEJMr	a1905136

de	Waard,	M.	C.,	van	der	Pluijm,	I.,	Zuiderveen	Borgesius,	N.,	Comley,	L.	
H.,	Haasdijk,	E.	D.,	Rijksen,	Y.,	Ridwan,	Y.,	Zondag,	G.,	Hoeijmakers,	
J.	 H.	 J.,	 Elgersma,	 Y.,	 Gillingwater,	 T.	 H.,	 &	 Jaarsma,	 D.	 (2010).	
Age-related	 motor	 neuron	 degeneration	 in	 DNA	 repair-deficient	
Ercc1 mice. Acta Neuropathologica,	 120(4),	 461-475.	 https://doi.
org/10.1007/s0040	1-010-0715-9

Di	Angelantonio,	E.,	Thompson,	S.	G.,	Kaptoge,	S.,	Moore,	C.,	Walker,	M.,	
Armitage,	J.,	Ouwehand,	W.	H.,	Roberts,	D.	J.,	Danesh,	J.,	Donovan,	
J.,	&	Ford,	I.,	(2017).	Efficiency	and	safety	of	varying	the	frequency	
of	whole	blood	donation	(INTERVAL):	A	randomised	trial	of	45	000	
donors. Lancet,	390(10110),	 2360-2371.	 https://doi.org/10.1016/
S0140	-6736(17)31928	-1

Dosch,	J.,	Meissner,	U.,	&	Rascher,	W.	(2003).	Prolonged	lifespan	by	de-
fective insulin signalling? European Journal of Endocrinology,	148(5),	
489-490.	https://doi.org/10.1530/eje.0.1480489

Duan,	R.,	Shi,	Y.,	Yu,	L.	I.,	Zhang,	G.,	Li,	J.,	Lin,	Y.,	Guo,	J.,	Wang,	J.,	Shen,	L.	
U.,	Jiang,	H.,	Wang,	G.,	&	Tang,	B.	(2016).	UBA5	mutations	cause	a	
new form of autosomal recessive cerebellar ataxia. PLoS One,	11(2),	
e0149039. https://doi.org/10.1371/journ al.pone.0149039

Eisenberg,	T.,	Abdellatif,	M.,	Schroeder,	S.,	Primessnig,	U.,	Stekovic,	S.,	
Pendl,	 T.,	 Harger,	 A.,	 Schipke,	 J.,	 Zimmermann,	 A.,	 Schmidt,	 A.,	
Tong,	M.,	Ruckenstuhl,	C.,	Dammbrueck,	C.,	Gross,	A.	S.,	Herbst,	
V.,	Magnes,	C.,	Trausinger,	G.,	Narath,	S.,	Meinitzer,	A.,	…	Madeo,	
F.	 (2016).	Cardioprotection	and	 lifespan	extension	by	 the	natural	
polyamine spermidine. Nature Medicine,	22(12),	1428-1438.	https://
doi.org/10.1038/nm.4222

https://doi.org/10.1172/JCI62543
https://doi.org/10.1172/JCI62543
https://doi.org/10.1038/nature07813
https://doi.org/10.1038/nature07813
https://doi.org/10.1038/s41557-018-0147-z
https://doi.org/10.1038/s41557-018-0147-z
https://doi.org/10.1038/nature22067
https://doi.org/10.1038/s41388-020-1275-7
https://doi.org/10.1210/en.2007-0837
https://doi.org/10.1210/en.2007-0837
https://doi.org/10.1038/nm.2940
https://doi.org/10.1172/JCI97570
https://doi.org/10.1172/JCI97570
https://doi.org/10.1530/EJE-07-0127
https://doi.org/10.1530/EJE-07-0127
https://doi.org/10.1126/science.aan8821
https://doi.org/10.1111/j.1474-9726.2007.00328.x
https://doi.org/10.1111/j.1474-9726.2007.00328.x
https://doi.org/10.1038/ng0997-88
https://doi.org/10.1210/en.2003-0374
https://doi.org/10.1210/en.2003-0374
https://doi.org/10.1038/s41467-019-11510-4
https://doi.org/10.1038/s41467-019-11510-4
https://doi.org/10.1126/science.274.5291.1379
https://doi.org/10.1006/bbrc.1997.7059
https://doi.org/10.1006/bbrc.1997.7059
https://doi.org/10.1038/s42003-019-0298-5
https://doi.org/10.1038/s42003-019-0298-5
https://doi.org/10.1172/JCI119207
https://doi.org/10.1056/NEJMra1905136
https://doi.org/10.1007/s00401-010-0715-9
https://doi.org/10.1007/s00401-010-0715-9
https://doi.org/10.1016/S0140-6736(17)31928-1
https://doi.org/10.1016/S0140-6736(17)31928-1
https://doi.org/10.1530/eje.0.1480489
https://doi.org/10.1371/journal.pone.0149039
https://doi.org/10.1038/nm.4222
https://doi.org/10.1038/nm.4222


16 of 19  |     LEHALLIER Et AL.

Fijneman,	R.	J.,	Peham,	J.	R.,	van	de	Wiel,	M.	A.,	Meijer,	G.	A.,	Matise,	I.,	
Velcich,	A.,	&	Cormier,	R.	T.	(2008).	Expression	of	Pla2g2a	prevents	
carcinogenesis	 in	 Muc2-deficient	 mice.	 Cancer Science,	 99(11),	
2113-2119.	https://doi.org/10.1111/j.1349-7006.2008.00924.x

Friedman,	 J.,	 Hastie,	 T.,	 &	 Tibshirani,	 R.	 (2010).	 Regularization	 paths	
for generalized linear models via coordinate descent. Journal of 
Statistical Software,	33(1),	1-22.

Fuentealba,	M.,	Donertas,	H.	M.,	Williams,	R.,	Labbadia,	J.,	Thornton,	J.	M.,	
&	Partridge,	L.	(2019).	Using	the	drug-protein	interactome	to	identify	
anti-ageing	compounds	for	humans.	PLoS Computational Biology,	15(1),	
e1006639. https://doi.org/10.1371/journ al.pcbi.1006639

Galkin,	F.,	Mamoshina,	P.,	Aliper,	A.,	de	Magalhaes,	 J.	P.,	Gladyshev,	V.	
N.,	 &	 Zhavoronkov,	 A.	 (2020a).	 Biohorology	 and	 biomarkers	 of	
aging:	 current	 state-of-the-art,	 challenges	 and	 opportunities.	
Ageing Research Reviews,	 60,	 101050.	 https://doi.org/10.1016/j.
arr.2020.101050

Galkin,	F.,	Mamoshina,	P.,	Aliper,	A.,	Putin,	E.,	Moskalev,	V.,	Gladyshev,	V.	
N.,	&	Zhavoronkov,	A.	(2020b).	Human	gut	microbiome	aging	clock	
based on taxonomic profiling and deep learning. iScience,	 23(6),	
101199. https://doi.org/10.1016/j.isci.2020.101199

Garatachea,	N.,	Pareja-Galeano,	H.,	 Sanchis-Gomar,	 F.,	 Santos-Lozano,	
A.,	 Fiuza-Luces,	 C.,	 Morán,	 M.,	 Emanuele,	 E.,	 Joyner,	 M.	 J.,	 &	
Lucia,	A.	(2015).	Exercise	attenuates	the	major	hallmarks	of	aging.	
Rejuvenation Research,	 18(1),	 57-89.	 https://doi.org/10.1089/
rej.2014.1623

Glasson,	S.	S.,	Askew,	R.,	Sheppard,	B.,	Carito,	B.,	Blanchet,	T.,	Ma,	H.-
L.,	 Flannery,	 C.	 R.,	 Peluso,	 D.,	 Kanki,	 K.,	 Yang,	 Z.,	Majumdar,	M.	
K.,	&	Morris,	E.	A.	 (2005).	Deletion	of	active	ADAMTS5	prevents	
cartilage degradation in a murine model of osteoarthritis. Nature,	
434(7033),	644-648.	https://doi.org/10.1038/natur	e03369

