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ABSTRACT
We previously identified 529 proteins that had been reported by multiple different 
studies to change their expression level with age in human plasma. In the present 
study, we measured the q-value and age coefficient of these proteins in a plasma 
proteomic dataset derived from 4263 individuals. A bioinformatics enrichment analy-
sis of proteins that significantly trend toward increased expression with age strongly 
implicated diverse inflammatory processes. A literature search revealed that at least 
64 of these 529 proteins are capable of regulating life span in an animal model. Nine 
of these proteins (AKT2, GDF11, GDF15, GHR, NAMPT, PAPPA, PLAU, PTEN, and 
SHC1) significantly extend life span when manipulated in mice or fish. By performing 
machine-learning modeling in a plasma proteomic dataset derived from 3301 indi-
viduals, we discover an ultra-predictive aging clock comprised of 491 protein entries. 
The Pearson correlation for this clock was 0.98 in the learning set and 0.96 in the test 
set while the median absolute error was 1.84 years in the learning set and 2.44 years 
in the test set. Using this clock, we demonstrate that aerobic-exercised trained indi-
viduals have a younger predicted age than physically sedentary subjects. By testing 
clocks associated with 1565 different Reactome pathways, we also show that pro-
teins associated with signal transduction or the immune system are especially capable 
of predicting human age. We additionally generate a multitude of age predictors that 
reflect different aspects of aging. For example, a clock comprised of proteins that 
regulate life span in animal models accurately predicts age.
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1  |  INTRODUC TION

A panel of molecules capable of predicting chronological age when 
modeled is referred to as an aging clock (Galkin et al., 2020a). Existing 
examples of human aging clocks include those comprised of methyl-
ated DNA (Hannum et al., 2013; Horvath, 2013), RNA (Mamoshina 
et al., 2018), proteins (Johnson et al., 2020), metabolites (Rist et al., 
2017; Robinson et al., 2020), biochemical markers (Putin et al., 2016; 
Sagers et al., 2020), or microbiota (Galkin, et al., 2020b). For a more 
detailed discussion of different types of aging clocks, we recommend 
a comprehensive review by Galkin et al. (2020a). A recent proteomic 
aging clock found that individuals with a lower predicted age than 
their chronological age performed better on cognitive and physical 
tests (Lehallier et al., 2019). An RNA clock demonstrated that the dif-
ference between predicted and actual age was associated with body 
mass index, blood pressure, fasting glucose, and cholesterol levels 
(Peters et al., 2015). A much larger body of work using DNA methyl-
ation clocks has shown that patients with age-related disease often 
have a higher predicted age than their chronological age (Horvath & 
Raj, 2018). These data suggest that aging clocks have the ability to 
measure biological age, which can be conceptualized as a composite 
measure that correlates with various health outcomes.

Given that it is not realistic to perform life span studies in hu-
mans, a prominent appeal of aging clocks is their potential ability to 
accelerate anti-aging clinical trials (Horvath & Raj, 2018). Prior to 
and after testing of an anti-aging intervention, biological age could 
be measured in a patient cohort. Theoretically, a therapy that suc-
cessfully combats aging would be one where biological age is re-
duced compared to controls at the end of the treatment period. 
Repeated measurements of biological age also have the potential 
to be highly informative on an individual level. They could, for ex-
ample, suggest whether or not someone ought to more aggres-
sively pursue health-promoting interventions to slow down their 
rate of aging. The requirement for repeat sampling necessitates a 
sample type that can be measured safely and easily, such as blood 
or saliva. Since the aging clock field is nascent, much work remains 
to be done to confidently determine if these theoretical applica-
tions are feasible.

In addition to existing drugs whose promising anti-aging poten-
tial should be safely tested in humans (Partridge et al., 2020), de-
signing novel therapies capable of improving human health span 
will require well-considered molecular targets. A wide variety of 
approaches have been historically utilized to identify aging-rele-
vant targets and therapeutics, including RNAi screening in worms 
(Hansen et al., 2005), computational screening of the protein–drug 
interactome (Fuentealba et al., 2019), and omics-level expression 
screening in mice (Villeda et al., 2011). As an example of the latter, 
young mice exposed to the blood of old mice via heterochronic para-
biosis exhibit decreased synaptic plasticity as well as impairments 
in memory and learning. A proteomics expression screen identified 
that the chemokine Ccl11 was the most significantly altered protein 
in these heterochronic parabionts. Subsequently, treating young 

mice with Ccl11 was found to induce various deleterious effects in 
the brain (Villeda et al., 2011).

With the ultimate objective of improving human health span 
in mind, we sought to better understand proteomic aging clocks 
and to identify high-quality protein targets that exhibit anti-ag-
ing clinical potential. Since systematic factors are powerful 
regulators of aging (Pluvinage & Wyss-Coray, 2020), we aimed 
to achieve these goals by comprehensively data mining human 
plasma proteins.

2  |  RESULTS

2.1  |  Analysis of all 529 common plasma aging 
proteins in a large proteomics dataset

Our recent systematic review identified 529 proteins that were re-
ported to change their expression level with age in human plasma 
by two or more different studies (Johnson et al., 2020). In the pre-
sent study, we began analyzing these proteins by measuring their 
q-value and age coefficient in a plasma proteomic dataset derived 
from 4263 healthy individuals with an age range of 18–95  years. 
Proteomic measurements were previously performed using the 
SOMAscan assay, which utilizes individual SOMAmers to measure 
different proteins (Lehallier et al., 2019). Our 529 proteins (Table S1) 
were condensed into 523 protein entries (Table S2) in this dataset 
due to some measurements containing multiple different proteins. 
For example, the heterotrimeric enzyme AMPK was measured using 
the single SOMAmer “PRKAA1.PRKAB1.PRKAG1.” Twenty-seven 
proteins were not available for measurement and, of the 496 protein 
measurements, 476 (95.97%) significantly (q  < 0.05) changed their 
expression level with age. Of these 476 significant protein entries, 
115 (24.16%) trended toward a decreased expression level with age 
while 361 (75.84%) trended toward an increased expression level 
with age. These and other statistics are summarized in Table S3. The 
six protein measurements with the lowest q-values are shown in 
Figure 1 and are as follows: CGA.FSHB, SOST, GDF15, MLN, RET, 
and PTN.

2.2  |  Many common aging plasma proteins have 
highly intriguing links to aging and/or health

We next looked up each common aging plasma protein in the Human 
Ageing Genomic Resources (HAGR) database (Tacutu et al., 2018) 
and found that 103 (19.47% of all 529 proteins) had a HAGR listing. 
After performing a comprehensive literature search, we were also 
able to find a tangible connection to aging and/or health for all 523 
protein entries (Table S2).

