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Hematopoietic stem cells (HSCs) surface during embryogenesis leading to the genesis of the hematopoietic system, which is vital for
immune function, homeostasis balance, and inflammatory responses in the human body. Hematopoiesis is the process of blood cell
formation, which initiates from hematopoietic stem/progenitor cells (HSPCs) and is responsible for the generation of all adult
blood cells. With their self-renewing and pluripotent properties, human pluripotent stem cells (hPSCs) provide an
unprecedented opportunity to create in vitro models of differentiation that will revolutionize our understanding of human
development, especially of the human blood system. The utilization of hPSCs provides newfound approaches for studying the
origins of human blood cell diseases and generating progenitor populations for cell-based treatments. Current shortages in our
knowledge of adult HSCs and the molecular mechanisms that control hematopoietic development in physiological and
pathological conditions can be resolved with better understanding of the regulatory networks involved in hematopoiesis, their
impact on gene expression, and further enhance our ability to develop novel strategies of clinical importance. In this review, we
delve into the recent advances in the understanding of the various cellular and molecular pathways that lead to blood
development from hPSCs and examine the current knowledge of human hematopoietic development. We also review how
in vitro differentiation of hPSCs can undergo hematopoietic transition and specification, including major subtypes, and consider

techniques and protocols that facilitate the generation of hematopoietic stem cells.

1. Introduction

Hematopoietic stem cell transplantation (HSCT) therapy has
been widely used and is considered as a promising treatment
for various blood disorders [1]. HSCs are adult stem cells that
can differentiate into specialized blood cells that control
immune function, homeostasis balance, and response to
microorganisms and inflammation [2]. They were initially
discovered when mouse bone marrow cells were transplanted
into irradiated mice, resulting in the development of a colony
of hematopoietic cells, which were traced to originate from
differentiated HSCs [3, 4]. This significant identification by
Till and McCulloch further propelled research in investigat-
ing the characterization, development, and cultivation of
HSCs. HSCs can be harvested from peripheral blood, bone
barrow, and umbilical cord blood [5]. HSCs can be used in
transplantation techniques and efficient therapies for

hematological diseases; however, it is currently not possible
to generate therapeutically viable HSCs for human patients
[6, 7]. Lack of matched human leukocyte antigen (HLA)
donors makes it difficult to take advantage of the clinical ben-
efits of HSCT [8, 9]. Even then, the demand for HSCTSs is
unlikely to subside as synergetic efforts have been made to
replenish other sources of HSCs [10]. Several studies have
reported successful expansion of HSC populations while
many others are focused on generating HSCs from induced
pluripotent stem cells (iPSCs).

The successful derivation of hESC line by Thomson’s
group in 1998 [11] and hiPSC line by Yamanaka’s group in
2007 [12] initiated tremendous interest and effort in utilizing
hPSCs as a consistent source in generating unlimited blood
cells for therapeutic purposes. With in vitro development of
HSCs from hPSCs, current shortages of blood donors can
be overcome with more cell-based treatments. Significant
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progress has been attained in the recent years in developing
systems for hematopoietic differentiation and producing var-
ious lineages of blood cells, including lymphoid and myeloid
specification from hPSCs [13-15]. However, generation of
HSCs, which has been the desired goal of many current
researchers in the field of HSC research, has been limited
and unsuccessful. This can mainly be attested to the signifi-
cant complexity of the embryonic hematopoietic system
and the lack in knowledge of specific markers in distinguish-
ing the various stages of embryonic blood cell development.
To overcome this limitation, understanding and identifying
the sequential progenitors and molecular mechanisms that
lead to the formation of specific blood lineages are vital. In
this review, we start with describing our current understand-
ing of embryonic hematopoiesis, its structure, and how it is
vital in serving as a blueprint for hPSC differentiation studies.
We focus on novel progress that had been made in identify-
ing and understanding signaling pathways that scaffold and
guide hematopoietic specification from hPSCs and further
discuss important approaches in the production of engrafta-
ble blood cells. In our concluding section, we discuss the uti-
lization of hPSC differentiation in HSC development and the
current limitations that are to be overcome in achieving
this goal.