Graham,	D.	R.,	 Elliott,	 S.	T.,	&	Van	Eyk,	 J.	 E.	 (2005).	Broad-based	pro-
teomic	 strategies:	 A	 practical	 guide	 to	 proteomics	 and	 func-
tional screening. Journal of Physiology,	563(Pt	 1),	 1-9.	 https://doi.
org/10.1113/jphys iol.2004.080341

Greer,	E.	L.,	Dowlatshahi,	D.,	Banko,	M.	R.,	Villen,	J.,	Hoang,	K.,	Blanchard,	
D.,	Gygi,	S.	P.,	&	Brunet,	A.	(2007).	An	AMPK-FOXO	pathway	me-
diates longevity induced by a novel method of dietary restric-
tion in C. elegans. Current Biology,	17(19),	 1646-1656.	 https://doi.
org/10.1016/j.cub.2007.08.047

Hannum,	G.,	Guinney,	J.,	Zhao,	L.,	Zhang,	L.	I.,	Hughes,	G.,	Sadda,	S.	V.,	
Klotzle,	B.,	Bibikova,	M.,	Fan,	J.-B.,	Gao,	Y.,	Deconde,	R.,	Chen,	M.,	
Rajapakse,	 I.,	 Friend,	 S.,	 Ideker,	 T.,	 &	 Zhang,	 K.	 (2013).	 Genome-
wide	methylation	profiles	reveal	quantitative	views	of	human	aging	
rates. Molecular Cell,	 49(2),	 359-367.	 https://doi.org/10.1016/j.
molcel.2012.10.016

Hansen,	M.,	Hsu,	A.	L.,	Dillin,	A.,	&	Kenyon,	C.	(2005).	New	genes	tied	
to	endocrine,	metabolic,	and	dietary	regulation	of	lifespan	from	a	
Caenorhabditis	elegans	genomic	RNAi	screen.	PLoS Genetics,	1(1),	
119-128.	https://doi.org/10.1371/journ	al.pgen.0010017

He,	Y.	I.,	Wu,	X.,	Khan,	R.	S.,	Kastin,	A.	J.,	Cornelissen-Guillaume,	G.	G.,	
Hsuchou,	H.,	Robert,	B.,	Halberg,	F.,	&	Pan,	W.	(2010).	IL-15	recep-
tor deletion results in circadian changes of locomotor and meta-
bolic activity. Journal of Molecular Neuroscience,	 41(2),	 315-321.	
https://doi.org/10.1007/s1203	1-009-9319-z

Hedbacker,	 K.,	 Birsoy,	 K.,	 Wysocki,	 R.	 W.,	 Asilmaz,	 E.,	 Ahima,	 R.	 S.,	
Farooqi,	 I.	 S.,	 &	 Friedman,	 J.	 M.	 (2010).	 Antidiabetic	 effects	 of	
IGFBP2,	 a	 leptin-regulated	 gene.	 Cell Metabolism,	 11(1),	 11-22.	
https://doi.org/10.1016/j.cmet.2009.11.007

Hertel,	P.,	Daniel,	J.,	Stegehake,	D.,	Vaupel,	H.,	Kailayangiri,	S.,	Gruel,	C.,	
&	Liebau,	E.	 (2013).	The	ubiquitin-fold	modifier	1	 (Ufm1)	cascade	
of Caenorhabditis elegans. Journal of Biological Chemistry,	288(15),	
10661-10671.	https://doi.org/10.1074/jbc.M113.458000

Horvath,	 S.	 (2013).	 DNA	 methylation	 age	 of	 human	 tissues	 and	 cell	
types. Genome Biology,	 14(10),	 R115.	 https://doi.org/10.1186/
gb-2013-14-10-r115

Horvath,	S.,	&	Raj,	K.	(2018).	DNA	methylation-based	biomarkers	and	the	
epigenetic clock theory of ageing. Nature Reviews Genetics,	19(6),	
371-384.	https://doi.org/10.1038/s4157	6-018-0004-3

Hunninghake,	G.	M.,	Cho,	M.	H.,	Tesfaigzi,	Y.,	Soto-Quiros,	M.	E.,	Avila,	
L.,	Lasky-Su,	J.,	&	Celedon,	J.	C.	(2009).	MMP12,	lung	function,	and	
COPD	 in	 high-risk	 populations.	New England Journal of Medicine,	
361(27),	2599-2608.	https://doi.org/10.1056/NEJMo	a0904006

Jassal,	 B.,	Matthews,	 L.,	 Viteri,	G.,	Gong,	 C.,	 Lorente,	 P.,	 Fabregat,	 A.,	
Sidiropoulos,	 K.,	 Cook,	 J.,	 Gillespie,	M.,	 Haw,	 R.,	 Loney,	 F.,	 May,	
B.,	Milacic,	M.,	Rothfels,	K.,	Sevilla,	C.,	Shamovsky,	V.,	Shorser,	S.,	
Varusai,	T.,	Weiser,	J.,	…	D’Eustachio,	P.	(2020).	The	reactome	path-
way knowledgebase. Nucleic Acids Research,	48(D1),	D498-D503.	
https://doi.org/10.1093/nar/gkz1031

Johnson,	A.	A.	 (2020).	 Lipid	hydrolase	enzymes:	Pragmatic	prolongev-
ity targets for improved human healthspan? Rejuvenation Research,	
23(2),	107-121.	https://doi.org/10.1089/rej.2019.2211

Johnson,	A.	A.,	Shokhirev,	M.	N.,	&	Shoshitaishvili,	B.	(2019).	Revamping	
the evolutionary theories of aging. Ageing Research Reviews,	 55,	
100947. https://doi.org/10.1016/j.arr.2019.100947

Johnson,	A.	A.,	Shokhirev,	M.	N.,	Wyss-Coray,	T.,	&	Lehallier,	B.	(2020).	
Systematic	review	and	analysis	of	human	proteomics	aging	studies	
unveils a novel proteomic aging clock and identifies key processes 
that change with age. Ageing Research Reviews 60,	101070.	https://
doi.org/10.1016/j.arr.2020.101070

Johnson,	 A.	 A.,	 &	 Stolzing,	 A.	 (2019).	 The	 role	 of	 lipid	 metabolism	 in	
aging,	lifespan	regulation,	and	age-related	disease.	Aging Cell,	18(6),	
e13048. https://doi.org/10.1111/acel.13048

Johnson,	R.	W.,	Finger,	E.	C.,	Olcina,	M.	M.,	Vilalta,	M.,	Aguilera,	T.,	Miao,	
Y.	U.,	Merkel,	A.	R.,	Johnson,	J.	R.,	Sterling,	J.	A.,	Wu,	J.	Y.,	&	Giaccia,	
A.	 J.	 (2016).	 Induction	of	 LIFR	 confers	 a	dormancy	phenotype	 in	
breast cancer cells disseminated to the bone marrow. Nature Cell 
Biology,	18(10),	1078-1089.	https://doi.org/10.1038/ncb3408

Jourquin,	J.,	Duncan,	D.,	Shi,	Z.,	&	Zhang,	B.	(2012).	GLAD4U:	deriving	
and	prioritizing	gene	lists	from	PubMed	literature.	BMC Genomics,	
13(Suppl	8),	S20.	https://doi.org/10.1186/1471-2164-13-S8-S20

Kanehisa,	M.,	 &	 Goto,	 S.	 (2000).	 KEGG:	 kyoto	 encyclopedia	 of	 genes	
and genomes. Nucleic Acids Research,	 28(1),	 27-30.	 https://doi.
org/10.1093/nar/28.1.27

Kim,	T.,	Vidal,	G.	S.,	Djurisic,	M.,	William,	C.	M.,	Birnbaum,	M.	E.,	Garcia,	
K.	C.,	&	Shatz,	C.	J.	(2013).	Human	LilrB2	is	a	beta-amyloid	recep-
tor and its murine homolog PirB regulates synaptic plasticity in 
an	Alzheimer's	model.	Science,	341(6152),	1399-1404.	https://doi.
org/10.1126/scien ce.1242077

