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The influence of common polygenic risk and gene sets on social
skills group training response in autism spectrum disorder
Danyang Li1,2,3, Nora Choque-Olsson1,3,4, Hong Jiao5, Nina Norgren6, Ulf Jonsson1,3,7, Sven Bölte1,3,8,9✉ and
Kristiina Tammimies 1,2,3,9✉

Social skills group training (SSGT) is a frequently used behavioral intervention in autism spectrum disorder (ASD), but the effects are
moderate and heterogeneous. Here, we analyzed the effect of polygenic risk score (PRS) and common variants in gene sets on the
intervention outcome. Participants from the largest randomized clinical trial of SSGT in ASD to date were selected (N= 188, 99 from
SSGT, 89 from standard care) to calculate association between the outcomes in the SSGT trial and PRSs for ASD, attention-deficit
hyperactivity disorder (ADHD), and educational attainment. In addition, specific gene sets were selected to evaluate their role on
intervention outcomes. Among all participants in the trial, higher PRS for ADHD was associated with significant improvement in the
outcome measure, the parental-rated Social Responsiveness Scale. The significant association was due to better outcomes in the
standard care group for individuals with higher PRS for ADHD (post-intervention: β=−4.747, P= 0.0129; follow-up: β=−5.309,
P= 0.0083). However, when contrasting the SSGT and standard care group, an inferior outcome in the SSGT group was associated
with higher ADHD PRS at follow-up (β= 6.67, P= 0.016). Five gene sets within the synaptic category showed a nominal association
with reduced response to interventions. We provide preliminary evidence that genetic liability calculated from common variants
could influence the intervention outcomes. In the future, larger cohorts should be used to investigate how genetic contribution
affects individual response to ASD interventions.
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INTRODUCTION
The response to behavioral interventions varies between indivi-
duals with the same neurodevelopmental and psychiatric
disorders. One of the factors contributing to this heterogeneity
might be genetic predisposition1. Genome-wide association
studies (GWAS) have been used to pinpoint common variants,
with mostly small effects, associated with disorders or personality
traits across the genome. For behavioral interventions, the size of
available cohorts with detailed outcomes is limited, and to date,
no significant variants have been associated with any specific
intervention outcome using GWAS2. However, the use of
polygenic risk score (PRS), an aggregate measure of the
cumulative effects of single nucleotide polymorphisms (SNPs)
derived from GWAS, has provided promising results in psychiatry
both for behavioral and pharmacological treatments3–7. For
instance, PRS has been studied to predict the response to
cognitive behavior therapy in major depressive disorder (MDD)4.
In addition to PRS, gene-set analysis can be utilized to group
multiple genetic variants in genes and further to related gene sets
to unravel biological processes and cellular functions related to
intervention responses8. Relevant gene-set associations have been
identified for interventions in psychiatry8–12. For example, genetic
variations in genes underlying glutamatergic or NMDA neuro-
transmission have been implicated in short-term antipsychotic
medication efficacy in schizophrenia, and the calcium signaling

pathway has been indicated to respond to selective serotonin
reuptake inhibitors in obsessive-compulsive disorder10,12.
Autism spectrum disorder (ASD) is a neurodevelopmental

disorder characterized by impairments in social communication
and interaction, together with restricted, repetitive behaviors13.
ASD commonly co-exists with other neurodevelopmental and
psychiatric disorders such as attention-deficit hyperactivity
disorder (ADHD), anxiety, depression, and intellectual disability14.
Genetic knowledge of ASD has increased rapidly in recent years.
For a number of autistic individuals, rare genetic variants, such as
loss-of-function variants and copy number variations (CNVs) in
specific genes and loci, can indicate a molecular etiology15. In
addition, common variants have been shown to play a role in the
disorder16–18. Although there are only a few genome-wide
significant SNPs identified for ASD, cumulative polygenic variation
summarized by PRS has shown to be predictive of ASD and
autistic traits in the general population18,19. Studies have also
indicated shared genetic liability of polygenic risk in ASD and
psychiatric disorders20,21. Educational attainment (EA), defined as
the highest degree of education, also has a confirmed genetic
correlation with ASD22, and academic achievement has been
linked to social skills23. Both rare and common genetic variations
in ASD have shown to converge on specific gene sets such as
synaptic formation and targets of Fragile-X mental retardation
protein (FMRP)24,25. To date, no studies have investigated how the
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already implicated common genetic variation in ASD or related
diagnoses and traits would relate to intervention outcomes in
autistic individuals.
Social skills group training (SSGT) is one of the most frequently