Many of the connections we identified are highly intriguing. For 
example, injecting B2M into young mice impairs neurogenesis and 
cognitive function (Smith et al., 2015) while treating aged mice with 
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Timp2 enhances cognition and synaptic plasticity (Castellano et al., 
2017). Ablating Cdon in satellite cells hinders muscle regeneration 
in mice (Bae et al., 2020), mice lacking Il6 exhibit impaired liver re-
generation (Cressman et al., 1996), and the myeloid cell-specific 
ablation of Plxnb2 in mice impairs motor recovery following spinal 
cord injury (Zhou et al., 2020). Cardiac hypoplasia is caused by the 
deletion of tmem87b in zebrafish (Russell et al., 2014) while mice 
overexpressing Nab1 are resistant to cardiac hypertrophy (Buitrago 
et al., 2005). Diabetes in mouse models of insulin resistance, insu-
lin deficiency, and obesity can be reversed by the overexpression 
of Igfbp2 (Hedbacker et al., 2010) and, in contrast, mice harboring 
a mutation in Lep become obese and diabetic (Zhang et al., 1994). 
More broadly, connections pertinent to age-related disease, the ca-
nonical insulin/IGF1, AMPK, and TOR aging pathways (Singh et al., 
2019), and lipid metabolic pathways that directly regulate aging 
(Johnson & Stolzing, 2019) were identified. We selected the fol-
lowing 20 proteins to highlight that prominently impact longevity 
and/or age-related disease when manipulated in an animal model: 
ADAMTS5, BDNF, CCL11, CGA.FSHB, FGA.FGB.FGG, IL15RA, IL6, 
LIFR, LILRB2, MMP12, NAB1, NTN1, PAK4, PLA2G2A, PLXNB2, 
POMC, PRKAA1.PRKAB1.PRKAG1, RBM3, SIRT5, and UFM1. 

Interesting literature connections for these proteins are listed in 
Table 1 and graphs visualizing how the expression level of these pro-
teins changes with age are shown in Figure S1.

2.3  |  A large proportion of common aging plasma 
proteins affect animal life span

Among the literature connections identified for all of our common 
aging plasma proteins (Table S2), at least 64 proteins (12.1% of all 
529 proteins) increase or decrease life span when manipulated in 
normal animal models. 35 of these 64 proteins affect life span in a 
vertebrate model. The number of life span regulators is expanded to 
108 (20.42% of all 529 proteins) when disease models, stress mod-
els, and models harboring multiple different genetic alterations are 
included. The following nine proteins were found to significantly ex-
tend life span when manipulated in normal, non-diseased mice or 
fish: AKT2, GDF11, GDF15, GHR, NAMPT, PAPPA, PLAU, PTEN, 
and SHC1. Vertebrate life extension details for all nine of these pro-
teins are provided in Table 2 and graphs visualizing how the expres-
sion level of these proteins changes with age are shown in Figure S2.

F I G U R E  1 529 proteins that were previously identified to change their expression level with age in human plasma were analyzed in a 
large, proteomic dataset derived from 4263 healthy individuals with an age range of 18–95 years. The six proteins that exhibited the most 
significant change in plasma expression level with age were CGA.FSHB (a), SOST (b), GDF15 (c), MLN (d), RET (e), and PTN (f). The expression 
trend over time is visually shown for each protein. RFU = relative fluorescent unit
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TA B L E  1 20 examples of common aging plasma proteins with highly intriguing links to aging and/or disease

Protein q-value, age coefficient Intriguing connections to aging and/or disease

ADAMTS5 7.69E−65, 1.88E−03 •	 Mice lacking Adamts5 are protected from cartilage destruction following joint instability induced 
by surgery (Glasson et al., 2005)

•	 ADAMTS5 is overexpressed in osteoarthritic cartilage from mice and humans (Lin et al., 2009)
•	 Wwp2 promotes the maintenance of cartilage homeostasis via the suppression of Adamts5 in 
mice (Mokuda et al., 2019)

BDNF 2.78E−30, 2.84E−03 •	 Treating Huntington's disease mice with human mesenchymal stem cells that overexpress BDNF 
extends life span and increases neurogenesis-like activity (Pollock et al., 2016)

•	 Exercise elevates BDNF levels and induces adult hippocampal neurogenesis in Alzheimer's 
disease mice (S. H. Choi et al., 2018)

•	 In a zebrafish model of Alzheimer's disease, BDNF enhances neurogenesis and neural stem cell 
plasticity (Bhattarai et al., 2020)

CCL11 8.87E−94, 3.34E−03 •	 In a cohort of non-diabetic women, plasma levels of CCL11 are associated with central obesity 
and are reduced in response to an exercise program (Choi et al., 2007)

•	 Injecting recombinant Ccl11 into young mice reduces neurogenesis and impairs both memory 
and learning (Villeda et al., 2011)

•	 Administering recombinant Ccl11 to young mice results in synaptic loss and increased microglial 
reactivity (Das et al., 2019)

CGA.FSHB 2.89E−320, 1.64E−02 •	 Long-lived mice deficient in growth hormone receptor exhibit decreased plasma levels of follicle-
stimulating hormone (V. Chandrashekar et al., 2007)

•	 Bone loss is mitigated in ovariectomized mice treated with an antibody specific to the β-subunit 
of follicle-stimulating hormone (Zhu et al., 2012)

•	 An antibody specific to the β-subunit of follicle-stimulating hormone decreases body fat, 
stimulates brown adipose tissue, and promotes thermogenesis in mice (Liu et al., 2017)

FGA.FGB.
FGG

8.38E−11, 7.25E−04 •	 Treating mice with fibrinogen causes demyelination via the induction of adaptive immune 
responses and the recruitment of peripheral macrophages (Ryu et al., 2015)

•	 Inhibiting fibrin with the monoclonal antibody 5B8 attenuates neurodegeneration and innate 
immunity in mouse models of multiple sclerosis and Alzheimer's disease (Ryu et al., 2018)

•	 In Alzheimer's disease mice, genetically deleting a binding motif in fibrinogen reduces 
neuroinflammation and cognitive decline (Merlini et al., 2019)

IL15RA 1.31E−43, 1.57E−03 •	 Mice lacking Il15ra have a higher body temperature, consume more oxygen, and are leaner 
despite increased food intake (He et al., 2010)

•	 Fast skeletal muscles in Il15ra−/− mice are more resistant to fatigue and have a greater exercise 
capacity (Pistilli et al., 2011)

•	 Il15ra−/− mice are protected from diet-induced obesity and exhibit enhanced fatty acid oxidation 
(Loro et al., 2015)