Kopf,	M.,	Baumann,	H.,	Freer,	G.,	Freudenberg,	M.,	Lamers,	M.,	Kishimoto,	
T.,	Zinkernagel,	R.,	Bluethmann,	H.,	&	Köhler,	G.	 (1994).	 Impaired	
immune	and	acute-phase	responses	in	interleukin-6-deficient	mice.	
Nature,	368(6469),	339-342.	https://doi.org/10.1038/368339a0

Krude,	H.,	Biebermann,	H.,	Luck,	W.,	Horn,	R.,	Brabant,	G.,	&	Gruters,	
A.	(1998).	Severe	early-onset	obesity,	adrenal	insufficiency	and	red	
hair	pigmentation	caused	by	POMC	mutations	 in	humans.	Nature 
Genetics,	19(2),	155-157.	https://doi.org/10.1038/509

Kühnen,	 P.,	 Clément,	 K.,	Wiegand,	 S.,	 Blankenstein,	 O.,	 Gottesdiener,	
K.,	Martini,	L.	L.,	Mai,	K.,	Blume-Peytavi,	U.,	Grüters,	A.,	&	Krude,	
H.	(2016).	Proopiomelanocortin	deficiency	treated	with	a	melano-
cortin-4	receptor	agonist.	New England Journal of Medicine,	375(3),	
240-246.	https://doi.org/10.1056/NEJMo	a1512693

Kulkarni,	 A.	 S.,	Gubbi,	 S.,	 &	Barzilai,	N.	 (2020).	 Benefits	 of	metformin	
in attenuating the hallmarks of aging. Cell Metabolism,	https://doi.
org/10.1016/j.cmet.2020.04.001

Lehallier,	 B.,	 Gate,	 D.,	 Schaum,	 N.,	 Nanasi,	 T.,	 Lee,	 S.	 E.,	 Yousef,	 H.,	
Moran	Losada,	P.,	Berdnik,	D.,	Keller,	A.,	Verghese,	J.,	Sathyan,	S.,	
Franceschi,	 C.,	 Milman,	 S.,	 Barzilai,	 N.,	 &	Wyss-Coray,	 T.	 (2019).	
Undulating changes in human plasma proteome profiles across 
the lifespan. Nature Medicine,	 25(12),	 1843-1850.	 https://doi.
org/10.1038/s4159	1-019-0673-2

https://doi.org/10.1111/j.1349-7006.2008.00924.x
https://doi.org/10.1371/journal.pcbi.1006639
https://doi.org/10.1016/j.arr.2020.101050
https://doi.org/10.1016/j.arr.2020.101050
https://doi.org/10.1016/j.isci.2020.101199
https://doi.org/10.1089/rej.2014.1623
https://doi.org/10.1089/rej.2014.1623
https://doi.org/10.1038/nature03369
https://doi.org/10.1113/jphysiol.2004.080341
https://doi.org/10.1113/jphysiol.2004.080341
https://doi.org/10.1016/j.cub.2007.08.047
https://doi.org/10.1016/j.cub.2007.08.047
https://doi.org/10.1016/j.molcel.2012.10.016
https://doi.org/10.1016/j.molcel.2012.10.016
https://doi.org/10.1371/journal.pgen.0010017
https://doi.org/10.1007/s12031-009-9319-z
https://doi.org/10.1016/j.cmet.2009.11.007
https://doi.org/10.1074/jbc.M113.458000
https://doi.org/10.1186/gb-2013-14-10-r115
https://doi.org/10.1186/gb-2013-14-10-r115
https://doi.org/10.1038/s41576-018-0004-3
https://doi.org/10.1056/NEJMoa0904006
https://doi.org/10.1093/nar/gkz1031
https://doi.org/10.1089/rej.2019.2211
https://doi.org/10.1016/j.arr.2019.100947
https://doi.org/10.1016/j.arr.2020.101070
https://doi.org/10.1016/j.arr.2020.101070
https://doi.org/10.1111/acel.13048
https://doi.org/10.1038/ncb3408
https://doi.org/10.1186/1471-2164-13-S8-S20
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.1126/science.1242077
https://doi.org/10.1126/science.1242077
https://doi.org/10.1038/368339a0
https://doi.org/10.1038/509
https://doi.org/10.1056/NEJMoa1512693
https://doi.org/10.1016/j.cmet.2020.04.001
https://doi.org/10.1016/j.cmet.2020.04.001
https://doi.org/10.1038/s41591-019-0673-2
https://doi.org/10.1038/s41591-019-0673-2


    |  17 of 19LEHALLIER Et AL.

Leung,	S.	Y.,	Chen,	X.,	Chu,	K.	M.,	Yuen,	S.	T.,	Mathy,	J.,	Ji,	J.,	Chan,	A.	
S.	Y.,	Li,	R.,	Law,	S.,	Troyanskaya,	O.	G.,	Tu,	 I.-P.,	Wong,	 J.,	So,	S.,	
Botstein,	D.,	&	Brown,	 P.	O.	 (2002).	 Phospholipase	A2	 group	 IIA	
expression in gastric adenocarcinoma is associated with prolonged 
survival	 and	 less	 frequent	metastasis.	Proceedings of the National 
Academy of Sciences of the United States of America,	99(25),	16203-
16208. https://doi.org/10.1073/pnas.21264 6299

Li,	 S.,	 Goncalves,	 K.	 A.,	 Lyu,	 B.,	 Yuan,	 L.,	 &	 Hu,	 G.	 F.	 (2020).	
Chemosensitization of prostate cancer stem cells in mice by an-
giogenin	and	plexin-B2	inhibitors.	Communications Biology,	3(1),	26.	
https://doi.org/10.1038/s4200	3-020-0750-6

Liao,	Y.,	Wang,	J.,	Jaehnig,	E.	J.,	Shi,	Z.,	&	Zhang,	B.	(2019).	WebGestalt	
2019:	gene	set	analysis	toolkit	with	revamped	UIs	and	APIs.	Nucleic 
Acids Research,	47(W1),	W199-W205.	https://doi.org/10.1093/nar/
gkz401

Ligtenberg,	W.	(2019).	A set of annotation maps for reactome. R Package 
Version 1.70.0.

Lin,	A.	C.,	Seeto,	B.	L.,	Bartoszko,	J.	M.,	Khoury,	M.	A.,	Whetstone,	H.,	
Ho,	L.,	Hsu,	C.,	Ali,	S.	A.,	&	Alman,	B.	A.	(2009).	Modulating	hedge-
hog signaling can attenuate the severity of osteoarthritis. Nature 
Medicine,	15(12),	1421-1425.	https://doi.org/10.1038/nm.2055

Liu,	L.,	Peritore,	C.,	Ginsberg,	J.,	Shih,	J.,	Arun,	S.,	&	Donmez,	G.	(2015).	
Protective	 role	 of	 SIRT5	 against	motor	 deficit	 and	 dopaminergic	
degeneration	in	MPTP-induced	mice	model	of	Parkinson's	disease.	
Behavioral Brain Research,	281,	215-221.	https://doi.org/10.1016/j.
bbr.2014.12.035

Liu,	 P.,	 Ji,	 Y.,	 Yuen,	 T.,	 Rendina-Ruedy,	 E.,	 DeMambro,	 V.	 E.,	 Dhawan,	
S.,	 Abu-Amer,	 W.,	 Izadmehr,	 S.,	 Zhou,	 B.,	 Shin,	 A.	 C.,	 Latif,	 R.,	
Thangeswaran,	 P.,	 Gupta,	 A.,	 Li,	 J.,	 Shnayder,	 V.,	 Robinson,	 S.	 T.,	
Yu,	Y.	E.,	Zhang,	X.,	Yang,	F.,	…	Zaidi,	M.	 (2017).	Blocking	FSH	in-
duces thermogenic adipose tissue and reduces body fat. Nature,	
546(7656),	107-112.	https://doi.org/10.1038/natur	e22342