used behavioral interventions in ASD, aiming to alleviate social
communication difficulties in verbal individuals within the
normative intellectual range in a group setting26. The largest
randomized controlled trial (RCT) of SSGT (KONTAKT) to date,
conducted by our center in Sweden, included children and
adolescents with ASD and at least one common neurodevelop-
mental or psychiatric comorbidity26, such as ADHD, anxiety, and
depression. In the trial, SSGT as an add-on to standard care was
found to have a small to moderate effect compared to standard
care only, with significant effects on the primary outcome limited
to adolescents (13–17 years) and females26.
We recently showed that autistic individuals who were carriers

of clinically significant and rare genic CNVs larger than 500 kb had
significantly inferior outcomes after SSGT within the RCT27. Here,
we expand our genetic investigations to test the association
between SSGT and standard care intervention responses in ASD
and common variants using PRS and gene-set analysis. We
hypothesized that PRSs for ASD, ADHD, and EA, as well as
common variants within known ASD gene sets, would influence
intervention outcomes. Additionally, we tested if there was a
significant correlation between PRSs with clinically significant
CNVs and the clinical measures of parent-reported Social
Responsiveness Scale (SRS), ADHD diagnosis, and IQ in our ASD
cohort. We also tested if different PRSs were correlated with each
other in our cohort. To the best of our knowledge, there are no
studies published that have evaluated the influence of common
variants on intervention response in ASD or neurodevelopmental
disorders. Our results will provide further evidence of the potential
use of genetic profiles to predict individual-level outcomes for
ASD interventions.

RESULTS
Sample characteristics
Autistic children and adolescents from the multicenter, rando-
mized pragmatic RCT of SSGT (KONTAKT) in Sweden, were
included in this study26. Each participant received standard care
intervention and was randomized to the active SSGT group, to
additionally receive SSGT, or to the control group. Saliva samples
from 207 participants were collected for genotyping during the
RCT27. After quality control (QC) for this study, 188 participants
were analyzed for common variants. Of these, 169 participants
had outcome data at post-intervention, and 152 participants at
follow-up, and 99 participants belonged to the active SSGT group.
When comparing individuals of this RCT subgroup with the total
clinical cohort26, we did not detect any differences in character-
istics of sex, age, and IQ (Supplementary Table 1). The final
genotype data consist of 539,106 SNPs after genotyping marker
QC and 5,126,694 SNPs after imputation QC.

Correlation between PRSs and related characteristics
We chose three phenotypes: ASD, ADHD, and EA to calculate PRSs
separately using five P value thresholds (Pts) (<0.01, <0.05, <0.1,
<0.5, and <1) from GWAS summary results18,28,29. The correlation
between ADHD comorbidity status and PRS for ADHD, pre-
intervention parent-reported SRS, clinically significant CNVs of
ASD and PRS for ASD, as well as IQ and PRS for EA, was tested
(Supplementary Fig. 1). No correlation between ASD PRS and
baseline SRS or carrier status of clinically significant CNVs was
observed (Supplementary Fig. 1a, b). Autistic participants with
ADHD comorbidity had higher ADHD PRS compared with
participants without ADHD (Pt0.1, P= 0.010; Pt0.5, P= 0.0075;
Pt1.0, P= 0.0077) (Supplementary Fig. 1c), and IQ was positively

correlated with PRS for EA (Pt0.05, P= 0.038; Pt0.1, P= 0.024; Pt0.5,
P= 0.014; Pt1.0, P= 0.012) (Supplementary Fig. 1d). Correlations of
PRSs for ASD, ADHD, and EA were performed using selected Pt of
each PRS (Supplementary Fig. 2). PRS for ADHD was positively
correlated with PRS for ASD (r= 0.41, P= 1.7 × 10−10) but was
negatively correlated with PRS for EA (r=−0.22, P= 0.00099). No
correlation was found between ASD PRS and EA PRS (r= 0.039,
P= 0.56).

