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Biofilm-associated bacteria exhibit profound changes in bacterial physiology. They thrive
in the environment but also in the human host in protected sessile communities.
Antimicrobial therapy usually fails, despite the absence of genotypic resistance, and it is
commonly accepted that biofilm-grown bacteria are up to 1,000-fold more resistant than
planktonic cells. We are only at the beginning to understand the reasons for biofilm
recalcitrance, and systematic approaches to describe biofilm-induced tolerance
phenotypes are lacking. In this study, we investigated a large and highly diverse
collection of 352 clinical Pseudomonas aeruginosa isolates for their antimicrobial
susceptibility profiles under biofilm growth conditions towards the antibiotics
ciprofloxacin, tobramycin, and colistin. We discovered characteristic patterns of drug-
specific killing activity and detected conditional tolerance levels far lower (in the range of
the minimal inhibitory concentration (MIC)), but also far higher (up to 16,000-fold increase
compared to planktonic cells) than generally believed. This extremely broad distribution of
biofilm-induced tolerance phenotypes across the clinical isolates was greatly influenced
by the choice of the antibiotic. We furthermore describe cross-tolerance against
ciprofloxacin and tobramycin, but not colistin, and observed an additive activity
between biofilm-induced tolerance and genetically determined resistance. This became
less evident when the biofilm-grown cells were exposed to very high antibiotic
concentrations. Although much more remains to be learned on the molecular
mechanisms underlying biofilm-induced tolerance, our data on intra-species variations
in tolerance profiles provide valuable new insights. Furthermore, our observation that
colistin appears to act independently of the tolerance mechanisms of individual clinical
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strains could make colistin a valuable therapeutic option in chronic biofilm-associated
infections characterized by the presence of particularly tolerant strains.
Keywords: conditional tolerance, biofilms, Pseudomonas aeruginosa, biofilm-associated chronic infections,
clinical isolates, antimicrobial susceptibility testing (AST), biofilm-induced tolerance, antibiotic treatment
INTRODUCTION

Frequent use of antibiotics favors bacterial strains that have acquired
mechanisms to overcome drug inhibition and lethality. Various
genetically inherited mechanisms have been identified in bacteria
that reduce the efficacy of a drug. These include, for example,
mutations of the target structures, enzymatic inactivation of the
antibiotic, or the reduction of its intracellular concentrations
through reduced influx and/or increased efflux. The phenotypic
consequences of genetically conferred resistance are usually
monitored by the use of standard antimicrobial susceptibility
testing (AST), which largely relies on the determination of the
minimal inhibitory concentration (MIC) values of the antibiotic.
While the assessment ofMICs has a significant impact on the choice
of a therapeutic strategy, it has been argued that the predictive
power of MICmeasurements is less suitable for the implementation
of successful treatment regimens in patients with chronic, biofilm-
associated infections (Smith et al., 2003). The ability of bacteria to
survive a transient exposure of high antibiotic concentrations in a
non-specific way, for example when the bacteria temporarily stop
growing, is commonly described as tolerance and might be more
relevant than inherited drug resistance, when it comes to describing
the inability of our currently used drugs to combat biofilm-
associated infections.

The biofilm mode of growth enables bacteria to evade the
attacks from the immune system and to survive exposure to high
concentrations of antimicrobial agents. It is commonly accepted
that bacteria exhibit an up to 1,000-fold increased tolerance
towards a broad range of different classes of antibiotics under
biofilm- as opposed to planktonic growth conditions
(conditional tolerance) (e.g. Costerton et al., 1987; Lewis, 2001;
Lebeaux et al., 2014; Hall and Mah, 2017; Ciofu and Tolker-
Nielsen, 2019). Of note, this does not seem to be true for all
antibiotics when the tolerance profile of biofilm-grown cells is
compared with that of planktonic cells from the stationary phase
(Spoering and Lewis, 2001). However, despite the great attention
and clinical importance, the reason for the recalcitrance of
biofilm-grown bacteria is only incompletely understood and
there is only a limited number of studies on the biofilm-
induced tolerance profile of a larger panel of bacterial isolates
(Ceri et al., 1999; Moskowitz et al., 2004; Müsken et al., 2017).