2. Development

During development, hematopoiesis occurs in the yolk sac
and the embryo proper [16]. However, unlike solid tissues,
cells involved in the hematopoietic system are scattered in
the organism in different locations [17]. From what is known,
HSCs are found in the latter stages of embryogenesis in the
major arteries of the embryo, which includes the umbilical
and vitelline arteries and the dorsal aorta [18]. Fully devel-
oped HSCs can also later be found in the yolk sac and pla-
centa [19]. CD34" cells can be found as early as during
week 5 of gestation [20], and most mature HSCs can usually
be detected at week 9 of gestation [21, 22]. Once the embryo
is fully developed, HSCs then migrate to the fetal liver and
expand in the bone marrow for future production and self-
renewal during adult life [23]. Since most components of
embryonic hematopoiesis have been conserved across multi-
ple species, a general model of the complex development of
the hematopoietic system has been established. In the early
embryo, many waves of hematopoiesis are initiated and orga-
nized in a spatially, temporally, and functionally distinct
manner. Initially, the premiere waves of hematopoiesis were
described as primitive and definitive hematopoietic waves
(Figure 1). The classification of these programs historically
was based on the type of erythroblasts that they developed.
Erythroblasts that were early emerging, large and nucleated
were termed “primitive,” whereas latter erythroblasts in
development that are enucleated were termed “definitive.”
Recently though, the presence of erythroid, megakaryocyte,
and mast cell progenitors, which are known as erythromye-
loid progenitors (EMPs), and B-cell and T-cell progenitors,
which are known as lymphoid-primed multipotent progeni-
tors (LMPPs), before the emergence of HSCs and the onset
of blood circulation has been revealed [24-27]. Despite the
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presence of EMPs and LMPPs not being reported yet in
human hematopoiesis, the detection of EMP and LMPP pop-
ulations have been observed at E8.25 in the yolk sac of the
mouse embryo, following the emergence of primitive hema-
topoietic progenitors and prior to the detection of HSCs
[25]. However though, Keller’s group has proposed that these
progenitor populations are rather generated by independent
programs that are initiated in the yolk sac and are unique
from primitive and definitive hematopoiesis [25]. LMPP
hematopoiesis includes the lymphoid development of pro-
genitors to B and T cell types that occurs in the yolk sac
and also overlaps with EMP hematopoiesis [28, 29]. Through
these separate programs, it can be acknowledged that the
yolk sac has distinct forms of hematopoiesis during develop-
ment. An improved understanding of the initiation and reg-
ulation of embryonic hematopoiesis will be necessary in
identifying lineages that are HSC-dependent and
independent.

2.1. Primitive Hematopoiesis. Primitive hematopoiesis occurs
in the yolk sac and is more restricted, generating cells of only
the erythroid, macrophage, and megakaryocytic lineages
[30]. Primitive hematopoiesis can also be defined as all blood
lineages except HSCs, erythrocytes, and T cells [31]. It is
more specified and initiates in blood islands in the mouse
embryo (day 7, E7) and human embryo (18-20 days) during
the initial gestation period [30] (Figure 1). Erythroblasts
derived from the primitive program tend to be larger in size,
retain their nuclei, and are surrounded by endothelial cells
[30, 32, 33]. Primitive erythroid cells primarily express the
embryonic globin genes, which have a higher affinity for oxy-
gen than definitive erythroid cells that are characterized by
the exclusive expression of adult forms of S-globin [33, 34].
Macrophages and megakaryocytes derived from this stage
also exhibit different properties from those derived from
the definitive stage. Primitive macrophages have rapid matu-
ration without a monocyte stage during development [35, 36]
and megakaryocytes lack an abundance of platelets and have
lower ploidy [37, 38]. Further, understanding primitive
hematopoiesis unfortunately encounters challenges in identi-
tying in vitro differentiation of ESCs and iPSCs with only
primitive erythroid precursors available for complete identi-
fication [23].

2.2. Definitive Hematopoiesis. On the other hand, definitive
hematopoiesis occurs after primitive hematopoiesis and has
the potential to generate HSCs at different sites involving vas-
culature. Definitive describes the emergence of hematopoi-
etic progenitors, which produce myeloid, lymphoid,
erythroid lineages, and long-term HSCs in the adult organ-
ism [39, 40]. This usually occurs in the dorsal aorta in the
aorta-gonad-mesonephros (AGM) region of the embryo
proper that comprise the aorta, gonads, and mesonephros
[40, 41]. The AGM region in the embryo is the main site of
definitive hematopoiesis during mid-stage gestation [42-
45]. HSCs can also be found in the yolk sac, the placenta,
and the head, which has been observed in mouse models
[44]. In humans, HSCs can be detected with the expression
of vascular and hematopoietic markers like CD34, VE-
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FiGUure 1: Embryonic hematopoiesis. Establishment of primitive and definitive HSCs during embryonic development.