Proportion of variance in intervention outcomes explained by PRS
To investigate the association of intervention outcomes, measured
by the parent-reported SRS30 at pre-intervention, post-interven-
tion, and follow-up, with the three different phenotype PRSs, we
used mixed linear model (MLM) with interaction effect of PRS ×
time × intervention adjusting for additional fixed factors such as
age, sex, the most significant four principal components of
participants ancestry, and random factors including clinical
centers and each individual26. Additionally, we adjusted for carrier
status of clinically significant CNVs and rare large size CNVs
(>500 kb)27 separately in statistical models. First, we calculated
marginal R2 and conditional R2 to explain the role of PRS on the
variance of fixed and total effects of treatment outcome,
respectively31. In the model examining the impact of PRS for
ASD, the largest explained marginal and conditional variance in
the outcome was Pt0.5 when controlling for clinically significant
CNVs (Fig. 1). We detected small differences in the explained
variance when testing for ADHD PRS at all Pts, with the highest
value at Pt1.0 (Fig. 1). In EA PRS, increasing values of marginal and
conditional R2 occurred with higher Pt, in which Pt1.0 explained
the most variance. All three tested models controlling the carrier
status of CNVs showed similar results (Fig. 1 and Supplementary
Fig. 3).

Association between PRS and intervention outcomes
We used the PRS Pt with the highest explained variance for each
phenotype (ASD, ADHD, and EA) in our analyses to investigate the
association with the intervention outcomes (Fig. 2). When
contrasting the intervention outcomes and the PRS effect using
three-way interaction MLM (PRS × time × intervention), we
showed inferior outcome after SSGT for individuals with higher
PRS for ASD at follow-up (β= 6.47, P= 0.019). However, the
association was not significant after multiple testing correction.
Similarly, participants with higher ADHD PRS improved less after
SSGT in comparison with the participants in the standard care
group at follow-up (β= 6.67, P= 0.016), and the significance
remained after multiple testing correction. When analyzing only
the effect of PRS using two-way interaction of PRS × time, higher
PRS for ADHD was associated with a decrease in parental-rated
SRS, indicating overall better outcomes (post-intervention: β=
−4.747, P= 0.0129; follow-up: β=−5.309, P= 0.0083, Supple-
mentary Table 2). The associations remained significant after
adjusting for ADHD comorbidity (Supplementary Table 2). No
significant associations were found for EA PRS (Fig. 2). No
difference was found when we compared the model adjusting
for large size rare CNVs nor the model without CNV adjustment
(Supplementary Table 2). Secondary results of all Pts for ADHD and
ASD PRSs in three models were shown in Supplementary Table 2.
To investigate further the differential effects between the

intervention groups, we computed the MLMs separately in the SSGT
and standard care groups using two-way interaction PRS × time, and
demonstrated that individuals with higher PRS for ASD showed less
improvement in the SSGT group at follow-up as indicated in the
main model (post-intervention: β= 0.430, P= 0.835; follow-up:
β= 5.145, P= 0.0144). In contrast, no significant effect for PRS ADHD
was found in the SSGT group, but higher ADHD PRS was associated
with significant improvement effect in the standard care group
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(post-intervention: β=−4.729, P= 0.00647; follow-up: β=−5.277,
P= 0.00394, Supplementary Table 3).
To identify if any interaction between PRS and clinically

significant CNVs, secondary linear model with interaction effect
PRS × clinically significant CNVs, showed changes in the parent-
reported SRS when accounting for ASD PRS was similar in
noncarriers and carriers of clinically significant CNVs, while PRS for
ADHD showed a modest interaction with clinically significant
CNVs on the SRS changes without statistical significance
(Supplementary Fig. 4).