IL6 4.13E−05, 7.16E−04 •	 The ability to ward off bacterial or viral infection is impaired in Il6 knockout mice (Kopf et al., 
1994)

•	 Genetically disrupting Il6 in mice impairs liver regeneration and causes liver failure (Cressman et 
al., 1996)

•	 Transgenic mice overexpressing human IL6 are substantially smaller and have reduced levels of 
circulating Igf1 (De Benedetti et al., 1997)

LIFR 5.43E−08, −6.27E−04 •	 Increasing the expression of LIFR in malignant cells suppresses tumor metastasis in mice (D. Chen 
et al., 2012)

•	 Inoculating mice with breast cancer cells lacking LIFR promotes bone destruction (R. W. Johnson 
et al., 2016)

•	 Mouse Lifr contains separate protein domains that either maintain stem cell self-renewal or 
induce differentiation (X. J. Wang et al., 2017)

LILRB2 9.22E−21, 1.07E−03 •	 The genetic deletion of Lilrb3 (mouse ortholog of human LILRB2) protects mice from Aβ-induced 
memory impairment (Kim et al., 2013)

•	 Small molecule inhibitors targeting the binding site of LILRB2 disrupt LILRB2-Aβ interactions and 
reduce Aβ cytotoxicity (Cao et al., 2018)

•	 The anti-tumor effects of T-cell immune checkpoint inhibitors are enhanced by the blockade of 
LILRB2 (Chen et al., 2018)

(Continues)
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Protein q-value, age coefficient Intriguing connections to aging and/or disease

MMP12 2.53E−92, 3.64E−03 •	 A single nucleotide polymorphism in MMP12 is associated with a reduced risk of chronic 
obstructive pulmonary disease (Hunninghake et al., 2009)

•	 Large artery atherosclerosis is associated with a genetic variant in the MMP12 locus and this 
gene is overexpressed in carotid plaques (Traylor et al., 2014)

•	 In mice deficient in Ldlr, the deletion of Mmp12 protects male mice from both arterial stiffness 
and atherosclerosis (Liu et al., 2019)

NAB1 1.14E−26, −2.01E−03 •	 NAB1 is upregulated in human heart failure and mice overexpressing Nab1 are protected from 
induced hypertrophy (Buitrago et al., 2005)

•	 In dogs with moderate heart failure, treatment with rosuvastatin reduces the expression of 
NAB1 in left ventricular tissue (Zaca et al., 2012)

•	 A single nucleotide polymorphism in NAB1 is associated with systemic lupus erythematosus, 
rheumatoid arthritis, systemic sclerosis, and idiopathic inflammatory myopathies (Acosta-
Herrera et al., 2019)

NTN1 2.09E−50, 2.32E−03 •	 Overexpressing Ntn1 in the mouse gut suppresses intestinal cell apoptosis and promotes tumor 
development (Mazelin et al., 2004)

•	 In mice lacking the low-density lipoprotein receptor, deleting Ntn1 in macrophages attenuates 
atherosclerosis (van Gils et al., 2012)

•	 In a mouse model of obesity, the hematopoietic deletion of Ntn1 enhances insulin sensitivity and 
decreases inflammation (Ramkhelawon et al., 2014)

PAK4 2.47E−04, 9.28E−04 •	 Knocking down PAK4 in ovarian cancer cells prior to inoculation impedes tumor growth and 
dissemination in nude mice (Siu et al., 2010)

•	 Overexpressing or depleting Pak4 in mice promotes or delays mammary cancer, respectively 
(Costa et al., 2019)

•	 Growth is suppressed and invasive potential is decreased by the inhibition of PAK4 in human 
bladder cancer cells (D. S. Chandrashekar et al., 2020)

PLA2G2A 1.56E−03, 7.11E−04 •	 The size and multiplicity of intestinal tumors are reduced in mice overexpressing Pla2g2a 
(Cormier et al., 1997)

•	 The expression of PLA2G2A is positively correlated with survival in patients with gastric 
adenocarcinoma (Leung et al., 2002)

•	 In Muc2−/− mice, the transgenic expression of Pla2g2a suppresses intestinal tumorigenesis 
(Fijneman et al., 2008)

PLXNB2 9.33E−40, 1.17E−03 •	 Inhibiting PLXNB2 suppresses the development of xenograft tumors in mice (Yu et al., 2017)
•	 Inhibiting PLXNB2 makes prostate cancer stem cells more sensitive to chemotherapy (Li et al., 
2020)

•	 Motor sensory recovery following spinal cord injury is impaired in mice lacking Plxnb2 in myeloid 
cells (X. Zhou et al., 2020)

POMC 1.53E−07, 9.34E−04 •	 Mutations in POMC cause early-onset obesity and adrenal insufficiency in humans (Krude et al., 
1998)

•	 Blocking the expression of Pomc in hypothalamic neurons causes hyperphagia and obesity in 
mice (Bumaschny et al., 2012)

•	 In obese patients with defects in POMC, treatment with a melanocortin-4 receptor agonist 
reduces hunger and induces weight loss (Kuhnen et al., 2016)

PRKAA1.
PRKAB1.
PRKAG1

4.11E−02, 3.24E−04 •	 Worms constitutively expressing aakg-2 (worm ortholog of PRKAG1) are more resistant to 
oxidative stress and live longer (Greer et al., 2007)

•	 Ampk elevates cellular NAD+ levels and enhances the activity of Sirt1 in mouse skeletal muscle 
(Canto et al., 2009)

•	 Overexpressing AMPKα (fly ortholog of PRKAA1) in neurons induces autophagy and extends life 
span in Drosophila (Ulgherait et al., 2014)

RBM3 6.61E−20, 2.21E−03 •	 Cold stress increases the expression level of RBM3 in multiple different human cell lines (Danno 
et al., 1997)

•	 Overexpressing Rbm3 prevents neuronal loss and prolongs survival in Alzheimer's disease mice 
(Peretti et al., 2015)

•	 In response to hypoxic ischemia, Rbm3 promotes the proliferation of neural stem/progenitor 
cells in the subgranular zone (X. Zhu et al., 2019)

Table 1 (Continued)

(Continues)



6 of 19  |     LEHALLIER et al.