cadherin, CD117, CD90, CD45, and CD105 [46]. In vitro,
HSCs that are capable of engraftment can be generated from
AGM VE-cadherin® progenitors in a coculture with OP9
stromal cells or endothelial cells [47-50]. Intriguingly, In
the AGM region, intra-aortic hematopoietic clusters
(IAHCs) can be found on the ventral wall, which signifies
the initiation of definitive hematopoiesis in the embryo
[51]. These TAHCs cover the endothelial lining of the dorsal
aorta and give rise to hematopoietic cells via the transitioning
of flat aortic endothelial cells into round hematopoietic cells.
It is suggested that specialized hemogenic endothelium in the
ventral wall of the dorsal aorta undergo endothelial-to-
hematopoietic transition (EHT), giving rise to HSCs. Hence,
this suggests that generating hematopoietic cells through
endothelial intermediates is a critical step during the devel-
opment of the hematopoietic system. Additionally, the pro-
cess of EHT is seen to be conserved across vertebrates,
including humans, mice, and zebrafish [39, 52, 53]. Cur-
rently, it has been hypothesized that arterial specification is
an essential prerequisite for initiating the HSC program
and this finding will help in identifying and enhancing lym-
phomyeloid hematopoietic progenitors and eventually lead
to generating engraftable HSCs from hPSC cultures [15,
54]. Earlier, Vo et al. hypothesized that early hematopoietic
development during embryogenesis is inhibited by epigenetic
silencing [55]. They reported that the Polycomb group pro-
tein EZH1 increased the proliferation of lymphoid cells from
HSCs and its deficiency in mice results in the early appear-
ance of definitive HSCs in an embryo in vivo [55].

3. Hemangioblasts

During the late 19" century, embryologists observed a close
relationship between endothelial and hematopoietic lineages
and later in 1917, Florence Sabin concluded the existence of
unique bipotential cells that give rise to blood and endothelial
cells based on her experiment on the yolk sac of chicken
embryo [56]. The term hemangioblast was coined 15 years
later by Murray in reference to a large mass of cells defined
as yolk sac mesenchyme from which endothelial and hema-
topoietic cells develop [57]. Hemangioblasts that develop

out of the mesoderm during early embryonic development
possess endothelial and hematopoietic properties and are
identified as a clonal precursor that can give rise to both
blood cells and endothelial cells [58, 59]. Hemangioblasts
were subsequently located and observed in the mouse
embryo [60], in zebrafish [61], and in in vitro differentiating
human ESCs [62, 63]. Hemangioblasts are more traced to
primitive differentiation predominantly characterized by
the coexpression of receptor tyrosine kinase Fl-1/KDR
(VEGFR2), the primitive streak transcription factor Brachy-
ury, and also by its ability to develop vascular and hemato-
poietic lineages [60].

4. Hemogenic Endothelium (HE)

During hematopoiesis and HSC development, it has been
observed that blood cells derive from progenitors that
express endothelial properties. These specialized endothelial
progenitors known as hemogenic endothelium (HE) are
noted to give rise to blood cells through an endothelial-to-
hematopoietic transition (EHT) rather than through an
asymmetric division [64]. HE is involved in definitive hema-
topoiesis, and hematopoietic cells are generated newly from
this subset of HE [34, 65] which was shown through lineage
tracing [66] and time-lapse imaging [39, 62, 64, 67]. HE is
more localized and characterized by endothelial-specific
markers and morphology and can be found in endothelial
layers inside blood vessels. HE expresses endothelial markers
VE-cadherin, CD31 [68], ¢-KIT [69], and transcription fac-
tors Runx1 [70] and GATA2 [71].

HE is acknowledged as a significant source of adult-type,
mature blood cells that are produced in extraembryonic vas-
culature that include vitelline, umbilical [72, 73], placental
[19], and yolk sac [74-76] vasculature. Though EHT in extra-
embryonic sites can be observed from HE lining arterial,
venous, and capillary vessels [72, 75, 77, 78], HSC potential
is only localized in arterial vessels [72]. Most endothelial cells
involved in the development of hematopoietic progenitors
and HSCs are mostly derived from the aortic endothelial
layer and can be traced with KDR (also known as FLK1)
expression [51, 79]. While transitioning into HSCs, they



begin expressing CD45 in hematopoietic clusters and are
highly dependent on Runx1 signaling [80, 81]. These previ-
ously mentioned observations provide that blood formation
via endothelial intermediates is a critical process in the hema-
topoietic system and that arterial specification over nonarter-
ial specification of HE can improve and allow for the
development of hemogenic and hematopoietic progeny. This
observation proved that arterial specification is an essential
prerequisite for initiating the definitive hematopoietic pro-
gram [82].

5. Advances in Hematopoietic
Differentiation from hPSCs

The advent of iPSCs has offered us remarkable access to
investigate early human blood development and an infinite
source of cells with clinical importance that can be used for
immunotherapies. Furthermore, producing iPSC-derived
HSCs and HE from patients with genetic disorders can allow
for vital disease modeling and access to novel therapeutic
methods via high throughput drug screening. Differentiation
of hPSCs to hematopoietic cells has been accomplished using
several strategies which include the monolayer culture of
hPSCs, 3D cluster differentiation as embryoid bodies (EBs)
or in a feeder-dependent coculture system (Figure 2).
Numerous hematopoietic lineages which include erythro-
cytes, megakaryocytes and platelets, macrophages, dendritic
cells, and lymphoid cells from hPSCs have been derived
[83] and have been significant in contribution towards devel-
oping a model for human hematoendothelial development
from hPSCs.