Gene sets association with intervention outcomes
In addition to PRS, we tested if common genetic variation in
selected gene sets could explain the intervention outcomes using
competitive gene-set analysis. Thirty-two gene sets within five
categories (synaptic, glial, FMRP, glutamate, and mitochondrial)
were included from other studies25,32–37. A linear regression model
was built using changes of parent-reported SRS score between
post-intervention or follow-up and pre-intervention as outcomes,
adding age, sex, intervention groups, CNV carrier status (large size
CNVs and clinically significant CNVs), and four largest principal
components as cofactors. None of the gene sets results were
significant after multiple testing correction. Nominally significant
effects were found in four gene sets causing inferior outcomes at
posttreatment: intracellular signal transduction (large size CNVs:
β= 0.204, P= 0.0027; clinically significant CNVs: β= 0.202, P=
0.0029), cell adhesion and trans-synaptic signaling (large size
CNVs: β= 0.255, P= 0.0071; clinically significant CNVs: β= 0.247,
P= 0.0090), excitability (large size CNVs: β= 0.268, P= 0.017;
clinically significant CNVs: β= 0.247, P= 0.026), GPCR signaling
(large size CNVs: β= 0.255, P= 0.023; clinically significant CNVs:
β= 0.252, P= 0.024), all belonging to the synaptic group (Table 1).
For follow-up, only RNA and protein synthesis, folding and
breakdown (large size CNVs: β= 0.184, P= 0.030; clinically
significant CNVs: β= 0.185, P= 0.030) in synaptic group showed
similar effects (Table 1). The results for other gene sets did not
reach nominal significance (Supplementary Table 4).

DISCUSSION
In this study, by calculating PRS and analyzing related gene sets,
we tested if different subsets of common variants and biological
gene groups would influence the outcome of SSGT and standard
care interventions. Combining the MLM results from all partici-
pants in the SSGT trial KONTAKT and analyzing the outcomes of
the different intervention subgroups, we showed that a higher

Fig. 2 Association of polygenic risk score (PRS) for autism
spectrum disorder (ASD), attention-deficit hyperactivity disorder
(ADHD), and educational attainment (EA) in intervention out-
comes at post-intervention and follow-up. Correlation coefficients
are shown with 95% confidence intervals. Different P value
thresholds which have highest explained variance for each PRS
were included in the model (ASD: Pt= 0.5, ADHD: Pt= 1, EA: Pt= 1).
Clinically significant rare copy number variations (CNVs) were added
as a cofactor in the model. *P < 0.05.

Fig. 1 Proportion of variance explained (R2) by polygenic risk scores (PRSs) of autism spectrum disorder (ASD), attention-deficit
hyperactivity disorder (ADHD), and education attainment (EA) in intervention outcomes. PRS were derived using five P value thresholds
(<0.01, <0.05, <0.1, <0.5, <1) and the presented results are from the model adjusted for clinically significant rare copy number variations
(CNVs). Marginal R2 and conditional R2 were calculated representing the variance explained by only fixed effects as well as the sum of fixed
and random effects.
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common genetic variant load for ADHD and ASD was negatively
associated with SSGT response in comparison with standard care
in autistic individuals. Interestingly, the differential effect of PRS
for ADHD within the intervention groups was due to significant
improvement in autistic individuals with higher PRS for ADHD in
the standard care group. The effects of PRS models remained even
when we controlled for rare CNV carrier status of individuals
suggesting an independent role of PRS on intervention outcome.
Overall, the identified effects of PRS were modest compared to
our earlier results on the effect of rare clinically significant and
large CNVs27. We also demonstrated significant correlations
between PRS for ADHD and ADHD comorbidity and PRS for EA
and IQ levels in our study cohort. In the three tested phenotypes,
we found that there was a positive correlation between PRS for
ADHD and ASD and a negative correlation between PRS for ADHD
and EA. Additionally, we showed suggestive evidence that genes
involved in synaptic functions could be important for modulating
response to ASD interventions, as several gene sets important for
synaptic functions showed nominal significance to influence
outcome.
Given the high heterogeneity of intervention responses among