2.4  |  Well-known anti-aging drugs and 
interventions are implicated by our common aging 
plasma proteins

Many of our 529 common aging plasma proteins were also implicated 
by established anti-aging drugs and interventions (Table S2), includ-
ing glycine (Miller et al., 2019), rapamycin (Bitto et al., 2016), sper-
midine (Eisenberg et al., 2016), nicotinamide riboside (Zhang et al., 
2016), metformin (Kulkarni et al., 2020), caloric restriction (Most 
et al., 2017), intermittent fasting (de Cabo & Mattson, 2019), and ex-
ercise (Garatachea et al., 2015). These connections prompted us to 
analyze our identified vertebrate longevity proteins in the GLAD4U 
drug database (Jourquin et al., 2012). For our nine vertebrate life 
extension proteins, the three enriched terms were “insulin recombi-
nant,” “somatropin recombinant,” and “egfr inhibitors” (Figure S3A). 
Among the enriched terms for all 35 vertebrate longevity proteins 
was the immunosuppressant “sirolimus,” which is another name for 
rapamycin (Figure S3B). Other aging-relevant enriched drug terms 
included “cardiovascular system” as well as the anti-cancer drugs 
“doxorubicin” and “erlotinib” (Figure S3B).

2.5  |  Diverse processes pertinent to the immune 
system are strongly implicated by plasma proteins 
that trend toward an increased expression level 
with age

We next performed enrichment analyses in the Gene Ontology 
Biological Process (GO BP) database (The Gene Ontology, 2019) for 
different sets of proteins. For the proteins that significantly trend 
toward increased expression with age, a very prominent theme of 
the immune system was apparent. Among the top 30 GO BP terms 
(Figure 2), the following six terms relevant to the immune system 
were identified: “leukocyte migration,” “response to molecule of 
bacterial origin,” “response to interleukin-1,” “granulocyte activa-
tion,” “leukocyte cell-cell adhesion,” and “viral life cycle.” The pro-
teins that significantly trend toward decreased expression with age 

were associated with the following enriched terms: “positive regula-
tion of response to external stimulus,” “protein activation cascade,” 
“protein kinase B signaling,” “extracellular structure organization,” 
and “neutrophil mediated immunity” (Figure S4A).

For the plasma proteins that can impact longevity in normal 
animals, the enriched terms were quite diverse (Figure S4B). 
Themes of nutrient intake and metabolism (i.e., “response to nu-
trient levels,” “regulation of carbohydrate metabolic process,” and 
“response to ketone”) and the immune system (i.e., “response to 
transforming growth factor beta” and “neutrophil mediated im-
munity”) were present. Terms relevant to protein homeostasis 
(i.e., “positive regulation of proteolysis”) and stress resistance 
(i.e., “response to oxidative stress”) were also identified (Figure 
S4B). For the larger list of proteins that can impact longevity in 
any animal model, we collated the top 30 GO BP terms (Figure 
S5). Prominent themes pertinent to cell movement, cell growth 
and proliferation, the immune system, and the circulatory system 
were identified (Figure S5).

2.6  |  Machine-learning analyses uncover numerous 
aging clocks reflecting different aspects of aging

Having established that these common plasma proteins have impor-
tant connections to aging and disease, we were curious if different 
protein combinations could be utilized to accurately predict human 
age. To do this, we tested different clocks in a plasma proteomic 
dataset derived from 3301 healthy individuals with an age range of 
18–76 years. Proteins in this dataset were previously measured using 
the SOMAscan assay (Sun et al., 2018). We started by testing the 
following seven clocks: proteins that can extend life span in normal 
vertebrates, proteins that can modify life span in a normal verte-
brate animal model, proteins that can modify life span in a normal 
animal model, proteins with an entry in the HAGR database, proteins 
that can modify life span in any animal model (including disease, 
stress, and genetically complex models), proteins that significantly 
change their expression level with age, and all common aging plasma 

Protein q-value, age coefficient Intriguing connections to aging and/or disease

SIRT5 9.61E−10, 8.53E−04 •	 Creating a Sirt5 deficiency in Parkinson's disease mice exacerbates motor deficits and 
dopaminergic degeneration (Liu et al., 2015)

•	 Knocking out Sirt5 in mice leads to the development of hypertrophic cardiomyopathy 
(Sadhukhan et al., 2016)

•	 Mice deficient in Sirt5 exhibit cold intolerance and a reduced browning capacity in white adipose 
tissue (Shuai et al., 2019)

UFM1 2.51E−03, 5.82E−04 •	 Deletion mutations that affect the ufm-1 cascade result in reduced fecundity and life span in 
worms (Hertel et al., 2013)

•	 RNAi knockdown against Ufm1 decreases life span and causes locomotive defects in fruit flies 
(Duan et al., 2016)

•	 A homozygous mutation in UFM1 causes early-onset encephalopathy with progressive 
microcephaly in humans (Nahorski et al., 2018)

For each protein, the q-value and age coefficient (measured in a human proteomic dataset derived from 4263 individuals aged 18–95 years) as well as 
three relevant connections to aging and/or disease are provided.

Table 1 (Continued)
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proteins (Table S4). We additionally tested the following five clocks 
based on the top weighted set cover enrichment result (for all 529 
proteins) in the Reactome (Jassal et al., 2020), Panther (Mi & Thomas, 
2009), KEGG (Kanehisa & Goto, 2000), WikiPathways (Slenter et al., 
2018), and GO BP (The Gene Ontology, 2019) databases: proteins 
associated with “peptide hormone biosynthesis” in Reactome, pro-
teins associated with “plasminogen activating cascade” in Panther, 
proteins associated with “complement and coagulation cascades” 
in KEGG, proteins associated with “human complement system” in 

WikiPathways, and proteins associated with “leukocyte migration” 
in GO BP (Table S5).

The Pearson correlation for predicted vs. actual age (Figure 3a) 
and the median absolute error (MAE) (Figure 3b) for all 12 of these 
clocks is shown. For each clock, two-thirds of the dataset (n = 2178) 
was used for the training model and one third of the dataset 
(n = 1123) was used for the validation model. We also fitted a LASSO 
model for each clock to determine if there was a subset of highly pre-
dictive proteins within the full protein list. We additionally compared 

Protein q-value, age coefficient Life span effect

AKT2 1.61E−16, 1.04E−03 Mice deficient in Akt2 display a 9.1% increase 
in median survival and an improvement in 
myocardial contractile function (Ren et al., 
2017)

GDF11 1.92E−02, −7.20E−04 In killifish, levels of gdf11 decrease with age and 
treating aged animals with recombinant gdf11 
lengthens mean life span by 8.3% (Zhou et al., 
2019)

GDF15 1.71E−249, 5.26E−03 The overexpression of human GDF15 in female 
mice extends median life span (19.5% for 
transgenic line 1377 and 12.9% for transgenic 
line 1398) and protects against weight gain 
and insulin insensitivity (Wang et al., 2014)

GHR 7.56E−24, −1.53E−03 Ghr−/− mice live longer (8.7%–28.2% increase 
in median life span depending on the sex 
and mouse strain), weigh less, and exhibit 
reduced levels of fasting glucose and insulin 
(Coschigano et al., 2003)