5.1. Coculture Differentiation System. The system involves
coculturing undifferentiated hPSCs with murine bone mar-
row stromal cells in the presence of serum-containing media
[84-86]. The hPSC/OP9 coculture system is a widely used
hematopoietic differentiation approach which provides a
major advantage because efficient hematopoietic differentia-
tion from hESCs can be achieved within a short timespan
(8-9 days) with the utilization of specific fetal bovine serum
(FBS) and does not require additional cytokines [87]. Vodya-
nik et al. have shown that of the different murine bone mar-
row stromal cells tested, the OP9 cell line is the most efficient
at inducing hematopoietic transition [88]. OP9 coculture can
be used to obtain multipotent hematopoietic progenitors and
mature cells including T [89, 90] and B lymphocytes [88, 91]
and megakaryocytes [92]. However, there are several limita-
tions to the stromal cell coculture system. Cell density of
OP9 cells, size of the hPSCs colony, and FBS lots are the most
important factors extremely essential for the efficiency of the
hPSC differentiation in the OP9 coculture system. These lim-
itations pose a challenge to understanding signaling path-
ways involved in the hematoendothelial transition during
hPSC differentiation. Furthermore, the use of xenogeneic
material in the system limits the therapeutic benefits of the
system. Despite the establishment of xenogeny-free hPSC
culture, hPSC-derived hematopoietic cells of clinical impor-
tance need to be generated using defined methods of differen-
tiation. In addition, studies also showed that teratoma-
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derived hematopoiesis of iPSCs was significantly improved
when coinjected with OP9 stromal cells compared to iPSCs
alone. These studies revealed that isolating and reinjecting
hematopoietic progenitors from hPSC-derived teratomas
have shown multilineage engraftment potential [93, 94].
Despite the fact that HSCs were lower in numbers and mye-
loid lineage tendency was seen after secondary transplanta-
tion, these results demonstrated that hPSCs possessed
potential towards differentiating into HSCs.

5.2. Direct Differentiation System. Another method of differ-
entiation is the direct differentiation of hPSCs by culturing
them in chemically defined medium with the sequential addi-
tion of specific morphogens, cytokines, and small molecules
in order to promote hematoendothelial differentiation [95].
Directed differentiation has been carried out by using embry-
oid bodies (EBs), which are 3D aggregates, or by a mono-
layer, 2D-system culturing of hPSCs. Although these
protocols rely on the use of serum in the media [11],
serum-free media have been developed to be used in these
protocols recently [96-98]. Exploiting different signaling
pathways by using Wnt agonists and bone morphogenetic
protein 4 (BMP4) in cultures to induce efficient mesoderm,
VEGF to improve angiogenesis, and hematopoietic cytokine
cocktails to increase hematopoiesis have been useful to
improve the efficiency of hematopoietic differentiation of
hPSC-derived EBs [25, 31, 97, 99]. The EB-based differentia-
tion system also poses several limitations due to the complex
nature of the EBs, variations between each EBs, and its rela-
tively slow differentiation that restricts the use of this system
[31, 100].

On the other hand, the two-dimensional method (mono-
layer culture) involves direct differentiation on ECM-coated
plates. While some groups have used Matrigel ECM which
is derived from mouse sarcoma cell line, to plate cells, others
have discovered the use of human collagen IV, laminin, and
fibronectin as efficient matrices to support induction of
mesoderm and support hematoendothelial differentiation
[101-104]. Additionally, Uenishi et al. developed a technique
that can generate HSCs from a monolayer of hPSCs.
Through molecular profiling studies, they found that tenas-
cin C is expressed highly in over confluent OP9 stromal cells
with higher hemato-inducing activity and demonstrated
tenascin C’s ability to promote the development of hema-
toendothelial progenitors [105]. This two-dimensional
method which involves stage-specific addition of growth fac-
tors, small molecules and cytokines, decreases the differenti-
ation time but increases the efficiency of hematoendothelial
differentiation, making it a highly efficient method that is
completely chemically defined [103-105].