In this study, we investigated overall 352 clinical Pseudomonas
aeruginosa isolates and determined their susceptibility profiles
against the three commonly used antibiotics tobramycin,
ciprofloxacin, and colistin under biofilm growth conditions. We
describe an extremely broad distribution of conditional tolerance
phenotypes across the various clinical isolates, which are dependent
on the individual strain background and influenced by the choice of
the antibiotic. We furthermore describe an additive activity between
biofilm-induced tolerance and genetically determined resistance,
gy | www.frontiersin.org 2
which however becomes less apparent if the biofilm-grown cells are
exposed to very high antibiotic concentrations.
METHODS

Strains, Media and Growth Conditions
For this study, we selected 352 well characterized clinical
P. aeruginosa isolates, which have been previously collected
across Europe (Hornischer et al., 2019). The strains have been
isolated from diverse infection sites, including acute as well as
chronic infections (Electronic Supplementary Table ES1).
Minimal inhibitory concentrations (MIC) of all isolates are
publicly available (Khaledi et al., 2020). Biofilm formation was
assessed by confocal microscopy in the course of a previous study
(Thöming et al., 2020). Bacteria were grown in standard rich
medium culture conditions (lysogeny broth, LB) at 37°C.
Overnight cultures were incubated with constant shaking (180
rpm); biofilms were grown statically without shaking.

Antimicrobial Susceptibility Testing Under
Biofilm-Growth Conditions
We performed large-scale antimicrobial susceptibility testing of the
clinical isolate collection for tobramycin, ciprofloxacin, and colistin
under biofilm growth conditions as previously described (Müsken
et al., 2010; Donnert et al., 2020). In brief, overnight cultures of
clinical isolates were adjusted to an OD600 of 0.02 and 100 ml of the
bacterial suspension were added to the wells of a sterile half-area,
96-well μClear microtiter plate (Greiner Bio-One). The plate was
sealed with an air-permeable BREATHseal cover foil (Greiner Bio-
One) and incubated without shaking at 37°C in humid atmosphere.
After 24 h, 60 ml of antibiotic solution in diluted LB media were
carefully added, resulting in a total volume of 160 μl per well.
Antibiotic solutions were adjusted to final concentrations of 1; 4; 16;
64; 256; and 1,024 mg/ml. For the growth control, 60 μl diluted LB
media (1:3 in deionized water) without antibiotics were added. The
antibiotic exposed biofilms were incubated for 24 h and
subsequently resuspended by the use of a multichannel pipette.
Tenfold serial dilutions were spotted onto rectangular LB agar plates
and incubated at 37°C. Growth was evaluated after 16 h of
incubation and further monitored over a period of 48 h to ensure
that all surviving bacteria were detected. Colony-forming units
(CFU) per ml were calculated for surviving bacteria.

Determination of the Minimum Antibiotic
Concentration of Killing (MCK) and the
Biofilm Tolerance Factors
Antibiotic concentration-dependent killing of biofilm-grown
cells was determined based on the reduction of CFUs following
February 2022 | Volume 12 | Article 851784
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the addition of different antibiotic concentrations as compared to
an untreated control well. The number of surviving bacteria for
each clinical isolate for overall six different concentrations of the
three different antibiotics was recorded. From those data the
minimum antibiotic concentrations of killing (MCK) that
resulted in a CFU reduction of biofilm-grown cells of at least
1-log, 2-log, 3-log, 4-log, 5-log, 6-log or eradication (below the
detection limit) could be deduced.

To quantify biofilm-induced tolerance of the individual
isolates, the biofilm tolerance factor (BTF) was introduced. The
BTF results from the ratio of the concentration that is required to
achieve a certain log-CFU reduction in biofilm-grown cells, and
the respective MIC of the strain:

BTF =
MCK ðCFU log − reduction)

MIC

BTF: Biofilm tolerance factor; MCK(CFU log-reduction):
minimum antibiotic concentration of killing at which a certain
log-reduction [1 log (BTF-1), 2 log (BTF-2), 3 log (BTF-3), 4 log
(BTF-4), 5 log (BTF-5), or 6 log (BTF-6) units as well as
eradication (BTF-E)] in the CFUs of biofilm-grown cells was
observed; MIC: minimal inhibitory concentration

Correlation Analyses and Hierarchical
Clustering Using Biofilm
Tolerance Factors
An integrated analysis of biofilm tolerance factors (BTFs) for the
three antibiotics tested was used to uncover cross-tolerance and
characteristic patterns in the tolerance behavior of biofilm-grown
cells. Only discrete BTFs were used, where the highest antibiotic
concentration tested (1,024 μg/ml) resulted in a measurable
reduction of CFUs. BTFs were log2-transformed prior to
further analyses.