Liu,	S.-L.,	Bajpai,	A.,	Hawthorne,	E.	A.,	Bae,	Y.,	Castagnino,	P.,	Monslow,	
J.,	Puré,	E.,	Spiller,	K.	L.,	&	Assoian,	R.	K.	(2019).	Cardiovascular	pro-
tection	in	females	linked	to	estrogen-dependent	inhibition	of	arte-
rial	stiffening	and	macrophage	MMP12.	JCI Insight,	4(1),	https://doi.
org/10.1172/jci.insig ht.122742

Loro,	E.,	Seifert,	E.	L.,	Moffat,	C.,	Romero,	F.,	Mishra,	M.	K.,	Sun,	Z.,	&	
Khurana,	T.	S.	 (2015).	 IL-15Ralpha	is	a	determinant	of	muscle	fuel	
utilization,	 and	 its	 loss	protects	 against	obesity.	American Journal 
of Physiology: Regulatory, Integrative and Comparative Physiology,	
309(8),	R835-844.	https://doi.org/10.1152/ajpre	gu.00505.2014

Mamoshina,	 P.,	 Volosnikova,	 M.,	 Ozerov,	 I.	 V.,	 Putin,	 E.,	 Skibina,	 E.,	
Cortese,	F.,	&	Zhavoronkov,	A.	(2018).	Machine	learning	on	human	
muscle	transcriptomic	data	for	biomarker	discovery	and	tissue-spe-
cific drug target identification. Front Genet,	 9,	 242.	 https://doi.
org/10.3389/fgene.2018.00242

Mazelin,	L.,	Bernet,	A.,	Bonod-Bidaud,	C.,	Pays,	L.,	Arnaud,	S.,	Gespach,	
C.,	 Bredesen,	D.	 E.,	 Scoazec,	 J.-Y.,	 &	Mehlen,	 P.	 (2004).	 Netrin-1	
controls colorectal tumorigenesis by regulating apoptosis. Nature,	
431(7004),	80-84.	https://doi.org/10.1038/natur	e02788

Merlini,	M.,	Rafalski,	V.	A.,	Rios	Coronado,	P.	E.,	Gill,	T.	M.,	Ellisman,	M.,	
Muthukumar,	G.,	Subramanian,	K.	S.,	Ryu,	J.	K.,	Syme,	C.	A.,	Davalos,	
D.,	Seeley,	W.	W.,	Mucke,	L.,	Nelson,	R.	B.,	&	Akassoglou,	K.	(2019).	
Fibrinogen	induces	microglia-mediated	spine	elimination	and	cog-
nitive	impairment	in	an	Alzheimer's	disease	model.	Neuron,	101(6),	
1099-1108e1096.	https://doi.org/10.1016/j.neuron.2019.01.014

Mi,	 H.,	 &	 Thomas,	 P.	 (2009).	 PANTHER	 pathway:	 an	 ontology-based	
pathway database coupled with data analysis tools. Methods in 
Molecular Biology,	 563,	 123-140.	 https://doi.org/10.1007/978-1-
60761	-175-2_7

Migliaccio,	E.,	Giorgio,	M.,	Mele,	S.,	Pelicci,	G.,	Reboldi,	P.,	Pandolfi,	P.	
P.,	Lanfrancone,	L.,	&	Pelicci,	P.	G.	(1999).	The	p66shc	adaptor	pro-
tein controls oxidative stress response and life span in mammals. 
Nature,	402(6759),	309-313.	https://doi.org/10.1038/46311

Miller,	 R.	 A.,	 Harrison,	 D.	 E.,	 Astle,	 C.	 M.,	 Bogue,	 M.	 A.,	 Brind,	 J.,	
Fernandez,	E.,	Flurkey,	K.,	Javors,	M.,	Ladiges,	W.,	Leeuwenburgh,	
C.,	Macchiarini,	F.,	Nelson,	J.,	Ryazanov,	A.	G.,	Snyder,	J.,	Stearns,	
T.	M.,	Vaughan,	D.	E.,	&	Strong,	R.	(2019).	Glycine	supplementation	
extends lifespan of male and female mice. Aging Cell,	18(3),	e12953.	
https://doi.org/10.1111/acel.12953

Miskin,	 R.,	 &	 Masos,	 T.	 (1997).	 Transgenic	 mice	 overexpressing	 uro-
kinase-type	 plasminogen	 activator	 in	 the	 brain	 exhibit	 reduced	
food	 consumption,	 body	 weight	 and	 size,	 and	 increased	 lon-
gevity. Journals of Gerontology. Series A, Biological Sciences and 
Medical Sciences,	 52(2),	 B118-124.	 https://doi.org/10.1093/geron	
a/52a.2.b118

Mokuda,	S.,	Nakamichi,	R.,	Matsuzaki,	T.,	Ito,	Y.,	Sato,	T.,	Miyata,	K.,	Inui,	
M.,	Olmer,	M.,	Sugiyama,	E.,	Lotz,	M.,	&	Asahara,	H.	(2019).	Wwp2	
maintains	 cartilage	 homeostasis	 through	 regulation	 of	 Adamts5.	
Nature Communications,	 10(1),	 2429.	 https://doi.org/10.1038/
s4146	7-019-10177	-1

Most,	J.,	Tosti,	V.,	Redman,	L.	M.,	&	Fontana,	L.	(2017).	Calorie	restriction	
in	humans:	An	update.	Ageing Research Reviews,	39,	36-45.	https://
doi.org/10.1016/j.arr.2016.08.005

Nahorski,	M.	 S.,	Maddirevula,	 S.,	 Ishimura,	 R.,	 Alsahli,	 S.,	 Brady,	 A.	 F.,	
Begemann,	 A.,	 Mizushima,	 T.,	 Guzmán-Vega,	 F.	 J.,	 Obata,	 M.,	
Ichimura,	 Y.,	 Alsaif,	 H.	 S.,	 Anazi,	 S.,	 Ibrahim,	 N.,	 Abdulwahab,	 F.,	
Hashem,	M.,	Monies,	D.,	Abouelhoda,	M.,	Meyer,	 B.	 F.,	 Alfadhel,	
M.,	…	Alkuraya,	 F.	 S.	 (2018).	Biallelic	UFM1	and	UFC1	mutations	
expand the essential role of ufmylation in brain development. Brain,	
141(7),	1934-1945.	https://doi.org/10.1093/brain/	awy135

Nikolich-Zugich,	J.	(2018).	The	twilight	of	immunity:	emerging	concepts	
in aging of the immune system. Nature Immunology,	19(1),	 10-19.	
https://doi.org/10.1038/s4159	0-017-0006-x

Ortega-Molina,	A.,	Efeyan,	A.,	Lopez-Guadamillas,	E.,	Muñoz-Martin,	M.,	
Gómez-López,	G.,	Cañamero,	M.,	Mulero,	 F.,	 Pastor,	 J.,	Martinez,	
S.,	 Romanos,	 E.,	 Mar	 Gonzalez-Barroso,	 M.,	 Rial,	 E.,	 Valverde,	
A.	M.,	Bischoff,	 J.	R.,	&	Serrano,	M.	 (2012).	Pten	positively	 regu-
lates	 brown	 adipose	 function,	 energy	 expenditure,	 and	 longev-
ity. Cell Metabolism,	 15(3),	 382-394.	 https://doi.org/10.1016/j.
cmet.2012.02.001

Partridge,	L.,	Fuentealba,	M.,	&	Kennedy,	B.	K.	(2020).	The	quest	to	slow	
ageing through drug discovery. Nature Reviews Drug Discovery,	
https://doi.org/10.1038/s4157	3-020-0067-7

Peretti,	D.,	Bastide,	A.,	Radford,	H.,	Verity,	N.,	Molloy,	C.,	Martin,	M.	G.,	
Moreno,	J.	A.,	Steinert,	J.	R.,	Smith,	T.,	Dinsdale,	D.,	Willis,	A.	E.,	&	
Mallucci,	G.	R.	(2015).	RBM3	mediates	structural	plasticity	and	pro-
tective effects of cooling in neurodegeneration. Nature,	518(7538),	
236-239.	https://doi.org/10.1038/natur	e14142