individuals with ASD, it is important to find factors influencing the
outcome, which could be used to tailor interventions for each
individual. Our results provided intriguing evidence, although very
preliminary, that in addition to the rare high impact CNVs,
polygenic contribution of common variants could have a
moderating role on intervention outcomes in autistic individuals,
especially ADHD PRS. Although our main analyses contrasting the
outcomes after SSGT with outcomes in standard care group
showed less improvement for individuals with higher PRS for
ADHD receiving SSGT, the subgroup analyses revealed that this
difference was due to greater improvement after standard care for
individuals with higher PRS for ADHD. Interestingly, the effect of
PRS for ADHD remained when adjusting for clinical ADHD
comorbidity. Shared genetic liability between ASD and ADHD
has been reported in family studies38,39, and genetic overlap
between the two neurodevelopmental conditions is evident from
genome-wide correlation analysis showing similar tendency with
PRS correlation as found in our result22,40,41. PRS for ADHD has also
been used to predict ASD-related measures such as pragmatic
language abilities42. Compared to ASD alone, having ASD and
ADHD symptoms was confirmed to be associated with greater
impairments in socialization adaptive skills in clinical presenta-
tion43. Based on genetic sharing between the two conditions, our
results highlight the connection between ADHD genetic informa-
tion and ASD intervention effects. Furthermore, the correlation
between PRS and ADHD comorbidity indicates that ADHD PRS
could be considered to evaluate liability to ADHD in individuals
first diagnosed with ASD.

Compared to the results of PRS for ADHD, we found an only
indicative association between PRS for ASD and intervention
outcomes. Currently, it is not known if the same genetic factors
would influence the risk of developing ASD and intervention
response measured here. Unlike Grove et al.18 who reported that
ASD PRS with Pt0.1 could predict ASD diagnosis, the largest
explained variance in our study was at Pt0.5, which putatively
suggests that additional genetic variants from a less stringent Pt
play a role in how autistic individuals respond to interventions. In
other disorders such as MDD, studies have found variants
associated with MDD can be either positive or negative for the
outcome of antidepressants44, and the results of PRS as a predictor
of treatment outcome are inconsistent45,46. Further studies should
clarify how ASD PRS might modulate intervention outcomes.
Variants which confer risk to ASD should also be tested for their
role in interventions if larger cohorts are available.
We did not find any association between PRS for EA and

intervention responses, and our power calculation showed that a
significantly larger sample size would be needed to estimate the
PRS EA effects robustly. Moreover, we did not detect any
correlation between PRS for EA and ASD in our sample. Studies
using genetic correlation analysis corroborated interrelated results
between ASD and years of education and college attainment22,47.
Some PRS studies suggest that PRS for ASD is associated with
EA47, and EA PRS is associated with lower externalizing
behaviors48. Still, no study has shown the prediction of autistic
traits or ASD-related interventions using PRS for EA. As expected,
we found a positive correlation between PRS EA and IQ in our
sample, which is in accordance with other findings in the general
population49.
Interestingly, the inferior outcome of SSGT compared with

standard care for individuals with higher PRSs for ASD and ADHD
seemed to be particularly pronounced at follow-up. A similar
tendency was previously also seen in individuals with clinically
significant rare CNVs27. This suggests that additional care during
or after SSGT treatment should be considered for individuals with
higher genetic risk to alleviate the genetic influence on
intervention outcome. Recently, a long version of SSGT interven-
tion (24 weeks) was conducted, resulting in larger positive effects
compared to 12-week intervention50. Further studies should
investigate if genetic effects remain when the intervention dose
is increased.
Although no robust association after multiple testing correc-

tions were shown for the gene-set analysis, we found suggestive
evidence that genes necessary for synapse formation and
maintenance may influence intervention responses. Since synapse
formation and synaptic plasticity have been indicated as one of
the key neuronal mechanisms in ASD, differences in these key
steps in brain development could play a major role in how

Table 1. Effect of most significant gene sets (P < 0.05) on intervention outcomes at post-intervention and follow-up adjusted for clinically significant
rare copy number variations (CNVs) and large size (>500 kb) rare CNVs.