Correlation analyses were performed in order to access cross-
tolerance. Correlation coefficients for log2-transformed BTFs for
the different antibiotics were calculated pairwise using the
Correlation analysis tool in Microsoft Excel. Simple linear
regression was calculated and plotted in GraphPad Prism
(v 8.3.0). A hierarchical clustering approach was performed
using the web tool ClustVis (Metsalu and Vilo, 2015) to group
clinical isolates (n = 352) into six clusters of strains with
characteristic biofilm tolerance patterns. Log2-transformed BTFs
for all three antibiotics and all possible log-reductions were used as
input data resulting in a heatmap of 352 rows (clinical isolates)
and 21 columns (BTFs). No scaling was applied to rows. Rows
were clustered using Euclidian distance and Ward linkage.
RESULTS

Antimicrobial Susceptibility Testing of
Planktonic and Biofilm-Grown Clinical
P. aeruginosa Isolates
Antimicrobial susceptibility testing of planktonic as well as
biofilm-grown bacterial cells was performed on a collection of
overall 352 clinical P. aeruginosa strains isolated from various
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
infection sites (Electronic Supplementary Table ES1). While the
minimal inhibitory concentration (MIC) values of the
planktonically grown cells have been determined in a previous
study (Khaledi et al., 2020) and are publicly available
(Hornischer et al., 2019), we recorded antimicrobial activities
on biofilm-grown bacteria in this study. We restricted our
analysis to the anti-biofilm activity of tobramycin (an
aminoglycoside), ciprofloxacin (a fluoroquinolone), and
colistin (a polymyxin), all of which are frequently used to treat
chronic P. aeruginosa infections e.g. of the respiratory tract of
cystic fibrosis patients (Banerjee and Stableforth, 2000). Based on
their MIC values and according to the CLSI guidelines
(Weinstein et al., 2021), the great majority of isolates included
in this study was classified as susceptible to tobramycin (86 % of
the 352 clinical isolates) and colistin (82 %), while 44 % of the
strains were ciprofloxacin-susceptible (Supplementary Figure 1;
Supplementary Table 1).

We found that the different clinical isolates exhibit a very
wide distribution of susceptibility to the three antibiotics when
grown under biofilm conditions, even when they exhibited
similar antimicrobial susceptibility profiles (MIC values) under
planktonic conditions. Some clinical P. aeruginosa isolates
proved to be remarkably responsive towards antimicrobial
killing and already low antibiotic concentrations resulted in a
significant reduction of biofilm-grown cells (Figure 1A).
However, other isolates were largely non-responsive and the
numbers of surviving biofilm-grown cells decreased only at very
high antibiotic concentrations (Figure 1B).

Figures 1C–E depict the killing efficiency of the three
antibiotics (tobramycin, ciprofloxacin, and colistin) on all 352
biofilm-grown clinical isolates. The minimum antibiotic
concentration of killing (MCK) at which the colony-forming
units (CFUs) of biofilm-grown bacteria was reduced by 1-log, 2-
log, 3-log, 4-log, 5-log and 6-log units compared to growth of the
untreated control in the individual isolates, as well as eradicated
below the detection limit, is depicted (Figures 1C–E; Electronic
Supplementary Table ES1). In general, higher reductions in the
CFUs of biofilm-grown cells required higher concentrations of
the antibiotic. For tobramycin, a gradual increase in the median
MCKs was observed, indicating that the killing efficiency
increases proportionally with the antibiotic concentration
(Figure 1C). In contrast, we observed a disproportional
increase in the median MCKs for ciprofloxacin (Figure 1D).
While ciprofloxacin seems to be quite potent to achieve low (2-
log) reductions in biofilm-grown clinical isolates at low antibiotic
concentrations, much higher concentrations had to be applied to
achieve reductions of ≥ 3 logs across the isolates. The profile was
different again with colistin. We observed that a concentration of
256 μg/ml was required to achieve a 2-log reduction in CFUs in
the vast majority of biofilm-grown strains (Figure 1E). However,
once this colistin concentration threshold (256 μg/ml) was
reached, the eradication of biofilm-grown cells across the
clinical isolates became largely concentration-independent (all-
or-none phenomenon).