Peters,	M.	J.,	Joehanes,	R.,	Pilling,	L.	C.,	Schurmann,	C.,	Conneely,	K.	N.,	
Powell,	J.,	Reinmaa,	E.,	Sutphin,	G.	L.,	Zhernakova,	A.,	Schramm,	K.,	
Wilson,	Y.	A.,	Kobes,	S.,	Tukiainen,	T.,	Ramos,	Y.	F.,	Göring,	H.	H.	H.,	
Fornage,	M.,	Liu,	Y.,	Gharib,	S.	A.,	Stranger,	B.	E.,	…	Johnson,	A.	D.	
(2015).	The	 transcriptional	 landscape	of	 age	 in	human	peripheral	
blood. Nature Communications,	 6,	 8570.	 https://doi.org/10.1038/
ncomm s9570

Pistilli,	E.	E.,	Bogdanovich,	S.,	Garton,	F.,	Yang,	N.,	Gulbin,	J.	P.,	Conner,	
J.	D.,	&	Khurana,	T.	S.	(2011).	Loss	of	IL-15	receptor	alpha	alters	the	
endurance,	fatigability,	and	metabolic	characteristics	of	mouse	fast	
skeletal muscles. The Journal of Clinical Investigation,	121(8),	3120-
3132. https://doi.org/10.1172/JCI44945

Pluvinage,	 J.	 V.,	 &	Wyss-Coray,	 T.	 (2020).	 Systemic	 factors	 as	 media-
tors	of	brain	homeostasis,	 ageing	and	neurodegeneration.	Nature 
Reviews Neuroscience,	 21(2),	 93-102.	 https://doi.org/10.1038/
s4158	3-019-0255-9

Pollock,	K.,	Dahlenburg,	H.,	Nelson,	H.,	Fink,	K.	D.,	Cary,	W.,	Hendrix,	
K.,	Annett,	G.,	Torrest,	A.,	Deng,	P.,	Gutierrez,	J.,	Nacey,	C.,	Pepper,	
K.,	Kalomoiris,	S.,	Anderson,	J.	D.,	McGee,	J.,	Gruenloh,	W.,	Fury,	
B.,	Bauer,	G.,	Duffy,	A.,	…	Nolta,	J.	A.	(2016).	Human	mesenchymal	

https://doi.org/10.1073/pnas.212646299
https://doi.org/10.1038/s42003-020-0750-6
https://doi.org/10.1093/nar/gkz401
https://doi.org/10.1093/nar/gkz401
https://doi.org/10.1038/nm.2055
https://doi.org/10.1016/j.bbr.2014.12.035
https://doi.org/10.1016/j.bbr.2014.12.035
https://doi.org/10.1038/nature22342
https://doi.org/10.1172/jci.insight.122742
https://doi.org/10.1172/jci.insight.122742
https://doi.org/10.1152/ajpregu.00505.2014
https://doi.org/10.3389/fgene.2018.00242
https://doi.org/10.3389/fgene.2018.00242
https://doi.org/10.1038/nature02788
https://doi.org/10.1016/j.neuron.2019.01.014
https://doi.org/10.1007/978-1-60761-175-2_7
https://doi.org/10.1007/978-1-60761-175-2_7
https://doi.org/10.1038/46311
https://doi.org/10.1111/acel.12953
https://doi.org/10.1093/gerona/52a.2.b118
https://doi.org/10.1093/gerona/52a.2.b118
https://doi.org/10.1038/s41467-019-10177-1
https://doi.org/10.1038/s41467-019-10177-1
https://doi.org/10.1016/j.arr.2016.08.005
https://doi.org/10.1016/j.arr.2016.08.005
https://doi.org/10.1093/brain/awy135
https://doi.org/10.1038/s41590-017-0006-x
https://doi.org/10.1016/j.cmet.2012.02.001
https://doi.org/10.1016/j.cmet.2012.02.001
https://doi.org/10.1038/s41573-020-0067-7
https://doi.org/10.1038/nature14142
https://doi.org/10.1038/ncomms9570
https://doi.org/10.1038/ncomms9570
https://doi.org/10.1172/JCI44945
https://doi.org/10.1038/s41583-019-0255-9
https://doi.org/10.1038/s41583-019-0255-9


18 of 19  |     LEHALLIER Et AL.

stem	 cells	 genetically	 engineered	 to	 overexpress	 brain-derived	
neurotrophic	 factor	 improve	 outcomes	 in	 huntington's	 disease	
mouse models. Molecular Therapy,	 24(5),	 965-977.	 https://doi.
org/10.1038/mt.2016.12

Putin,	E.,	Mamoshina,	P.,	Aliper,	A.,	Korzinkin,	M.,	Moskalev,	A.,	Kolosov,	
A.,	 Ostrovskiy,	 A.,	 Cantor,	 C.,	 Vijg,	 J.,	 &	 Zhavoronkov,	 A.	 (2016).	
Deep	biomarkers	of	human	aging:	Application	of	deep	neural	net-
works to biomarker development. Aging (Albany NY),	 8(5),	 1021-
1033. https://doi.org/10.18632/ aging.100968

Ramkhelawon,	B.,	Hennessy,	E.	J.,	Ménager,	M.,	Ray,	T.	D.,	Sheedy,	F.	J.,	
Hutchison,	 S.,	Wanschel,	 A.,	Oldebeken,	 S.,	 Geoffrion,	M.,	 Spiro,	
W.,	Miller,	G.,	McPherson,	R.,	Rayner,	K.	J.,	&	Moore,	K.	J.	(2014).	
Netrin-1	promotes	adipose	tissue	macrophage	retention	and	insulin	
resistance in obesity. Nature Medicine,	20(4),	377-384.	https://doi.
org/10.1038/nm.3467

Ramsey,	J.	J.,	Tran,	D.,	Giorgio,	M.,	Griffey,	S.	M.,	Koehne,	A.,	Laing,	S.	
T.,	Taylor,	S.	L.,	Kim,	K.,	Cortopassi,	G.	A.,	Lloyd,	K.	C.	K.,	Hagopian,	
K.,	Tomilov,	A.	A.,	Migliaccio,	E.,	Pelicci,	P.	G.,	&	McDonald,	R.	B.	
(2014).	The	influence	of	Shc	proteins	on	life	span	in	mice.	Journals 
of Gerontology. Series A, Biological Sciences and Medical Sciences,	
69(10),	1177-1185.	https://doi.org/10.1093/geron	a/glt198

Ren,	J.,	Yang,	L.,	Zhu,	L.	I.,	Xu,	X.,	Ceylan,	A.	F.,	Guo,	W.,	Yang,	J.,	&	Zhang,	
Y.	(2017).	Akt2	ablation	prolongs	life	span	and	improves	myocardial	
contractile	function	with	adaptive	cardiac	remodeling:	role	of	Sirt1-
mediated autophagy regulation. Aging Cell,	16(5),	976-987.	https://
doi.org/10.1111/acel.12616

Rist,	M.	J.,	Roth,	A.,	Frommherz,	L.,	Weinert,	C.	H.,	Krüger,	R.,	Merz,	B.,	
Bunzel,	D.,	Mack,	C.,	Egert,	B.,	Bub,	A.,	Görling,	B.,	Tzvetkova,	P.,	
Luy,	B.,	Hoffmann,	I.,	Kulling,	S.	E.,	&	Watzl,	B.	(2017).	Metabolite	
patterns	 predicting	 sex	 and	 age	 in	 participants	 of	 the	 Karlsruhe	
Metabolomics	 and	 Nutrition	 (KarMeN)	 study.	 PLoS One,	 12(8),	
e0183228. https://doi.org/10.1371/journ al.pone.0183228