5.3. Transcription Factor-Mediated Differentiation System.
EHT and HSC emergence in AGM is controlled by combina-
torial transcription factor interaction. In transcription factor-
mediated conversion, a particular cell fate is activated by the
exacted expression of key transcription factors. By using
transcription factors that are vital in hematopoietic differen-
tiation, multiple conversion approaches have been reported
recently involving hPSCs [106-110]. During the transition
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FIGURe 2: Hematopoietic differentiation from hPSCs. Schematic summary of reported strategies for hematopoietic differentiation from
hPSCs. Human PSCs can be differentiated into hematopoietic cells (HSCs) by three strategies: OP9 coculture, direct differentiation, and

transcription-mediated differentiation approach.

period from mesodermal to hematopoietic lineages, the tran-
scription factor Scl plays a significant role in early hemato-
poietic development [111]. Sandler et al. demonstrated that
in the human system, overexpression of transcription factors
like RUNX1, FOSB, SPI1, and GFI1 in HUVECs or adult der-
mal microvascular endothelial cells followed by coculture
with AKT-activated endothelial cells induced definitive
hematopoietic development or the HSC program [112].
Szabo et al. has reported that human fibroblasts overexpress-
ing a single transcription factor OCT4 when transplanted
into NSG recipients produced myeloid engraftment compat-
ible with cord blood CD34" cells and erythroid colonies
expressing adult -hemoglobin and lacking embryonic e-
hemoglobin [113].

In ES cell culture models, RUNXI1 is recognized as the
master regulator of EHT and its expression in the yolk sac
progenitors has also shown to develop HE in the dorsal aorta
and even a certain number of HSCs [114, 115]. The balance
between RUNXI1 and HOXA3 is important for the develop-
ment of HE stage [116]. HoxA3 also upregulates the tran-
scriptional factor Sox17 that plays an important role in
specifying arterial and HSC emergence [116-118]. Earlier, a
gain-of-function screening system was developed to deter-
mine the important transcriptional regulators of HE forma-
tion from human PSCs [107]. Based on this system, it was

revealed that the enforcing expression of various combina-
tions of transcription factors converted hPSCs into different
hematopoietic progenitors; none of the factors could induce
blood formation when used alone. The combination of tran-
scription factor ETV2 and GATAZ2 led to the induction of
CD43" blood cells with panmyeloid potential, whereas the
combination of TAL1 and GATA2 endowed cells with
erythromegakaryocytic potential which involved a HE inter-
mediate stage [107]. The hPSC-derived hematopoietic
progenitors generated mature colonies in methylcellulose-
based assays but were unable to engraft long-term in vivo
[107]. Interestingly, Suknuntha et al. used modRNA express-
ing ETV2 or ETV2 and GATA2 to generate endothelial and
CD34+CD43+ hematopoietic progenitor cells from HPSCs
and nonhuman NHP, respectively [119].

Recently, it was shown that the multipotentiality of plu-
ripotent stem cells and differentiation into various tissue
types during embryogenesis can be controlled by sequential
exposure to morphogens. Sugimura et al. performed modi-
fied morphogen-directed differentiation of pluripotent stem
cells to generate hPSC-derived CD34" cells, which were then
subsequently enforced to express seven common transcrip-
tion factors (ERG, HOXA5, HOXA9, HOXA10, LCOR,
RUNX1, and SPI1) which are commonly detected in mye-
loid, B and T cell populations [110, 120, 121]. To determine



their necessity in hematopoiesis, they transduced HE with
these seven factors and engrafted them into irradiated mice.
Efficient multilineage hematopoietic reconstitution in mice
and the development of functional myeloid, B and T cell pop-
ulations, was observed [110]. Although engraftment was pos-
sible with these genetically modified cells, they possessed
contrasting functional and molecular traits compared to
HSCs derived from cord blood. Concluding from these
results, it is clear that the controlled expression of certain fac-
tors can generate HSC-like cells that are not fully functional
shedding light on the importance of learning the mechanisms
molecular regulators undergo in mediating definitive hema-
topoiesis. Nevertheless, there is promising evidence that the
direct conversion of somatic cells into HSCs can be a feasible
option for future clinical applications.

6. Various Stages of HSC Development during
hPSC Differentiation

A thorough knowledge of the various stages of hematopoietic
development and the mechanisms behind the regulation of
induction and specification of hematovascular progenitors
from hPSCs is important. At the moment, an extensive
model of hematoendothelial development with hPSCs
includes the use of OP9 stromal cell coculture and direct dif-
ferentiation [31, 62, 105].

6.1. Mesoderm Stage. Induction of the primitive mesoderm is
the first stage of hPSC differentiation which can be identified
by the expression of mesodermal marker APLNR and KDR
and a lack of expression of typical endothelial (CD31, VE-
cadherin), endothelial/mesenchymal (CD73, CD105), and
hematopoietic (CD43, CD45) markers [63, 122]. Hematoen-
dothelial lineages that arise from the mesoderm have been
specifically described as expressing KDR* APLNR" (Flk-1,
VEGFR2, and CD309,) and PDGFRa" (CD140a) [31, 62,
104] (Figure 3). Several studies utilizing the EB differentia-
tion method have shown that the emergence of the primitive
streak and appearance of the mesoderm populations are
dependent on the bone morphogenetic protein 4 (BMP4),
the fibroblast growth factor 2 (bFGF), as well as Nodal and
WNT-f catenin signaling pathways [83, 97]. Several other
studies have found that inhibition of GSK38 (a Wnt-
signaling inhibitor) can induce mesoderm formation in PSCs
from human and nonhuman primate [123, 124]. Sturgeon
et al. demonstrated that early manipulation of WNT-j-
catenin signaling can specify distinct primitive and definitive
hematopoiesis waves that develop from separate mesoderm
populations [31].