Of note, several clinical isolates showed a remarkable biofilm
recalcitrance, particularly towards tobramycin and ciprofloxacin.
Even the highest concentration applied in this screening (1,024
February 2022 | Volume 12 | Article 851784
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μg/ml of the antibiotic) was not sufficient to reduce the CFUs of
biofilm-grown cells (Figures 1C–E).

Strains With Higher Ciprofloxacin and
Tobramycin MICs Require Higher
Antimicrobial Concentrations to Reduce
the CFUs of Biofilm-Grown Cells
Our biofilm susceptibility screening has shown that the higher the
antibiotic concentrations, the more pronounced are the CFU
reductions across the biofilm-grown clinical isolates. However, we
also observed that the minimum concentrations of killing (MCK)
required for a certain reduction in CFUs were very different
across the individual clinical strains. To evaluate whether killing
efficiency is dependent on the underlying MIC, we sorted the 352
clinical strains according to their MIC values and depicted the
MCKs for those clinical strains that exhibited a MIC around
the CLSI breakpoints (Figure 2). For the vast majority of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
clinical isolates, we recorded MCKs far above their MICs,
confirming the generally higher recalcitrance of biofilm-grown
cells as compared to their planktonic counterparts (Figure 2;
Supplementary Figure 2). Interestingly, in general – despite the
very broad distribution of MCKs even in clinical isolates
exhibiting the same MIC – the median MCK99.99 (antibiotic
concentrations required for a 4-log CFU reduction, Figures 2A,
B) and the median MCK99 (required for a 2-log reduction,
Supplementary Figures 2A, B) gradually increased in clinical
isolates that exhibited increased MICs for tobramycin and
ciprofloxacin. Thus, the proportion of strains that did not
respond to the highest concentration used in this screening
(1,024 μg/ml tobramycin or ciprofloxacin) was highest among
resistant strains (Supplementary Figures 2D, E), while strains
responsive to low concentrations of antibiotics under biofilm
growth conditions, were almost exclusively found among strains
exhibiting low MIC values. As opposed to ciprofloxacin and
A B

D EC

FIGURE 1 | Concentration-dependent killing of biofilm-grown clinical P. aeruginosa isolate cells. Isolate-specific killing profiles are exemplarily shown for two
tobramycin susceptible clinical isolates, which exhibit the same minimal inhibitory concentration (MIC) value (MIC = 1 µg/ml). M70563004 biofilm-grown cells are
responsive to tobramycin treatment (A), whereas MHH0426 biofilm-grown cells are far less responsive (B). Mean and standard deviations of the CFU/ml following the
antibiotic treatment of biofilm-grown cells at the indicated tobramycin concentrations for 24 h are depicted. Results of the individual independent experiments
are indicated by red dots (n = 4 for M70563004; n = 3 for MHH0426). The antibiotic concentration (minimal concentration of killing, MCK) that was required to
lead to a 1-log, 2-log, 3-log, 4-log, 5-log, and 6-log unit reduction (dashed lines) in colony forming units (CFU) as compared to the untreated growth control can
be deduced. The violin plots (C–E) depict the minimal concentrations of killing (MCK) to achieve a 1-log, 2-log, 3-log, 4-log, 5-log, 6-log unit reduction in colony
forming units (CFU), and eradication below the limit of detection (< LOD), respectively for all 352 clinical isolates. Black lines indicate the median MCKs of tobramycin
(C), ciprofloxacin (D) and colistin (E). Each dot represents one clinical isolate. TOB, tobramycin; CIP, ciprofloxacin; COL, colistin; LOD, limit of detection.
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tobramycin, colistin-mediated killing of biofilm-grown cells was
found to act independently of the MIC of the respective
individual strains. The MCK99, MCK99.99 and the 6-log kill
rate were stable (256 μg/ml) for most of the strains despite
differing MICs (Figure 2C; Supplementary Figures 2C, F).