Gene sets Gene-
set groups

Number
of genes

Clinically significant rare CNVs Large size rare CNVs

Beta Se P Corrected P Beta Se P Corrected P

Post-intervention

Cell adhesion and trans-synaptic
signaling

Synaptic 74 0.247 0.104 0.0090 0.2340 0.255 0.104 0.0071 0.1988

Excitability Synaptic 55 0.247 0.127 0.0262 0.5383 0.268 0.127 0.0174 0.4110

GPCR signaling Synaptic 40 0.252 0.128 0.0244 0.5142 0.255 0.128 0.0231 0.5011

Intracellular signal transduction Synaptic 138 0.202 0.073 0.0029 0.0837 0.204 0.073 0.0027 0.0832

Follow-up

RPSFB Synaptic 62 0.185 0.098 0.0303 0.5871 0.184 0.098 0.0305 0.5928

GPCR G-protein-coupled receptor, RPSFB RNA and protein synthesis, folding and breakdown.
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individuals respond to interventions51. Some aspects of treatment-
induced behavior improvement are also related to brain plasticity
changes in psychiatric disorders. For instance, significant increases
of gray matter in the left hippocampus and left amygdala
correlated with the degree of improved cognition are found in
early onset schizophrenia individuals after 2 years of social skills
group therapy and cognitive remediation52.
We acknowledge the limitations of our study. First, the sample

size from RCT is limited, which restricted the precision of our
analyses and precluded in-depth analysis of complex pathways
and single variants. Indeed, this is a preliminary study on detecting
the role of common variants on ASD intervention. Nevertheless,
results in our study can pinpoint an exploratory direction to
inspire more genetic research to focus on heterozygous interven-
tion effects of ASD and neurodevelopmental disorders. Further-
more, we provide power prediction on different sample sizes to
help studies make future plans to identify the PRS effect on
interventions in ASD. Second, the analyzed sample included
individuals with normative IQ and common neurodevelopmental
and psychiatric comorbidities, limiting the generalizability across
the total population of autistic individuals. Finally, studies have
shown that loci harboring common alleles are also enriched for
rare variants with large effects from whole-exome sequencing in
psychiatric disorders53. Although we have adjusted for the carrier
status of rare CNVs, other rare variants were not controlled for in
this study. In future, more genetic information can be combined to
better understand their effect on intervention outcomes.
In conclusion, this is the first study showing that common

polygenic risk, especially for ADHD, could play a role in
intervention outcomes for autistic individuals, and that gene sets
from synaptic groups may play a potential biological role in the
response. Replications, including larger sample sizes and a
combination of more genetic and clinical factors, are needed to
further clarify the genetic influences and mechanisms behind
individual intervention responses.

METHODS
Study individuals
The original multicenter, randomized pragmatic RCT of SSGT (KONTAKT),
recruited participants from 13 child and adolescent psychiatry outpatient units
in Sweden between August 2012 and October 2015 (identifier: NCT01854346,
registration May 2013). A detailed description of the inclusion and exclusion
criteria has been earlier described by Choque Olsson et al.26. In short, 296
children (7–12 years) and adolescents (13–17 years) with a diagnosis of
autism, atypical autism, Asperger syndrome, or pervasive developmental
disorder not otherwise specified using ICD-10 criteria were included in the
trial54. Based on inclusion criteria for the RCT, all participants had full-scale IQ
> 70 according to the Wechsler Intelligence Scale for Children and at least one
common comorbid psychiatric diagnosis of ADHD, depression, or anxiety
disorder according to ICD-1054,55. During the 12-week trial, the standard care
group (N= 146) received any ongoing support or intervention, and the
remaining 150 participants were included in the active SSGT condition. We
used the parent-reported SRS as the primary intervention outcome measure,
which is a 65-item Likert-type scale generating total scores ranging between 0
and 195, with a higher score indicating greater autism trait severity30. SRS was
recorded for each individual at baseline (pre-intervention), 12 weeks (post-
intervention), and 3 months after the end of the intervention (follow-up).
Participants who contributed saliva samples and had primary outcome

measure recorded at either post-intervention or follow-up were included in
this study. After selection, clinical data and samples from 207 participants
(SSGT group: 105, standard care group: 102) were used for genotyping27.