Robinson,	O.,	 Chadeau	Hyam,	M.,	 Karaman,	 I.,	 Climaco	 Pinto,	 R.,	 Ala-
Korpela,	M.,	Handakas,	E.,	Fiorito,	G.,	Gao,	H.	E.,	Heard,	A.,	Jarvelin,	
M.-R.,	Lewis,	M.,	Pazoki,	R.,	Polidoro,	S.,	Tzoulaki,	I.,	Wielscher,	M.,	
Elliott,	P.,	&	Vineis,	P.	(2020).	Determinants	of	accelerated	metab-
olomic	 and	 epigenetic	 aging	 in	 a	UK	 cohort.	Aging Cell,	19,	 1–13.	
https://doi.org/10.1111/acel.13149

Russell,	M.	W.,	Raeker,	M.	O.,	Geisler,	S.	B.,	Thomas,	P.	E.,	Simmons,	T.	A.,	
Bernat,	J.	A.,	Thorsson,	T.,	&	Innis,	J.	W.	(2014).	Functional	analysis	
of	 candidate	genes	 in	2q13	deletion	 syndrome	 implicates	FBLN7	
and	TMEM87B	deficiency	in	congenital	heart	defects	and	FBLN7	
in craniofacial malformations. Human Molecular Genetics,	 23(16),	
4272-4284.	https://doi.org/10.1093/hmg/ddu144

Ryu,	J.	K.,	Petersen,	M.	A.,	Murray,	S.	G.,	Baeten,	K.	M.,	Meyer-Franke,	A.,	
Chan,	J.	P.,	Vagena,	E.,	Bedard,	C.,	Machado,	M.	R.,	Coronado,	P.	E.	
R.,	Prod'homme,	T.,	Charo,	I.	F.,	Lassmann,	H.,	Degen,	J.	L.,	Zamvil,	
S.	S.,	&	Akassoglou,	K.	(2015).	Blood	coagulation	protein	fibrinogen	
promotes autoimmunity and demyelination via chemokine release 
and antigen presentation. Nature Communications,	6,	8164.	https://
doi.org/10.1038/ncomm s9164

Ryu,	 J.	K.,	Rafalski,	V.	A.,	Meyer-Franke,	A.,	Adams,	R.	A.,	Poda,	 S.	B.,	
Rios	 Coronado,	 P.	 E.,	 Pedersen,	 L.	Ø.,	Menon,	 V.,	 Baeten,	 K.	M.,	
Sikorski,	S.	L.,	Bedard,	C.,	Hanspers,	K.,	Bardehle,	S.,	Mendiola,	A.	
S.,	Davalos,	D.,	Machado,	M.	R.,	Chan,	J.	P.,	Plastira,	I.,	Petersen,	M.	
A.,	…	Akassoglou,	K.	 (2018).	Fibrin-targeting	immunotherapy	pro-
tects against neuroinflammation and neurodegeneration. Nature 
Immunology,	 19(11),	 1212-1223.	 https://doi.org/10.1038/s4159	
0-018-0232-x

Sadhukhan,	 S.,	 Liu,	 X.,	 Ryu,	D.,	Nelson,	O.	D.,	 Stupinski,	 J.	A.,	 Li,	 Z.,	
Chen,	W.,	Zhang,	S.,	Weiss,	R.	S.,	Locasale,	 J.	W.,	Auwerx,	 J.,	&	
Lin,	H.	(2016).	Metabolomics-assisted	proteomics	identifies	suc-
cinylation	and	SIRT5	as	important	regulators	of	cardiac	function.	
Proceedings of the National Academy of Sciences of the United 

States of America,	113(16),	4320-4325.	https://doi.org/10.1073/
pnas.15198 58113

Sagers,	L.,	Melas-Kyriazi,	L.,	Patel,	C.	J.,	&	Manrai,	A.	K.	(2020).	Prediction	of	
chronological and biological age from laboratory data. Aging (Albany 
NY),	12(9),	7626-7638.	https://doi.org/10.18632/	aging.102900

Santos-Parker,	J.	R.,	Santos-Parker,	K.	S.,	McQueen,	M.	B.,	Martens,	C.	
R.,	 &	 Seals,	 D.	 R.	 (2018).	 Habitual	 aerobic	 exercise	 and	 circulat-
ing proteomic patterns in healthy adults: Relation to indicators 
of healthspan. Journal of Applied Physiology,	 125(5),	 1646–1659.	
https://doi.org/10.1152/jappl physi ol.00458.2018

Shen,	 S.,	 Li,	C.,	Xiao,	 L.,	Wang,	X.,	 Lv,	H.,	 Shi,	Y.,	 Li,	Y.,	&	Huang,	Q.	 I.	
(2020).	 Whole-genome	 sequencing	 of	 Chinese	 centenarians	 re-
veals	 important	genetic	variants	 in	aging	WGS	of	centenarian	for	
genetic analysis of aging. Human Genomics,	14(1),	 23.	 https://doi.
org/10.1186/s4024	6-020-00271	-7

Shuai,	L.,	Zhang,	L.	N.,	Li,	B.	H.,	Tang,	C.	L.,	Wu,	L.	Y.,	Li,	J.,	&	Li,	J.	Y.	(2019).	
SIRT5	regulates	brown	adipocyte	differentiation	and	browning	of	
subcutaneous white adipose tissue. Diabetes,	 68(7),	 1449-1461.	
https://doi.org/10.2337/db18-1103

Singh,	P.	P.,	Demmitt,	B.	A.,	Nath,	R.	D.,	&	Brunet,	A.	(2019).	The	genetics	
of	aging:	A	vertebrate	perspective.	Cell,	177(1),	200-220.	https://
doi.org/10.1016/j.cell.2019.02.038

Siu,	M.	K.	Y.,	Chan,	H.	Y.,	Kong,	D.	S.	H.,	Wong,	E.	S.	Y.,	Wong,	O.	G.	W.,	
Ngan,	H.	Y.	S.,	Tam,	K.	F.,	Zhang,	H.,	Li,	Z.,	Chan,	Q.	K.	Y.,	Tsao,	S.	
W.,	Stromblad,	S.,	&	Cheung,	A.	N.	Y.	(2010).	p21-activated	kinase	
4	 regulates	ovarian	 cancer	 cell	 proliferation,	migration,	 and	 inva-
sion and contributes to poor prognosis in patients. Proceedings of 
the National Academy of Sciences of the United States of America,	
107(43),	18622-18627.	https://doi.org/10.1073/pnas.09074	81107

Slenter,	 D.	 N.,	 Kutmon,	 M.,	 Hanspers,	 K.,	 Riutta,	 A.,	 Windsor,	 J.,	
Nunes,	 N.,	Mélius,	 J.,	 Cirillo,	 E.,	 Coort,	 S.	 L.,	 Digles,	 D.,	 Ehrhart,	
F.,	Giesbertz,	 P.,	 Kalafati,	M.,	Martens,	M.,	Miller,	 R.,	Nishida,	K.,	
Rieswijk,	 L.,	Waagmeester,	A.,	Eijssen,	L.	M.	T.,	…	Willighagen,	E.	
L.	 (2018).	WikiPathways:	a	multifaceted	pathway	database	bridg-
ing metabolomics to other omics research. Nucleic Acids Research,	
46(D1),	D661-D667.	https://doi.org/10.1093/nar/gkx1064

Smith,	L.	K.,	He,	Y.,	Park,	J.	S.,	Bieri,	G.,	Snethlage,	C.	E.,	Lin,	K.,	&	Villeda,	
S.	 A.	 (2015).	 beta2-microglobulin	 is	 a	 systemic	 pro-aging	 factor	
that impairs cognitive function and neurogenesis. Nature Medicine,	
21(8),	932-937.	https://doi.org/10.1038/nm.3898