NAMPT 5.39E−04, 1.12E−03 Wheel-running activity is enhanced and longevity 
is boosted (10.2% increase in median life 
span) in aged female mice treated with 
extracellular vesicles containing Nampt 
(Yoshida et al., 2019)

PAPPA 9.29E−05, 8.09E−04 The incidence of spontaneous tumors is reduced 
and life is prolonged (37.5% increase in mean 
life span) in mice lacking Pappa (Conover & 
Bale, 2007)

PLAU 6.46E−11, 8.67E−04 Overexpressing Plau in mice elongates median 
life span (36%, 16%, and 23% for 75th, 50th, 
and 25th percentile survivors, respectively), 
reduces food intake, and decreases body 
weight (Miskin & Masos, 1997)

PTEN 2.41E−02, 4.06E−04 Longevity is enhanced (12.4% increase in median 
life span), cancer incidence is decreased, 
and insulin sensitivity is improved in mice 
harboring additional copies of Pten (Ortega-
Molina et al., 2012)

SHC1a  7.18E−04, 8.53E−04 Median life span is extended by 27.9% and 
oxidative stress resistance is enhanced in 
Shc1−/− mice (Migliaccio et al., 1999)

For each protein, the q-value and age coefficient (measured in a human proteomic dataset derived 
from 4263 individuals aged 18–95 years) as well as the life span effect are included. Bolded words 
and numbers highlight the lifespan effect in response to a given intervention.
aA follow-up study assessed life span in Shc1 knockout mice at two different locations. At one 
location, Shc1−/− mice on a 40% calorie restriction diet exhibited a survival benefit (median 70th 
percentile survival was increased by 8%). At the other site, no longevity benefit was observed in 
Shc1 knockout mice fed ad libitum (Ramsey et al., 2014). 

TA B L E  2 Examples of common aging 
plasma proteins that can significantly 
extend life span in a vertebrate animal 
model when manipulated
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these results to a clock comprised of all 2978 proteins available for 
measurement in our plasma proteomic dataset. Detailed information 
for each clock is provided in Table S6.

Of our 12 proposed plasma proteomic aging clocks (Tables S4 
and S5), the most predictive clock received all common aging plasma 
proteins as the input. For this clock, the learning set had a Pearson 
correlation of 0.96 and the test set had a Pearson correlation of 0.94 
(Figure 3a). The respective MAE values for the learning and tests 
sets were 2.4 and 2.85 years (Figure 3b). The clock comprised of 
all significant proteins was a close second with a Pearson correla-
tion of 0.96 in the learning set (Figure 3a), a Pearson correlation of 
0.94 in the test set (Figure 3a), a MAE of 2.42 years in the learning 
set (Figure 3b), and a MAE of 2.93 years in the test set (Figure 3b). 
Clocks comprised of proteins that regulate life span in any animal 
model or have a HAGR entry had a Pearson correlation >0.8 in the 
test set (Figure 3a). Proteins that either impact longevity in any 
normal animal model, affect life span in a normal vertebrate model, 
or make up the top GO BP pathway result had a Pearson correla-
tion >0.7 in the test set while the proteins that make up the top 

WikiPathways result had a Pearson correlation >0.6 in the test set 
(Figure 3a). The proteins capable of extending life span in a nor-
mal vertebrate animal model had a Pearson correlation of 0.65 in 
the learning set and 0.59 in the test set (Figure 3a). The least pre-
dictive clocks were the top KEGG, Reactome, and Panther results, 
which had a respective Pearson correlation of 0.49, 0.27, and 0.15 in 
the test set. For all measurements, the Pearson correlation ranged 
from 0.15 to 0.98 (Figure 3a) and the MAE ranged from 1.84 to 
11.93 years (Figure 3b). Clock accuracy positively correlated with 
the number of SOMAmer inputs (Figure S6). Two examples of more 
minimalistic aging clocks—proteins that regulate life span in any an-
imal model or proteins that regulate life span in a normal vertebrate 
animal model—are shown in Figure S7.

The most predictive clock was identified by LASSO model testing 
of all 2978 proteins available for measurement. This clock, which uti-
lized 491 SOMAmers, had a Pearson correlation of 0.98 and a MAE 
of 1.84 years in the learning set (Figure 4a) as well as a Pearson cor-
relation of 0.96 and a MAE of 2.44 years in the test set (Figure 4b). 
We additionally provide the SOMAmer name, UniProt ID, gene name, 

F I G U R E  2 An overrepresentation analysis in the Gene Ontology Biological Process database was performed for all proteins that 
significantly (q < 0.05) change their expression level with age in human plasma and have a positive age coefficient. The top 30 enrichment 
results are presented as –log10(fdr)
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and protein name for each component of our most predictive clock 
in Table S7. Intercept and coefficient information is provided in Table 
S8. The set of 491 protein entries that make up this ultra-accurate 
clock contains multiple common aging plasma proteins that are direct 
regulators of aging and health (Table S2), such as ADAMTS5, CCL11, 
GDF15, LEP, and SOD3. Out of the 491 protein entries that make up 
this clock, a total of 102 (20.77%) contained a common aging plasma 
protein. For those entries that did not contain a common aging 
plasma protein, several were direct regulators of animal life span—
such as the DNA repair protein ERCC1 (de Waard et al., 2010), the 
glycine-relevant protein GNMT (Tain et al., 2020), the lipase enzyme 
LIPN (Johnson, 2020), and the insulin receptor protein (Blüher, 2003). 
An enrichment analysis of the proteins in this clock heavily implicated 
various immune and inflammatory processes (Figure S8). This clock is 
predictive in both men and women (Table S9).

We additionally tested the ability of this ultra-predictive clock 
to measure age in two independent plasma proteomic datasets that 
were previously generated. The first dataset is comprised of 171 in-
dividuals with an age range of 21–107 years (Lehallier et al., 2019), 

and the second dataset is comprised of 47 healthy individuals with 
an age range of 19–77 years (Santos-Parker et al., 2018). For the for-
mer dataset, the Pearson correlation was 0.9 (Figure S9A). For the 
latter dataset, the Pearson correlation was 0.91 (Figure S9B). Thus, 
this clock is able to accurately predict age with a Pearson correlation 
≥0.9 in three different human cohorts (Figure 4 and Figure S9).