Biofilm-Induced Tolerance Versus
Antimicrobial Resistance in the
Individual Clinical Isolates
It is commonly claimed that biofilm-grown bacteria exhibit an
up to 1,000-fold increased tolerance towards antibiotics as
compared to their planktonically grown counterparts. In order
to provide a better data basis, we determined the biofilm
tolerance factor (BTF) of the clinical isolates against the three
tested antibiotics. The BTF indicates which multiple of antibiotic
concentration under biofilm-growth conditions as compared to
the MIC (determined under planktonic growth conditions) must
be used to achieve a CFU reduction of at least 1 log (BTF-1), 2 log
(BTF-2), 3 log (BTF-3), 4 log (BTF-4), 5 log (BTF-5), 6 log (BTF-
6) units or to observe eradication (BTF-E) below the detection
limit (Electronic Supplementary Table ES1). Histograms of the
BTFs of the individual clinical isolates are shown in Figure 3. Of
note, BTFs could only be determined for strains for which a
concentration of 1,024 μg/ml was sufficient to reach the
respective log-reduction in the CFUs of biofilm-grown cells
(Supplementary Table 1).

We found that for 1-log CFU reductions the median biofilm
tolerance factor (BTF-1) across the clinical isolates was 4 for
tobramycin, 2 for ciprofloxacin and 32 for colistin. This factor
shifted to a median BTF-E (biofilm tolerance factor for eradication)
of 256 for tobramycin, and 1,024 for ciprofloxacin, while it reached
the maximum of 128 for colistin already at BTF-2 (Figure 3). Thus,
depending on the antibiotic, this factor varies substantially, and is
additionally greatly influenced by the P. aeruginosa strain
background. We identified a small number of P. aeruginosa
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
isolates, in which an antibiotic concentration around the MIC (of
ciprofloxacin and less frequently tobramycin) was sufficient to
achieve a 2-log (99 %) CFU reduction of biofilm-grown bacteria
(Figures 3A, H). However, there were also isolates for which
antibiotic concentrations of > 4,000 times the MIC for tobramycin
or > 16,000 times theMIC for ciprofloxacin, were required to achieve
a 2-log reduction in CFUs of biofilm-grown bacteria.

Our data also illustrate that the distribution of the BTFs among
the clinical isolates was different in the three antibiotics tested. The
fraction of clinical isolates that were effectively reduced by 2-log
already at a low BTF was highest for ciprofloxacin. However, the
proportion of isolates that required a high BTF to achieve a
substantial reduction in the CFU of biofilm-grown bacteria was
also highest for ciprofloxacin (Figures 3H–N). The opposite was
found for colistin.Most clinical isolates required already a highBTF
to achieve even a 2-log CFU reduction (Figure 3P). However, on
the other end of the scalemore clinical isolates were eradicatedwith
overall only slightly higher colistin BTFs (Figure 3U). It seems that
once a certain colistin killing concentration is reached, this
concentration seems to efficiently eradicate biofilm-grown cells in
a concentration-independent manner and independent on the
resistance background within the clinical isolate.

Cross-Tolerance of the Clinical Isolates
Against Ciprofloxacin and Tobramycin
In order to determine whether there is cross-tolerance in
individual clinical biofilm-grown isolates towards the activity
of the three antibiotics, we performed correlation analyses. While
we found there was no correlation between colistin BTFs and
those of ciprofloxacin or tobramycin, there was a positive
correlation (correlation coefficient of 0.4148) between the
killing efficiency of ciprofloxacin and tobramycin (reduction of
99.99 % of the biofilm-grown cells (BTF-4), Figure 4). We
observed a similar trend for smaller (BTF-2) and larger log-
CFU reductions (BTF-6) (Supplementary Figure 3).
A B C

FIGURE 2 | Concentration-dependent killing of biofilm-grown clinical P. aeruginosa isolate cells exhibiting different resistance levels. Minimum concentrations of
killing (MCK) for tobramycin (A), ciprofloxacin (B) and colistin (C) that are required to reduce biofilm-grown cells by 99.99 % (4-log reduction of CFU; MCK99.99)
are depicted in box-plots for clinical isolates, which were categorized into sub-groups exhibiting the same MIC values (x-axis). Boxplot elements are: center line
– median; box limits – upper and lower quartiles; whiskers – minimum and maximum. Each dot represents one clinical isolate. S, susceptible; I, intermediate;
R, resistant. Strains were categorized according to breakpoints defined by CLSI guidelines.
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FIGURE 5 | Hierarchical clustering of biofilm tolerance factors. The 352 clinical isolates were clustered based on their biofilm tolerance factors for all three antibiotics.
The result of the hierarchical clustering calculation is displayed in a heat map and uncovers six groups of strains (indicated on the right) that exhibit similar tolerance
patterns. Hierarchical clustering was based on log2-transformed BTFs, using Euclidian distance and Ward linkage in ClustVis (Metsalu and Vilo, 2015). Only discrete
BTFs are shown, where the highest antibiotic concentration tested (1,024 µg/ml) resulted in a measurable reduction of CFUs. The MIC-based susceptibility profiles of
clinical isolates (according to CLSI breakpoints) are displayed on the left. R, resistant (marked in red); I, intermediate (blue); S, susceptible (green).
A B C