During the mesodermal stage of development, three dif-
ferent clonogenic progenitors with varying endothelial
potential are formed. The first form is the mesenchymoan-
gioblast (MB), which is defined as a precursor of endothelial
and mesenchymal cells [122, 125, 126] (Figure 3). The second
clonogenic progenitor is marked by the emergence of blast
CFCs (BL-CFCs) [62, 63, 122] (Figure 3). BL-CFCs are com-
monly referred to as hemangioblasts (HB) because they con-
sist of vascular and hematopoietic progenitors. Both MB and
HB arise in coculture with OP9 or a direct differentiation
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system on days 2 and 3 of differentiation [62, 89, 105]. Both
MB and HB potentials can be detected using colony-
forming assay in serum-free clonogenic medium supple-
mented with FGF2 [122] (Figure 3). It was recently reported
that overexpression of ETS1 during the mesodermal stage of
development dramatically enhances the formation of
arterial-type HE that express DLL4 and CXCR4 [127]. The
last one is cardiovascular progenitors which have endothelial
and cardiomyocyte potentials [128].

6.2. Hematovascular Mesoderm Precursor (HVMP) Stage.
The next step of more advanced mesodermal commitment
is associated with formation of lateral plate-like mesoderm
cells, which are known as hematovascular mesoderm
precursors (HVMPs) [62]. HVMPs arise in coculture with
OP9 or in the direct differentiation system on day 4 of
differentiation [62, 89, 105, 122]. The emergence of HVMPs
can be detected based on high expression of KDR and low
to no expression of PDGFR« in EMH}; “APLNR" cells, i.e.,
EMH]jn"KDR" M APLNR"PDGFRa'*"~  phenotype. The
development of the HVMP stage is mainly promoted by con-
tinued activation of the Wnt signaling pathway [101]. During
the HVMP stage, expression of TALI, HHEX, LMO?2,
GATA2, and ETV2 genes associated with angiohematopoietic
development are upregulated (Figure 3). HVMPs do not pos-
sess BL-CFC potential but are abundant in bipotential cells
that can form hematoendothelial clusters when cocultured
on OP9 and can therefore produce all myeloid progenitors
[62]. Together, these results suggest that primitive hemato-
poietic potential can be detected within immature posterior
mesoderm cells, whereas more mature and developing
HVMPs generate blood cells with definitive characteristics.
In the same line, recently, we demonstrated that HVMPs
with definitive hematopoietic potential produce the highest
numbers of T cells when cultured on OP9-DLL4 compared
to other progenitors [89].

6.3. Hemogenic Endothelium Progenitor (HEP) Stage. Pro-
ducing HEP populations from hPSCs is considered as a vital
step progressing towards the genesis of blood progenitors,
and this population can be identified by the expression of
the typical endothelial marker VE-cadherin, CD31, and
CD34 and the absence of the panhematopoietic marker
CD43 [62, 99, 129]. VEC" cells represent a heterogenous
population which can be divided into 3 independent popula-
tions, HE, non-HE, and AHP (Figure 3). HE cells can be
readily distinguished from non-HE cells based on the lack
of CD73 expression in HE cells [62, 129]. These cells lack
hematopoietic CFC potential but can form blood populations
after culturing with stromal cells [62]. HEPs differentiated
from hPSCs present the CD144*CD31*CD73 CD43" pheno-
type. The non-HE cells are identified by the direct upregula-
tion of CD73 [62] and under NOTCH signaling, HEP specify
into DLL* arterial HE and DLL4  nonarterial HE [54].
Some studies have found that based on location, the
population of non-HE cells can be further divided into
CD73™9CD184""DLL4" arterial and CD73"CD184 venous
endothelium populations. This separation between arterial
and venous HE can be induced by altering various signaling
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Ficure 3: Established stages of hematopoietic development from hPSCs". The primitive mesodermal precursors are capable of forming
mesenchymoangioblast (MB) and hemangioblast (HB) in the presence of FGF2 [62, 122, 125]. Mesodermal commitment to
angiohematopoietic development progressively leads to the formation of *M"lin"KDR"*™APLNR*PDGFRa'*"'~ hematovascular
mesodermal precursors (HVMPs) [62, 89]. The HEP stage was identified based on the expression of the typical endothelial markers VE-
cadherin, CD31, and CD34 and the absence of the panhematopoietic marker CD43 [62, 88]. HE cells were distinguished from non-HE
cells based on the presence of CD73 expression [62, 132]. Initial hematopoietic progenitors arising from the VE-cadherin+ population
show the presence of CD235a, low levels of CD43, and absence of CD41a expression. These cells can form hematopoietic colonies in the
presence of FGF2 and retain their endothelial potential. These progenitors were labelled as angiogenic hematopoietic progenitors (AHPs)
[62, 132]. Progressive hematopoietic development is identified by the appearance of CD43 expression, and all hematopoietic CFCs are
accumulated in this fraction. Distinct subsets of CD43" hematopoietic cells, including CD41a*CD235a" erythromegakaryocytic