2.7  |  Physically inactive subjects exhibit a higher 
predicted age than their chronological age

Previously, Santos-Parker et al used the SOMAscan assay to measure 
the plasma proteome in 47 healthy adults (Santos-Parker et al., 2018). 
This patient cohort contained individuals that were sedentary as well 
as individuals that were aerobic exercise-trained. Using our most pre-
dictive clock (Figure 4), we demonstrate that the sedentary individuals 
from this cohort exhibit a higher predicted age than their chronologi-
cal age (Figure 5). In contrast, those that are aerobic exercise-trained 
displayed a predicted age that was more similar to their chronological 

F I G U R E  3 The ability of 13 different protein sets to predict age in a plasma proteomic dataset derived from 3301 human participants 
(age range of 18–76 years) was tested using machine learning. For each clock, the learning set utilized 2178 subjects and the test set utilized 
1123 subjects. LASSO modeling was also performed for each clock to determine if a smaller set of proteins within the larger set could 
accurately predict human age. For each of these clocks, the Pearson correlation (a) and median absolute error (b) are reported. The two 
numbers in parenthesis for each clock indicate the number of available SOMAmers used for the subset of proteins identified by LASSO 
modeling or the full list of proteins
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age (Figure 5). For sedentary individuals, the respective chronologi-
cal and predicted ages were 37.54 ± 20.88 and 46.34 ± 26.48 years. 
For aerobic exercise-trained individuals, the respective chronological 
and predicted ages were 37.35 ± 19.82 and 40.91 ± 18.48 years. The 
delta between chronological and predicted age was significantly dif-
ferent between the sedentary and aerobic exercise-trained groups 
(p-value  =  6.7E–5). The predicted age difference between aerobic 
exercise-trained and sedentary individuals was 5.43 years.

Interestingly, many of the proteins contained in our 491-entry 
clock were previously used by Williams et al to generate plasma 
protein models that can accurately predict various health outcomes 
(Williams et al., 2019). We found that many of the proteins used 
to predict the following health outcomes were also present in our 
highly predictive clock: alcohol consumption, cardiopulmonary fit-
ness, cardiovascular primary event risk, current cigarette smoking, 
diabetes diagnosis within 10 years, energy expenditure from physi-
cal activity, kidney filtration, lean body mass, liver steatosis, percent 
body fat, and visceral adipose tissue. The specific overlapped pro-
teins for each health outcome predictor are listed in Table S10.

2.8  |  Proteins associated with signal 
transduction or immune system pathways are 
especially adept at predicting human age

Our aging clock data (Figure 3) demonstrate that some pathways 
are more capable of predicting human age than others. To test this 

F I G U R E  4 Plots of predicted age vs. chronological age are shown for the most predictive aging clock identified. The most accurate 
aging clock was identified by LASSO modeling of all 2978 proteins available for measurement in the plasma proteomic dataset derived from 
3301 human participants (age range of 18–76 years). This clock used 491 SOMAmers, had a Pearson correlation of 0.98 in the learning 
set (a), a median absolute error of 1.84 years in the learning set (a), a Pearson correlation of 0.96 in the test set (b), and a median absolute 
error of 2.44 years in the test set (b). 2178 subjects were utilized for the learning set (a) and 1123 subjects were utilized for the test set (b). 
MAE = median absolute error

F I G U R E  5 We used our ultra-predictive aging clock to predict 
age in a human plasma proteomic dataset containing sedentary 
subjects as well as individuals that are aerobic exercise-trained. For 
sedentary subjects, their respective chronological and predicted 
ages were 37.54 ± 20.88 and 46.34 ± 26.48 years. For aerobic 
exercise-trained subjects, their respective chronological and 
predicted ages were 37.35 ± 19.82 and 40.91 ± 18.48 years. Results 
are presented as mean ± standard deviation. The difference in 
delta age (i.e., the difference between chronological and predicted 
age) between sedentary and aerobic exercise-trained subjects was 
statistically significant (p-value = 6.7E−5)
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more comprehensively, we assessed the predictive performance 
of aging clocks comprised of proteins associated with 1565 differ-
ent pathways in the Reactome database. Detailed information for 
each Reactome clock is provided in Table S11. For especially pre-
dictive Reactome pathways, we visually show the Pearson correla-
tion (Figure 6a) and/or MAE (Figure 6b). Specifically, we show the 
19 pathways with the highest Pearson correlations (Figure 6a) and 
the 19 pathways with the lowest MAEs (Figure 6b) in the LASSO 
test sets. The Reactome pathways with the five highest Pearson cor-
relations were as follows: “signal transduction,” “immune system,” 
“metabolism of proteins,” “innate immune system,” and “extracellular 
matrix organization.” Among the 19 Reactome pathways with the 
highest Pearson correlations (Figure 6a), the following five were all 
immune-related: “immune system,” “innate immune system,” “adap-
tive immune system,” “cytokine signaling in immune system,” and 
“neutrophil degranulation.” The most predictive clock (“signal trans-
duction”) had a Pearson correlation of 0.94 in the learning set and 
0.89 in the test set (Figure 6a) as well as a MAE of 3.27 years in the 

learning set and 4.14 years in the test set (Figure 6b). The “immune 
system” clock was a close second with a Pearson correlation of 0.93 
in the learning set and 0.88 in the test set (Figure 6a) as well as a 
MAE of 3.59 years in the learning set and 4.44 years in the test set 
(Figure 6b). Plots of predicted age vs. chronological age for these 
two clocks are shown in Figure S10.

Out of all 1565 Reactome clocks tested (Table S11), seven had a 
Pearson correlation >0.8 in the test set, 25 had a Pearson correlation 
>0.7 in the test set, and 20 had a Pearson correlation >0.6 in the 
test set. Thus, only a small percentage of Reactome pathways are 
able to accurately predict human age. Compared to the two most 
predictive Reactome clocks (Figure S10)—each of which contained 
over 600 SOMAmers—some of these more accurate clocks were 
relatively minimalistic. The Reactome pathway “Extracellular matrix 
organization” utilized 133 SOMAmers and had a Pearson correlation 
of 0.83 and a MAE of 5.23 years in the test set. A total of nine clocks 
used less than 100 SOMAmers and had a Pearson correlation >0.7 
in the test set. For example, the “Degradation of the extracellular 

F I G U R E  6 The ability of 1565 protein sets associated with different Reactome pathways to predict age in a plasma proteomic dataset 
derived from 3301 human participants (age range of 18–76 years) was tested using machine learning. For each clock, the learning set utilized 
2178 subjects and the test set utilized 1123 subjects. LASSO modeling was also performed for each clock to determine if a smaller set of 
proteins within the larger set could more accurately predict human age. We visualize the Pearson correlation (a) for the 19 pathways with the 
highest Pearson correlation. We also visualize the median absolute error (b) for the 19 pathways with the lowest median absolute error. The 
two numbers in parenthesis for each clock indicate the number of available SOMAmers used for the subset of proteins identified by LASSO 
modeling or the full list of proteins. The full name of the pathway abbreviated with ellipses is “Regulation of insulin-like growth factor (IGF) 
transport and uptake by insulin-like growth factor binding proteins (IGFBPs)”
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matrix” clock contained 54 SOMAmers and, in the test set, had a 
Pearson correlation of 0.76 and a MAE of 6.18 years. While less ac-
curate, another interesting outlier was the “Negative regulation of 
TCF-dependent signaling by WNT ligand antagonists” clock, which 
contained 8 SOMAmers and had a Pearson correlation of 0.63 and a 
MAE of 8.07 years in the test set.