Sun,	B.	B.,	Maranville,	J.	C.,	Peters,	J.	E.,	Stacey,	D.,	Staley,	J.	R.,	Blackshaw,	
J.,	Burgess,	S.,	Jiang,	T.,	Paige,	E.,	Surendran,	P.,	Oliver-Williams,	C.,	
Kamat,	M.	A.,	Prins,	B.	P.,	Wilcox,	S.	K.,	Zimmerman,	E.	S.,	Chi,	A.	N.,	
Bansal,	N.,	Spain,	S.	L.,	Wood,	A.	M.,	…	Butterworth,	A.	S.	(2018).	
Genomic atlas of the human plasma proteome. Nature,	558(7708),	
73-79.	https://doi.org/10.1038/s4158	6-018-0175-2

Tacutu,	R.,	Thornton,	D.,	Johnson,	E.,	Budovsky,	A.,	Barardo,	D.,	Craig,	
T.,	 Diana,	 E.,	 Lehmann,	 G.,	 Toren,	 D.,	Wang,	 J.,	 Fraifeld,	 V.	 E.,	 &	
de	 Magalhães,	 J.	 P.	 (2018).	 Human	 Ageing	 Genomic	 Resources:	
New and updated databases. Nucleic Acids Research,	 46(D1),	
D1083-D1090.	https://doi.org/10.1093/nar/gkx1042

Tain,	 L.	 S.,	 Jain,	 C.,	 Nespital,	 T.,	 Froehlich,	 J.,	 Hinze,	 Y.,	 Gronke,	 S.,	 &	
Partridge,	L.	 (2020).	Longevity	 in	response	to	 lowered	insulin	sig-
naling	 requires	 glycine	 N-methyltransferase-dependent	 spermi-
dine production. Aging Cell,	19(1),	e13043.	https://doi.org/10.1111/
acel.13043

Tanaka,	T.,	Biancotto,	A.,	Moaddel,	R.,	Moore,	A.	Z.,	Gonzalez-Freire,	M.,	
Aon,	M.	A.,	Candia,	 J.,	 Zhang,	P.,	Cheung,	 F.,	 Fantoni,	G.,	 Semba,	
R.	D.,	&	Ferrucci,	L.	 (2018).	Plasma	proteomic	signature	of	age	 in	
healthy humans. Aging Cell,	17(5),	e12799.	https://doi.org/10.1111/
acel.12799

The	Gene	Ontology,	C.,	(2019).	The	Gene	Ontology	Resource:	20	years	
and still GOing strong. Nucleic Acids Research,	47(D1),	D330-D338.	
https://doi.org/10.1093/nar/gky1055

https://doi.org/10.1038/mt.2016.12
https://doi.org/10.1038/mt.2016.12
https://doi.org/10.18632/aging.100968
https://doi.org/10.1038/nm.3467
https://doi.org/10.1038/nm.3467
https://doi.org/10.1093/gerona/glt198
https://doi.org/10.1111/acel.12616
https://doi.org/10.1111/acel.12616
https://doi.org/10.1371/journal.pone.0183228
https://doi.org/10.1111/acel.13149
https://doi.org/10.1093/hmg/ddu144
https://doi.org/10.1038/ncomms9164
https://doi.org/10.1038/ncomms9164
https://doi.org/10.1038/s41590-018-0232-x
https://doi.org/10.1038/s41590-018-0232-x
https://doi.org/10.1073/pnas.1519858113
https://doi.org/10.1073/pnas.1519858113
https://doi.org/10.18632/aging.102900
https://doi.org/10.1152/japplphysiol.00458.2018
https://doi.org/10.1186/s40246-020-00271-7
https://doi.org/10.1186/s40246-020-00271-7
https://doi.org/10.2337/db18-1103
https://doi.org/10.1016/j.cell.2019.02.038
https://doi.org/10.1016/j.cell.2019.02.038
https://doi.org/10.1073/pnas.0907481107
https://doi.org/10.1093/nar/gkx1064
https://doi.org/10.1038/nm.3898
https://doi.org/10.1038/s41586-018-0175-2
https://doi.org/10.1093/nar/gkx1042
https://doi.org/10.1111/acel.13043
https://doi.org/10.1111/acel.13043
https://doi.org/10.1111/acel.12799
https://doi.org/10.1111/acel.12799
https://doi.org/10.1093/nar/gky1055


    |  19 of 19LEHALLIER Et AL.

Traylor,	M.,	Mäkelä,	K.-M.,	Kilarski,	 L.	 L.,	Holliday,	E.	G.,	Devan,	W.	 J.,	
Nalls,	M.	A.,	Wiggins,	K.	L.,	Zhao,	W.,	Cheng,	Y.-C.,	Achterberg,	S.,	
Malik,	 R.,	 Sudlow,	 C.,	 Bevan,	 S.,	 Raitoharju,	 E.,	 Oksala,	 N.,	 Thijs,	
V.,	Lemmens,	R.,	Lindgren,	A.,	Slowik,	A.,	…	Markus,	H.	S.	 (2014).	
A	novel	MMP12	 locus	 is	associated	with	 large	artery	atheroscle-
rotic	stroke	using	a	genome-wide	age-at-onset	informed	approach.	
PLoS Genetics,	 10(7),	 e1004469.	 https://doi.org/10.1371/journ	
al.pgen.1004469

Ulgherait,	M.,	Rana,	A.,	Rera,	M.,	Graniel,	J.,	&	Walker,	D.	W.	(2014).	AMPK	
modulates	 tissue	 and	organismal	 aging	 in	 a	 non-cell-autonomous	
manner. Cell Reports,	 8(6),	 1767-1780.	 https://doi.org/10.1016/j.
celrep.2014.08.006

UniProt,	 C.	 (2019).	 UniProt:	 A	 worldwide	 hub	 of	 protein	 knowl-
edge. Nucleic Acids Research,	 47(D1),	 D506-D515.	 https://doi.
org/10.1093/nar/gky1049

van	Gils,	J.	M.,	Derby,	M.	C.,	Fernandes,	L.	R.,	Ramkhelawon,	B.,	Ray,	T.	
D.,	Rayner,	K.	J.,	Parathath,	S.,	Distel,	E.,	Feig,	J.	L.,	Alvarez-Leite,	
J.	 I.,	 Rayner,	A.	 J.,	McDonald,	 T.	O.,	O'Brien,	K.	D.,	 Stuart,	 L.	M.,	
Fisher,	E.	A.,	Lacy-Hulbert,	A.,	&	Moore,	K.	J.	(2012).	The	neuroim-
mune	guidance	cue	netrin-1	promotes	atherosclerosis	by	inhibiting	
the	emigration	of	macrophages	from	plaques.	Nature Immunology,	
13(2),	136-143.	https://doi.org/10.1038/ni.2205

Villeda,	S.	A.,	Luo,	J.,	Mosher,	K.	I.,	Zou,	B.,	Britschgi,	M.,	Bieri,	G.,	Stan,	T.	
M.,	Fainberg,	N.,	Ding,	Z.,	Eggel,	A.,	Lucin,	K.	M.,	Czirr,	E.,	Park,	J.-S.,	
Couillard-Després,	S.,	Aigner,	L.,	Li,	G.	E.,	Peskind,	E.	R.,	Kaye,	J.	A.,	
Quinn,	 J.	F.,	…	Wyss-Coray,	T.	 (2011).	The	ageing	systemic	milieu	
negatively regulates neurogenesis and cognitive function. Nature,	
477(7362),	90-94.	https://doi.org/10.1038/natur	e10357

Wang,	X.,	Chrysovergis,	K.,	Kosak,	J.,	Kissling,	G.,	Streicker,	M.,	Moser,	
G.,	Li,	R.,	&	Eling,	T.	E.	(2014).	hNAG-1	increases	lifespan	by	regu-
lating	energy	metabolism	and	insulin/IGF-1/mTOR	signaling.	Aging 
(Albany NY),	6(8),	690-704.	https://doi.org/10.18632/	aging.100687