Ethics
Written informed consent from the parents or legal guardians and verbal
consent from the children and adolescents were collected. All the protocols
and methods in this study were in accordance with the Declaration of
Helsinki. The trial and sample collection were approved by the ethical review
board in Stockholm (Dnr 2012/385-31/4) and the clinical authorities of the two
involved counties. The trial was registered online (NCT01854346).

Genotyping and quality control
DNA collection, extraction, and genotyping procedures are described
elsewhere in detail27. In short, genotyping was done on the Affymetrix
CytoScan™ HD microarray platform, containing 743 304 SNP probes, in two
separate batches. Data from genotyping were transformed from Affyme-
trix.CEL format to.tped format using “Affy2sv” package v1.0.14 in R. The
position of each SNP was located based on a microarray annotation
reference file (version NA32.3). QC of the data using PLINK v1.90 was
performed on a per-individual basis within each genotyping batch to
remove poorly genotyped individuals and on per-marker QC to exclude
low-quality markers following a published protocol56,57. Individuals with
discordant sex, heterozygosity rate > 3 standard deviation (SD), individual
genotype failure rate > 0.03, and relatedness were removed. Ancestry of
participants was estimated using principal component analysis based on
the HapMap Phase III data using EIGENSOFT v7.2.158. We restricted our
analyses to participants with European ancestry. Additionally, the first four
principal component values were added in the statistical model to adjust
for ancestry. As no batch effects were detected, the qualified data were
combined to clean low-quality markers with the following criteria: minor
allele frequency < 0.05, Hardy–Weinberg equilibrium < 1 *10-6, individual
missingness < 0.1, and marker missingness < 0.05.

Imputation
We used the 1000 Genomes phase III haplotype data, including individuals
from all ancestries, as a reference. SNPs passing QC were separated into
autosomes, and haplotypes were inferred based on reference panel using
SHAPEIT v259. For each phased autosome, imputation was performed in
5 Mb windows using IMPUTE2 v2.3.260,61. All imputed regions were
combined for post-imputation QC. Imputed SNPs were filtered using
following metrics: info score < 0.8, minor allele frequency < 0.05,
Hardy–Weinberg equilibrium < 1 × 10−6, marker missing rate < 0.05, and
individual missing rate < 0.1. SNPs were intersected together after post-
imputation QC using both SNPTEST v2.5.5 and PLINK v1.9057,62.

Polygenic risk score calculation
To calculate PRSs for ASD, ADHD, and EA, we used the GWAS summary
results from Psychiatric Genomics Consortium as reference data (down-
loaded on July 2018)18,28,29. To minimize different population effects, we
included only individuals with European ancestry from GWAS reference
samples. The estimated odds ratio and P value of each SNP allele were
used from each reference set. SNPs in both reference and our in-house
data were pruned using clumping with a cutoff of r2 ≥ 0.1 within a 500 kb
window. PRS was calculated based on independent SNPs using five Pts
(<0.01, <0.05, <0.1, <0.5, and <1) selected from three reference sets, with
higher Pt incorporating more SNPs. Allele numbers at each SNP (0, 1, 2),
weighted by the natural logarithm of the allelic odds ratio, were summed
to calculate an accumulative effect across the genome3,63. PRS was then
standardized (mean= 0, SD= 1) to test for association. All calculations
were conducted using PRSice v2.1.464.

Gene sets generation
Reference gene sets were obtained based on a previously published
study25. Thirty-two gene sets within five categories: synaptic (1047 genes),
glial (240 genes), FMRP (1809 genes), glutamate (156 genes), and
mitochondrial (132 genes) were included32–37. SNPs were annotated to
genes based on European populations from 1000 genomes and gene
locations, Build 37 using MAGMA v1.0.6.