3  |  DISCUSSION

In the present study, we discover a novel, ultra-predictive clock com-
prised of 491 SOMAmers. Compared to a much larger array of exist-
ing aging clocks recently collated by Galkin et al. (2020a), this protein 
clock is especially predictive. This clock was capable of accurately pre-
dicting human age in three different plasma proteomic datasets and 
was used to demonstrate that physically inactive patients have a much 
higher predicted age than their chronological age. In contrast, pa-
tients that engage in frequent aerobic exercise exhibited a predicted 
age that was more similar to their chronological age. Since exercise is 
one of the most effective anti-aging interventions (Garatachea et al., 
2015), these data suggest that this plasma protein age predictor can 
capture aspects of patient health. Moreover, we unveiled a multitude 
of novel aging clocks that are made up of a smaller set of proteins. 
Since proteomics screening can be quite costly (Graham et al., 2005), 
the ability to predict human age using a minimal set of proteins ob-
viates a financial barrier to performing aging clock measurements. It 
also makes the prediction of patient age logistically much simpler and 
therefore more conducive to widespread use. We additionally dem-
onstrate that proteins tangibly associated with different aspects of 
aging (e.g., proteins that impact animal longevity, proteins that change 
their expression level with age, or proteins with a listing in the HAGR 
database) are able to robustly predict human age.

In total, we tested 13 custom clocks and 1565 different Reactome 
pathway clocks. While our data make it clear that the accuracy of a 
given clock is correlated with the number of protein entries used, 
there were several notable exceptions. For example, a clock com-
prised of proteins that significantly change their expression level 
with age (which used 561 SOMAmers) had a higher Pearson cor-
relation and a lower MAE than a clock comprised of all measured 
proteins (which used 3283 SOMAmers). Thus, while the availability 
of more proteins tends to increase the predictive power of a given 
clock, the proteins chosen also influence the overall accuracy.

We additionally found nine proteins that both significantly 
change their expression level with age in human plasma and extend 
life span in normal vertebrates when manipulated. More broadly, we 
were able to identify a tangible connection to aging, disease, and 
health for all 523 protein entries that were comprehensively ana-
lyzed. It is important to note that, while some of these connections 
demonstrated a direct role in regulating the aging process (e.g., a ge-
netic manipulation which impacts longevity and health span), others 
were more tangential and loosely associated with aging (e.g., protein 
expression levels were altered in patients with a specific age-related 
disease). Of the connections we highlighted, 19.47% had an entry in 

the HAGR database and 12.1% were capable of impacting longevity 
in a normal model organism. The percentage of life span regulators 
increases to 20.42% when disease, stress, and genetically complex 
models are included. These findings suggest that, in human plasma, 
proteins which significantly change their expression level with age 
are also often proteins that directly impact longevity and age-re-
lated disease. Thus, proteomic aging expression screens in plasma 
may double as screens for anti-aging drug targets. Future studies 
are warranted to determine if any of these aging plasma proteins are 
viable, safe targets for human health span extension.

Our enrichment analysis revealed that a diverse set of processes 
relevant to inflammation and the immune system were strongly im-
plicated by proteins that increase their expression level with age in 
human plasma. Furthermore, we found that proteins associated with 
immune system enrichment terms are especially adept at predicting 
human age. These findings corroborate an ever-growing body of data 
that intimately link aging with immune system dysfunction (Nikolich-
Zugich, 2018). Atypically long-lived animals exhibit unique gene 
change relevant to inflammation (Johnson et al., 2019) and genomic 
(Shen et al., 2020), transcriptomic (Peters et al., 2015), and proteomic 
(Tanaka et al., 2018) analyses in humans have all connected immuno-
logical changes with aging. Interestingly, our “innate immune system” 
Reactome clock was almost as predictive as our “immune system” 
clock, despite containing 438 fewer SOMAmers. This would suggest 
that the innate immune system is especially pertinent to human aging. 
With these data in mind, it is quite intriguing that one of the most ef-
fective anti-aging drugs capable of extending life span and health span 
in mice is rapamycin (Bitto et al., 2016), which is clinically used as an 
immunosuppressant. Thus, clinical therapies that correct immune dys-
function may be particularly capable of improving human health span.

In summary, we propose and validate a plethora of novel aging 
clocks that are capable of predicting individual age in a large human 
cohort. Using the most predictive clock we identified, we show that 
sedentary subjects have a higher predicted age than their chronolog-
ical age. We additionally discover that proteins which significantly 
change their expression level with age in human plasma are frequently 
direct regulators of age-related disease and/or life span in animal mod-
els. Thus, many of these proteins are worthy of further exploration as 
potential therapeutic targets for the extension of human health span. 
We also show that diverse processes relevant to inflammation and the 
immune system are strongly implicated by aging-relevant proteins. 
Future studies should build upon these data to help develop effective 
anti-aging therapies that can be safely utilized in the clinic.

4  |  E XPERIMENTAL PROCEDURES

4.1  |  Statistical measurements for common aging 
plasma proteins

We previously identified 529 proteins that were reported to signifi-
cantly change their expression level with age by two or more dif-
ferent studies (Johnson et al., 2020). These common aging plasma 
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proteins were analyzed in a plasma proteomic dataset derived from 
4263 healthy individuals with an age range of 18–95 years (Lehallier 
et al., 2019). This 4263-person dataset reflects the combination of 
two different cohorts: 3301 individuals from the INTERVAL cohort 
and 962 individuals from the LonGenity cohort. All plasma pro-
teomes were acquired using the SOMAscan assay. For each protein, 
the q-value and age coefficient were measured using an online soft-
ware tool developed by Lehallier et al (Lehallier et al., 2019). Using 
this tool, a “Linear” regression line and an “All” subset were chosen 
to make graphs showing how the expression level of select pro-
teins changes with age in human plasma. When multiple different 
SOMAmer measurements were available for a given protein entry, 
the first measurement listed was selected.

4.2  |  Database and literature search for 
connections relevant to aging and health

For each of our common plasma aging proteins, we performed a com-
prehensive database and literature search to identify connections 
relevant to aging and health. This included searching for individual 
protein entries in the HAGR database (Tacutu et al., 2018). UniProt 
(UniProt, 2019) was utilized to identify default and alternative name 
recommendations and Alliance of Genome Resources (Alliance of 
Genome Resources, 2020) was used to find gene orthologs in differ-
ent organisms. PubMed was employed to search for protein names 
in conjunction with the terms “lifespan” and “life span.” Other search 
combinations included the protein name by itself or in combination 
with “aging,” “disease,” and/or “survival.”