Wang,	X.-J.,	Qiao,	Y.,	Xiao,	M.	M.,	Wang,	L.,	Chen,	J.,	Lv,	W.,	Xu,	L.	I.,	Li,	
Y.,	Wang,	Y.,	Tan,	M.-D.,	Huang,	C.,	Li,	J.,	Zhao,	T.	C.,	Hou,	Z.,	Jing,	
N.,	&	Chin,	Y.	E.	 (2017).	Opposing	 roles	of	 acetylation	and	phos-
phorylation	 in	 LIFR-dependent	 self-renewal	 growth	 signaling	 in	
mouse embryonic stem cells. Cell Reports,	18(4),	933-946.	https://
doi.org/10.1016/j.celrep.2016.12.081

Williams,	 S.	 A.,	 Kivimaki,	M.,	 Langenberg,	 C.,	 Hingorani,	 A.	 D.,	 Casas,	
J.	 P.,	 Bouchard,	C.,	 Jonasson,	C.,	 Sarzynski,	M.	A.,	 Shipley,	M.	 J.,	
Alexander,	L.,	Ash,	J.,	Bauer,	T.,	Chadwick,	J.,	Datta,	G.,	DeLisle,	R.	
K.,	 Hagar,	 Y.,	 Hinterberg,	M.,	Ostroff,	 R.,	Weiss,	 S.,	 …	Wareham,	
N.	 J.	 (2019).	 Plasma	 protein	 patterns	 as	 comprehensive	 indica-
tors of health. Nature Medicine,	 25(12),	 1851-1857.	 https://doi.
org/10.1038/s4159	1-019-0665-2

Yoshida,	M.,	Satoh,	A.,	Lin,	 J.	B.,	Mills,	K.	F.,	Sasaki,	Y.	O.,	Rensing,	N.,	
Wong,	 M.,	 Apte,	 R.	 S.,	 &	 Imai,	 S.-I.	 (2019).	 Extracellular	 vesi-
cle-contained	eNAMPT	delays	aging	and	extends	lifespan	in	mice.	
Cell Metabolism,	 30(2),	 329-342	 e325.	 https://doi.org/10.1016/j.
cmet.2019.05.015

Yu,	W.,	Goncalves,	K.	A.,	 Li,	S.,	Kishikawa,	H.,	Sun,	G.,	Yang,	H.,	Vanli,	
N.,	Wu,	Y.,	 Jiang,	Y.,	Hu,	M.	G.,	Friedel,	R.	H.,	&	Hu,	G.-F.	 (2017).	
Plexin-B2	 mediates	 physiologic	 and	 pathologic	 functions	 of	

angiogenin. Cell,	 171(4),	 849-864e825.	 https://doi.org/10.1016/j.
cell.2017.10.005

Zaca,	V.,	Mishra,	 S.,	Gupta,	 R.	 C.,	 Rastogi,	 S.,	 &	 Sabbah,	H.	N.	 (2012).	
Pleiotropic	 effects	 of	 long-term	 monotherapy	 with	 rosuvastatin	
in dogs with moderate heart failure. Cardiology,	123(3),	 160-167.	
https://doi.org/10.1159/00034 2082

Zhang,	H.,	Ryu,	D.,	Wu,	Y.,	Gariani,	K.,	Wang,	X.,	Luan,	P.,	DAmico,	D.,	
Ropelle,	E.	R.,	Lutolf,	M.	P.,	Aebersold,	R.,	Schoonjans,	K.,	Menzies,	
K.	 J.,	 &	Auwerx,	 J.	 (2016).	NAD(+)	 repletion	 improves	mitochon-
drial and stem cell function and enhances life span in mice. Science,	
352(6292),	1436-1443.	https://doi.org/10.1126/scien	ce.aaf2693

Zhang,	Y.,	Proenca,	R.,	Maffei,	M.,	Barone,	M.,	Leopold,	L.,	&	Friedman,	
J.	M.	 (1994).	 Positional	 cloning	 of	 the	mouse	 obese	 gene	 and	 its	
human homologue. Nature,	 372(6505),	 425-432.	 https://doi.
org/10.1038/372425a0

Zhou,	X.,	Wahane,	S.,	Friedl,	M.-S.,	Kluge,	M.,	Friedel,	C.	C.,	Avrampou,	
K.,	Zachariou,	V.,	Guo,	L.,	Zhang,	B.,	He,	X.,	Friedel,	R.	H.,	&	Zou,	
H.	 (2020).	Microglia	and	macrophages	promote	corralling,	wound	
compaction	 and	 recovery	 after	 spinal	 cord	 injury	 via	 Plexin-B2.	
Nature Neuroscience,	 23(3),	 337-350.	 https://doi.org/10.1038/
s4159	3-020-0597-7

Zhou,	Y.,	Ni,	S.,	Song,	L.,	Wang,	X.,	Zhang,	Y.,	&	Zhang,	S.	(2019).	Late-
onset administration of GDF11 extends life span and delays devel-
opment	of	age-related	markers	in	the	annual	fish	Nothobranchius	
guentheri. Biogerontology,	20(2),	225-239.	https://doi.org/10.1007/
s1052	2-018-09789	-9

Zhu,	L.	L.,	Blair,	H.,	Cao,	J.,	Yuen,	T.,	Latif,	R.,	Guo,	L.,	&	Zaidi,	M.	(2012).	
Blocking	 antibody	 to	 the	 beta-subunit	 of	 FSH	 prevents	 bone	
loss by inhibiting bone resorption and stimulating bone synthe-
sis. Proceedings of the National Academy of Sciences of the United 
States of America,	109(36),	14574-14579.	https://doi.org/10.1073/
pnas.12128 06109

Zhu,	X.,	Yan,	 J.,	Bregere,	C.,	Zelmer,	A.,	Goerne,	T.,	Kapfhammer,	 J.	P.,	
Guzman,	R.,	&	Wellmann,	 S.	 (2019).	RBM3	promotes	neurogene-
sis	in	a	niche-dependent	manner	via	IMP2-IGF2	signaling	pathway	
after	hypoxic-ischemic	brain	 injury.	Nature Communications,	10(1),	
3983.	https://doi.org/10.1038/s4146	7-019-11870	-x

SUPPORTING INFORMATION
Additional	 supporting	 information	 may	 be	 found	 online	 in	 the	
Supporting	Information	section.

How to cite this article: Lehallier	B,	Shokhirev	MN,	Wyss-
Coray	T,	Johnson	AA.	Data	mining	of	human	plasma	proteins	
generates a multitude of highly predictive aging clocks that 
reflect different aspects of aging. Aging Cell. 2020;19:e13256. 
https://doi.org/10.1111/acel.13256

https://doi.org/10.1371/journal.pgen.1004469
https://doi.org/10.1371/journal.pgen.1004469
https://doi.org/10.1016/j.celrep.2014.08.006
https://doi.org/10.1016/j.celrep.2014.08.006
https://doi.org/10.1093/nar/gky1049
https://doi.org/10.1093/nar/gky1049
https://doi.org/10.1038/ni.2205
https://doi.org/10.1038/nature10357
https://doi.org/10.18632/aging.100687
https://doi.org/10.1016/j.celrep.2016.12.081
https://doi.org/10.1016/j.celrep.2016.12.081
https://doi.org/10.1038/s41591-019-0665-2
https://doi.org/10.1038/s41591-019-0665-2
https://doi.org/10.1016/j.cmet.2019.05.015
https://doi.org/10.1016/j.cmet.2019.05.015
https://doi.org/10.1016/j.cell.2017.10.005
https://doi.org/10.1016/j.cell.2017.10.005
https://doi.org/10.1159/000342082
https://doi.org/10.1126/science.aaf2693
https://doi.org/10.1038/372425a0
https://doi.org/10.1038/372425a0
https://doi.org/10.1038/s41593-020-0597-7
https://doi.org/10.1038/s41593-020-0597-7
https://doi.org/10.1007/s10522-018-09789-9
https://doi.org/10.1007/s10522-018-09789-9
https://doi.org/10.1073/pnas.1212806109
https://doi.org/10.1073/pnas.1212806109
https://doi.org/10.1038/s41467-019-11870-x
https://doi.org/10.1111/acel.13256