progenitors and lin-CD34"CD43*CD45"~ multipotent myelolymphoid progenitors, are also established [63, 88, 89, 105].

pathways like mitogen-activated protein kinase (MAPK),
NOTCH, and phosphoinositide 3-kinase (PI3K) pathways
[130, 131]. In addition to these 2 populations, a third pop-
ulation named as angiogenic hematopoietic progenitor popu-
lation (AHP) is identified by the CD144"CD31"CD73 CD43"
phenotype (Figure 3). These hematopoietic progenitors can
develop into hematopoietic colonies in a FGF2-containing
methylcellulose culture and also form endothelial sheets in
endothelial-specific culture exhibiting their angiogenic
potential [62, 132]. Culturing these endothelial subsets in
arterial, venous, and lymphatic conditions revealed that
AHPs are skewed towards lymphatic, HEPs towards arte-
rial, and non-HEPs towards venous differentiation in vitro.
These findings suggest that selection and enhancement of
production of a particular EC subset may aid in generating
desirable EC populations with arterial, venous, or lymphatic
properties from hPSCs [132].

6.4. Multipotent Hematopoietic Progenitor (MHP) Stage. Sig-
nificant progress has been made in the last two decades in
understanding blood development from hPSCs. CD43 (leu-
kosialin) has been reported to be the initial marker that

specifies hematopoietic progenitors from endothelium in
hPSC differentiation cultures [88], however, debated that
hematopoietic progenitors expressing CD43 maybe of prim-
itive lineage [31]. This issue paved way for the precise separa-
tion of CD43" hematopoietic cells from preceding VE-
cadherin (VEC)"CD43™ HEP progenitors. Currently at this
stage, it is considered that advanced hematopoietic develop-
ment occurs due to EHT, which is associated with the upreg-
ulation of CD43 expression and when all hematopoietic
CFCs segregate into CD43" fractions [88, 99]. The CD43"
subsets include lin-CD34"CD43"CD41"CD235a" erythro-
megakaryocytic progenitor (E-MkP) and lin CD34"CD43"
CD45"" multipotent hematopoietic progenitors (MHPs)
[88, 90, 99, 133] (Figure 3). The CD235a*CD41a" cells are
highly refined in erythromegakaryocytic progenitors that
lack endothelial capacity. Shortly after the emergence of
CD235a"CD41a" cells, progenitors with broad lymphomye-
loid capability and lin-CD347CD43"CD45™ phenotype can
be detected in hPSC cultures. The acquirement of CD45
phenotype by lin" cells can be tracked to gradual myeloid
engagement [88]. E-MKPs were essentially lacking T cell
potential [89]. lin"CD34"CD43"CD45"~ MHP cells can be



characterized by myelolymphoid multilineage potential and
the ability to be maintained and expanded in culture. MHPs
have granulocyte-erythroid-macrophage-megakaryocyte
colony-forming potential (CFC-GEMM) and T-lymphoid
potential. MHPs can generate enucleated erythrocytes with
y- and limited S-globin expression as well. With specific
treatment or addition of interleukin-3 (IL-3), interleukin-6
(IL-6), stem cell factor (SCF), and thrombopoietin (TPO)
[62, 86-88], erythropoietin (EPO), Flt-3 ligand (FLT3L),
interleukin-11 (IL-11), epithelial growth factor (EGF),
insulin-like growth factor 1 (IGF-I), and insulin-like growth
factor 2 (IGF-II) can promote HP maintenance and expan-
sion in defined condition [31, 130].