4.3  |  Overrepresentation analyses

Overrepresentation analyses were performed similarly to before 
(Johnson et al., 2020) using WebGestalt (Liao et al., 2019). UniProt 
IDs were provided as the inputs, the background was set to all pro-
tein-coding genes, and the FDR significance level was set to 0.05.

4.4  |  Proteomic aging clock generation

The creation of proteomic aging clocks was performed similarly 
to before (Johnson et al., 2020; Lehallier et al., 2019). Proteomics 
measurements (performed using the SOMAscan assay) from 3301 
human plasma samples collected during the INTERVAL clinical trial 
were used to test whether aging proteins can predict chronologi-
cal age. Participants in the INTERVAL randomized controlled trial 
(ISRCTN24760606) were recruited with the active collaboration 
of the National Health Service (NHS) Blood and Transplant (http://
www.nhsbt.nhs.uk), which supported fieldwork and other elements 
of the trial. DNA extraction and genotyping were co-funded by the 
National Institute for Health Research (NIHR), the NIHR BioResource 
(http://biore​source.nihr.ac.uk/), and the NIHR Cambridge 

Biomedical Research Centre at the Cambridge University Hospitals 
NHS Foundation Trust. The INTERVAL study was funded by NHS 
Blood and Transplant (11-01-GEN). The academic coordinating 
center for INTERVAL was supported by core funding from the NIHR 
Blood and Transplant Research Unit in Donor Health and Genomics 
(NIHR BTRU-2014-10024), the UK Medical Research Council (MR/
L003120/1), the British Heart Foundation (RG/13/13/30194), and 
the NIHR Cambridge Biomedical Research Centre at the Cambridge 
University Hospitals NHS Foundation Trust. Proteomic assays were 
funded by the academic coordinating center for INTERVAL and 
Merck Research Laboratories (Merck & Co.). A complete list of the 
investigators and contributors to the INTERVAL trial was previously 
reported (Di Angelantonio et al., 2017). The academic coordinat-
ing center would like to thank blood donor center staff and blood 
donors for participating in the INTERVAL trial. Age ranged from 18 
to 76 years with a median age of 45 years (first quartile =31; third 
quartile =55). 1616 participants were female and 1685 were male. 
Sample selection, processing, and preparation were detailed previ-
ously (Sun et al., 2018).

To analyze the accuracy of the plasma proteome to predict 
chronological aging and the relative predictive power of specific 
signatures, we used glmnet (Friedman et al., 2010) and fitted ridge 
regression models for the different lists of proteins (alpha = 0; 100 
lambda tested; “lamda.min” as the shrinkage variable estimated 
after tenfold cross-validation). Input variables consisted of z-scaled 
log10–transformed RFUs (relative fluorescence units) and two-
thirds (n = 2178) of the samples were used for training the model. 
The remaining 1123 samples were used as a validation. In addition, 
we fitted a LASSO model (alpha = 1) to identify a subset of proteins 
potentially outperforming the full list.

Altogether, we compared 12 different lists of proteins and 1565 
different Reactome pathways targeted by at least 2 SOMAmers 
(out of 2271 Human Reactome pathways) to the full panel of pro-
teins available for measurement (2978 proteins measured by 3283 
SOMAmers). The lists of Human Reactome pathways and cor-
responding genes were obtained from the reactome.db package 
(Ligtenberg, 2019) and mapped to UniProt ID using the org.Hs.eg.
db package (Carlson, 2019). Prediction accuracy of each model was 
estimated for the training and validation datasets, separately, using a 
Pearson correlation coefficient between chronological age and pre-
dicted age in addition to the corresponding MAE.

4.5  |  Validation of the ultra-sensitive proteomic 
clock in independent cohorts and functional relevance

To validate the ultra-sensitive plasma proteomic clock in independ-
ent cohorts, we used an aging proteomic dataset covering a large 
life span range (Lehallier et al., 2019) and a dataset investigating the 
effect of exercise in young and old individuals (Santos-Parker et al., 
2018). In the data generated by Lehallier et al. (Lehallier et al., 2019), 
the age ranged from 21 to 107 years with a median age of 70 years 
(first quartile = 58, third quartile = 89; 84 males and 87 females). 

http://www.nhsbt.nhs.uk
http://www.nhsbt.nhs.uk
http://bioresource.nihr.ac.uk/
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The samples originated from four different cohorts from the United 
States and Europe (VASeattle, PRIN06, PRIN09, and GEHA, N = 171). 
RFUs for the 1305 proteins measured in these datasets were log10-
transformed and z-scored.

In the data generated by Santos-Parker et al. (2018), 31 young 
(aged 19–32 years, inactive n = 16, aerobic exercise-trained n = 15) 
and 16 healthy older (aged 55–77 years, inactive n = 8, aerobic ex-
ercise-trained n  =  8) were measured. Of the 47 healthy subjects, 
15 were female and 32 were male. The version of the SOMAscan 
platform used in this study measured 1129 proteins and RFUs were 
similarly log10-transformed and z-scored.

Only a subset of the 491 proteins constituting the ultra-sensi-
tive proteomic clock was measured in these cohorts: n = 150 for the 
study by Lehallier et al. (2019) and n = 115 for the study by Santos-
Parker et al. (2018). No re-fitting of the model was performed but 
we applied a correction coefficient that was estimated as follows: 
First, we predicted chronological age in the learning dataset of the 
INTERVAL cohort using the coefficients of the 491-SOMAmer pro-
teomic clock but with only available proteins measured in the inde-
pendent cohorts. Then, we fitted a linear model between predicted 
age and chronological age and estimated the correction coefficient 
to correct for slope offset of each subclock, separately. This correc-
tion coefficient was 2.62 for the study by Lehallier et al. (Lehallier 
et al., 2019) and 4.57 for the study by Santos-Parker et al. (2018).

To estimate whether aerobic exercise has an effect on aging, we 
calculated delta age, which corresponds to the difference between 
predicted age and chronological age, and tested statistical signifi-
cance using the Wilcoxon signed-rank test. Finally, we compared the 
proteins constituting the ultra-predictive clock with protein predic-
tors of 12 health traits such as smoking, percent body fat, and car-
diopulmonary fitness according to a recent study from Williams et al. 
(2019). To do this, we mapped protein names to gene symbols and 
estimated the percentage of genes measured in our study that were 
involved in the aging clock and in the different, previously reported 
health outcome predictors.
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