FIGURE 4 | Cross-tolerance of biofilm-grown cells. The dependence between the log2-transformed BTF-4 of the three antibiotics on all clinical isolates is depicted.
The correlation coefficient between the BTF-4 of tobramycin (TOB) and ciprofloxacin (CIP) was 0.4148 (A). No correlation was observed between the BTF-4 of
colistin (COL) and TOB (B) or CIP (C). BTF-4 - minimum antibiotic concentration killing 99.99 % of the biofilm-grown cells (MCK99.99; 4-log reduction) divided by
the minimal inhibitory concentration (MIC) of the individual isolate. Dots represent the log2-transformed BTF-4 of the individual clinical isolates. Darker shades indicate
overlapping datapoints.
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The Higher the Ciprofloxacin and
Tobramycin MIC Values, the
Lower the BTFs
In order to characterize the conditional tolerance phenotype of
the individual clinical isolates in more detail, we integrated all
data on the BTFs of the three antibiotics and performed a
hierarchical cluster analysis across all clinical isolates. We
identified six clusters of clinical strains with characteristic
patterns in their biofilm tolerance factors (Figure 5; Electronic
Supplementary Table ES1). Clinical isolates in cluster 2 and in
cluster 4 generally exhibited lower ciprofloxacin BTFs, whereas
isolates in cluster 2 exhibited additionally lower tobramycin
BTFs. Interestingly, a majority of strains assigned to cluster 4
exhibited elevated ciprofloxacin MICs, whereas the isolates in
cluster 2 exhibited elevated ciprofloxacin as well as tobramycin
MICs. This result shows that strains that have inherited
genetically encoded resistance mechanisms to tobramycin and/
or ciprofloxacin show an increase in overall tolerance under
biofilm-growth conditions that is less pronounced compared to
the increase in tolerance observed in clinical strains with low
MIC values.
DISCUSSION

In order to get a full picture of biofilm-growth mediated tolerance
phenotypes in the opportunistic pathogen P. aeruginosa, we
investigated the efficiency of three different classes of antibiotics to
kill biofilm-grown cells in a large collection of diverse clinical
isolates (n = 352). Those have been isolated from various
infection sites and from acute and chronic infections. As opposed
to previous studies, which had introduced theminimum duration of
killing (MDK) as a quantitative indicator for tolerance of planktonic
cultures in time-resolved killing experiments (Brauner et al., 2016),
we determined the minimum antibiotic concentration of killing
(MCK) as a quantitative measure of biofilm-induced tolerance in
concentration-dependent killing experiments. Typically, MDK99
values (time to kill 99 % of the bacterial cells) are used to describe
tolerance on a population level. Here, we recorded theMCK99 value
(antibiotic concentration required to kill 99 % of the bacterial cells)
and additionally the MCK90, MCK99.9, MCK99.99, MCK99.999,
MCK99.9999 as well as the MCK that is required to eradicate
biofilm-grown cells (below the detection limit).

Our data showed first of all, that the MCKs were impacted to
a very large extent by the individual strain background. We
found very susceptible clinical isolates that were killed by a
comparatively low antibiotic concentration under biofilm-
growth conditions, while other strains were only effectively
killed after exposure to very high antibiotic concentrations. For
some strains, up to 8,000 times the MIC for tobramycin and up
to 16,000 times the MIC for ciprofloxacin were required in order
to kill 99.99 % of the biofilm-grown cells. Interestingly, this inter-
strain variation of the MCKs was very much dependent on the
antibiotic. The highest variation of the MCKs among the
individual clinical isolates was observed for ciprofloxacin.
While a ciprofloxacin concentration of 4 μg/ml or less killed
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
99 % of the biofilm cells in more than half of the tested isolates
(54 %), a concentration of 256 μg/ml or more was required to
achieve the same biofilm killing in 31 % of the isolates.