7. NOTCH Signaling as the Master
Regulator of Hematopoiesis

A clear understanding of the pathways involved during
hematopoiesis is essential to clearly distinguish between
primitive and definitive hematopoiesis. Signaling pathways
play a vital role in cell development and specification that is
also mainly defined by gene regulation [134]. While most of
the cell signaling pathways have been demonstrated to be
required for HSC formation, HSC specification requires sig-
naling pathways that are nonessential for other hematopoi-
etic waves. Based on studies, it was observed that the
emergence of HSCs requires WNT [31, 135], BMP4 signaling
[136, 137], NOTCH [15, 47, 54, 130, 138], VEGF [139], SCF
[49, 140], and Hedgehog [141] signaling. Among all, the
NOTCH signaling pathway has been extensively studied
and has been shown to be critical during the onset of defini-
tive hematopoiesis [54, 130, 138, 142]. Notch signaling is
involved in lineage commitment, lateral inhibition between
neighboring cells, and maintenance of homeostasis [143].
In mammals, key proteins involved in NOTCH signaling
include four transmembrane NOTCH receptors (Notch 1-4)
which are composed of an extracellular domain (NECD)
and an intracellular domain (NICD), their associated Jag-
ged1-2/Delta-like (DLL1, DLL3, and DLL4) ligands that vary
in number across species [138]. It also includes enzymes that
modify Notch ligands during activation (Mindbomb) and
proteases that cleave activated receptors (gamma secretase/
ADAM TACE) at the site 2 (S2) and site 3 (S3) to remove
NECD from the rest of the receptor and to release NICD from
the membrane, respectively. After translocation of NICD into
nucleus, it interplays with the transcription factor complex,
CSL (CBF-1/RBPjk, SuH, and LAG-1), to expulse corepres-
sors and help the coactivator mastermind to trigger transcrip-
tion of NOTCH target genes [143, 144]. In vitro, Notch
signaling can be activated by coculturing cells with OP9 stro-
mal cells that express the Notch ligands or by coating immo-
bilized Notch ligands to the cell culture plates [54, 83, 145].
Recent evidence suggests that NOTCH signaling is
explicitly required at the EHT stage of development and
NOTCH dependency is a hallmark characteristic of definitive
hematopoiesis [54, 130]. Notch signaling plays an important
role in different stages of HE development, from arterial
specification [131] to T-lymphocyte development [146].
Through several transgenic mouse studies, it has been proven
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that the primitive wave of hematopoiesis is NOTCH-
independent [31, 99, 147] while the definitive wave of hema-
topoiesis is specifically NOTCH-dependent [147-149]. It has
also been shown through mouse knockout studies that Notch
activation is essential for the arterial specification of endothe-
lial cells during vasculogenesis [150, 151]. Recent studies
have shown that the activation of Notch signaling in the early
HE specify them to VEC'CD43"CD73'DLL4" arterial-type
HE which is dependent on NOTCH for EHT and produce
definitive lymphomyeloid and erythroid cells [15, 54]. The
idea that Notch mediated arterialization of HE is an impor-
tant stage for establishing the definitive hematopoietic pro-
gram that sheds light on an arterial specification-dependent
model of definitive hematopoietic development [15].

8. Outlook and Concluding Remarks

With significant developments in understanding embryonic
hematopoietic development, there have been many
approaches towards simulating developing systems to
hematopoietic differentiation. Considering that the first
HSCs, hESCs, and iPSCs were derived or discovered in
1961, 1998, and 2007, respectively, there have been substan-
tial advancements in the involvement of stem cells in hema-
topoietic research. With understanding of the hematopoietic
transition and various lineages, hESCs and iPSCs have been
successfully used to produce almost all types of mature blood
cells, although more consistent and efficient models are
desired for this achievement. Additionally, the important
understanding that HE and the EHT are vital for hematopoi-
etic development and the observation of HE in developing
hPSC cultures is important to further improve our models
and protocols for definitive hematopoiesis.

With most of the stepwise process of hematopoietic dif-
ferentiation generally understood, there are still shortcom-
ings in the knowledge of certain signaling pathways and
conditions of certain steps leading to various blood cell types.
Though, with the clear evidence of hematopoietic specifica-
tion resulting from the EHT or HE lineage, defining and
establishing these conditions in hPSC models provide oppor-
tunity for differentiating hPSCs into HSCs and mature blood
cells with long-term engraftment and self-renewing poten-
tial. These advances can really bring us closer towards dealing
with clinical applications and applying such development
techniques and engraftment of HSCs or various hPSC-
derived blood populations towards therapies for blood-
related disorders.

Continuing further, more in vivo studies with various
model organisms on hematoendothelial development in sites
of interest that include the AGM, yolk sac, or arterial and
nonarterial sites will pave the way to clarifying our current
knowledge of the hematopoietic transition and develop ideal
environmental conditions to produce efficient in vitro hPSC
models of hematopoietic differentiation. Commendable
research has been accomplished since the finding of both
primitive and definitive waves of hematopoiesis.

Disease treatment has been revolutionized by the clinical
benefits of stem cell transplant. Further understanding of
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hematopoiesis and replicating the developmental process
in vivo can revolutionize the future of regenerative medicine.
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