Statistical analysis
We used an MLM to identify the effect of PRS on SSGT response measured
by parent-reported SRS. Three time points (pre-, post-intervention, and
follow-up), as well as two study groups (SSGT and standard care), were
included to test the interaction effect of PRS × time × intervention as the
main reported effect in our analyses. Based on our previous studies26,27,
factors associated with inferior intervention outcomes were younger age
(children), male sex, and CNV carrier status (large size CNVs (>500 kb) and
clinically significant CNVs). Therefore, PRS interaction effect, age group, sex,
and population stratification of the four largest PCs were added as fixed
factors in the model. As to control the influence of ADHD comorbidity in
individuals, the comorbidity status of ADHD was included as a fixed factor
in the model of PRS for ADHD. Additionally, the clinical centers and each
individual were used as random factors. The carrier status of clinically
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significant CNVs was also added as a fixed factor in the model comparing
to the other two models either with large size CNVs or without any CNV
adjustment. In MLM, marginal R2 considers only the variance of fixed effect,
while conditional R2 takes both fixed and random effects into account.
Therefore, we assessed both marginal R2 and conditional R2 to explain the
role of PRS on the variance of fixed and total effects of treatment outcome,
respectively31. For each phenotype on each Pt, both marginal and
conditional R2 were derived from the difference between the model with
PRS and the model without PRS, performed by “MuMIn” package v1.43.6 in
R65. Beta and 95% confidential interval were estimated from MLM to
evaluate the interaction effect of PRS with SSGT and standard care at
different times. As we tested three PRSs (ASD, ADHD, and EA) in this study,
nominal P values under 0.0167 were considered significant66. MLM was
also performed in SSGT and standard care groups separately using two-
way interaction PRS × time points including only the main Pts of ASD and
ADHD PRS. The relation between SRS changes (post-intervention or follow-
up compared to pre-intervention in both SSGT and control groups) and the
highest R2 PRSs for ASD and ADHD were tested separately for clinically
significant CNVs to detect if any difference between carriers and
noncarriers. We used the interaction effect of being a carrier of a clinically
significant CNV and PRS in linear model using parent-reported SRS
changes as the outcome to identify if clinically significant CNVs and PRSs
for ASD or ADHD were independent on intervention outcome. In addition,
two-sided Student’s t test was used to evaluate the difference of PRS for
ADHD and ADHD comorbidity status, and PRS for ASD and clinically
significant CNVs of ASD. We also performed Pearson correlation to
examine the correlation between different PRSs with highest R2 in ASD,
ADHD, and EA, as well as PRS for EA and IQ level, and PRS for ASD and ASD
severity (SRS at pretreatment). All analyses were performed in R v3.4.2.
Bootstrapping was used to evaluate the power of PRS association on

intervention outcome. The main PRS of each phenotype were considered
for estimation. Samples were randomly selected with replacement based
on different specified sizes from our data. We repeated MLM 1000 times to
summarize the proportion of significant P values (P value < 0.05) as power
estimation. The power of PRSs for ADHD, ASD, and EA based on our study
sample size was 0.766, 0.726, and 0.119, respectively, at a significant level
P < 0.05. The statistical power of ASD and ADHD PRSs was evaluated to
reach 0.90 with sample size > 300 (Supplementary Table 5). All steps were
conducted in R v3.4.2.
We used MAGMA v1.0.6 to perform gene and gene-set analysis67. Linear

regression was chosen to identify the effects of common variation within
specific gene sets on intervention outcomes. The changes in the SRS
reported by parents between post-intervention or follow-up and pre-
intervention were used as regression outcomes. Age, sex, intervention
methods, four largest PCs, and CNVs carrier status (large size CNVs and
clinically significant CNVs) were added in the model as cofactors. The
estimated effect size of competitive test and P value on each gene set was
obtained, followed by multiple testing correction with positive effect size,
indicating a decreased effect of the SSGT response. As no significant gene
sets were detected in total samples, we did not perform gene-set analysis
in SSGT subgroup.

Web resources
1000 Genomes Phase III haplotypes reference data: https://mathgen.stats.
ox.ac.uk/impute/impute_v2.html#reference.
Psychiatric Genomics Consortium: https://www.med.unc.edu/pgc/.
Gene locations from the NCBI site and SNP locations from 1000

genomes Phase 3 European population Build 37 for MAGMA: https://ctg.
cncr.nl/software/magma.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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