Variation in tobramycin MCKs was lower, while the clinical
isolates responded most consistently to colistin. The great majority
of the clinical isolates (90 %) were eradicated at a colistin
concentration of 256 μg/ml. While this concentration was
required to kill at least 90 % of the biofilm-grown bacterial
population, the same colistin concentration was also sufficient to
eradicate the biofilm-grown cells to levels below the detection limit.

Our observation of a broad distribution of the MCK values
across the clinical isolates is remarkable and suggests that while
the biofilm growth mode in itself is sufficient to explain tolerance
in clinical isolates, the respective tolerance levels seem to be
largely modulated by the individual strain background.
Interestingly, biofilm-induced tolerance against ciprofloxacin
and tobramycin, but not colistin, were correlated in the
individual clinical isolates. This result underlines that the
conditional tolerance phenotype seems to be non-specific and
is determined both, by the biofilm growth pattern and by
additional isolate-specific, tolerance-promoting mechanisms
that help bacteria survive transient exposure to high antibiotic
concentrations. Despite extensive research on the identification
of bacterial factors that determine tolerance-promoting
phenotypes, we are only at the beginning to understand the
molecular mechanisms that drive bacterial tolerance. It seems
that changes in the activity of the tricarboxylic acid (TCA) cycle,
cellular respiration, the proton motive force as well as shifts in
the intracellular pH drive bacterial tolerance phenotypes (Allison
et al., 2011; Meylan et al., 2017; Crabbé et al., 2019; Donnert et al.,
2020; Zheng et al., 2020; Arce-Rodrı ́guez et al., 2022).
Furthermore, it is conceivable that additional factors contribute
to biofilm tolerance phenotypes, such as restricted penetration of
the antibiotic through the biofilm matrix, a biofilm-specific
expression of resistance genes, or the presence of a sub-
population of dormant persister cells (Stewart, 1996; Hentzer
et al., 2001; Lewis, 2001; Pamp et al., 2008; Zhang andMah, 2008;
Chiang et al., 2013; Hall and Mah, 2017).

Despite the large variability in the MCKs, our extensive data on
many clinical isolates allowed the detection of a positive correlation
between the MIC values of the individual isolates and the
concentration of antibiotics (MCK) that was required to kill
biofilm-grown cells. These results suggest that genetically
inherited resistance mechanisms affect the biofilm-induced
tolerance phenotype. In general, strains found to be resistant as
categorized by elevated MIC levels also required high
concentrations of antibiotics to achieve biofilm reduction of 4-logs
or more. A synergistic interaction between tolerance and resistance
has been described previously (Levin-Reisman et al., 2019) and it
has been speculated that genetically inherited resistance factors
might be more effective in slow growing cells, and thus might act
synergistically with tolerance to protect biofilm-grown cells.

Strikingly, at the same time we observed that the strains
exhibiting high MIC values seemed to express lower biofilm-
specific tolerance factors (BTFs) as defined by the multiple of the
MIC concentration required to kill the biofilm-grown population.
Thus, it seems that once a certain threshold concentration of an
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antibiotic is reached, biofilm-grown bacteria are efficiently killed,
independent on their individual genetically determined resistance
profile. A recent study demonstrated that antibiotic exposed strains
developed either high-level multidrug tolerance or antibiotic
resistance, but not both (Santi et al., 2021). It could be argued
that once high-level tolerance is reached, additional genetically
determined resistance mechanisms do not add further to survival.

It has already been shown several times that antibiotic
susceptibility profiles of biofilm-grown cells cannot be predicted
on the basis ofMIC profiles. ThusMIC determinations cannot serve
as an approximation on which is the best therapy to apply to treat
patients suffering from chronic biofilm-associated diseases
(Moskowitz et al., 2004; Keays et al., 2009; Waters and Ratjen,
2015; Brady et al., 2017; Müsken et al., 2017; Coenye et al., 2018).
However, our study also revealed that leveraging drug-specific
properties might have great potential to optimize future
treatments of biofilm-associated infections. If a certain threshold
concentration of colistin can be reached in e.g. the respiratory tract
of CF patients, then not only the great majority of the clinical
isolates, independent on their individual strain background, might
be efficiently killed, but this killing also becomes concentration
independent. It appears that colistin overcomes the conditional
tolerance mechanisms of the individual clinical strains, and thus, as
suggested before (Pamp et al., 2008; Elborn et al., 2009; Kolpen et al.,
2016), it might be a valuable therapeutic option for chronic biofilm-
associated infections characterized by the presence of particularly
tolerant strains.
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