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CKIP-1 limits foam cell formation and inhibits
atherosclerosis by promoting degradation of
Oct-1 by REGγ
Jiao Fan1,2, Lifeng Liu3, Qingyan Liu4, Yu Cui1, Binwei Yao5, Minghua Zhang6, Yabing Gao5, Yesheng Fu1,

Hongmiao Dai1, Jingkun Pan2, Ya Qiu2, Cui Hua Liu 7, Fuchu He1, Yu Wang3 & Lingqiang Zhang1

Atherosclerosis-related cardiovascular diseases are the leading cause of mortality worldwide.

Macrophages uptake modified lipoproteins and transform into foam cells, triggering an

inflammatory response and thereby promoting plaque formation. Here we show that casein

kinase 2-interacting protein-1 (CKIP-1) is a suppressor of foam cell formation and athero-

sclerosis. Ckip-1 deficiency in mice leads to increased lipoprotein uptake and foam cell for-

mation, indicating a protective role of CKIP-1 in this process. Ablation of Ckip-1 specifically

upregulates the transcription of scavenger receptor LOX-1, but not that of CD36 and SR-A.

Mechanistically, CKIP-1 interacts with the proteasome activator REGγ and targets the tran-

scriptional factor Oct-1 for degradation, thereby suppressing the transcription of LOX-1 by

Oct-1. Moreover, Ckip-1-deficient mice undergo accelerated atherosclerosis, and bone mar-

row transplantation reveals that Ckip-1 deficiency in hematopoietic cells is sufficient to

increase atherosclerotic plaque formation. Therefore, CKIP-1 plays an essential anti-

atherosclerotic role through regulation of foam cell formation and cholesterol metabolism.
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Atherosclerosis is the underlying pathological process of
coronary artery disease (CAD) and cerebrovascular dis-
ease, which are severe vascular diseases. Atherosclerosis is

recognized as a chronic inflammatory disease of large and med-
ium arteries including lipid metabolism disorder and recruitment
of immune cells to the artery wall1. The crucial early step is the
subendothelial retention of lipoproteins that leads to the
recruitment of monocytes, which then differentiate into macro-
phages2. Mediated by scavenger receptors, mainly including
CD36, scavenger receptor-A (SR-A) or lectin-like oxLDL receptor
1 (LOX-1), macrophages uptake modified lipoproteins such as
oxidized LDL (oxLDL) and transform into cholesterol-laden foam
cells, triggering a series of inflammatory responses and thereby
promoting plaque formation3. The regulatory mechanism of this
lipoprotein uptake-mediated foam cell formation process remains
incompletely understood.

The PH (pleckstrin homology) domain-containing protein
CKIP-1 (also known as PLEKHO1) was originally identified as an
interacting protein of CK2 kinase and was further shown to play a
crucial role in the regulation of tumorigenesis, cell apoptosis, cell
morphology, and the actin cytoskeleton4–8. In particular, our
previous studies showed that CKIP-1 depletion in mice manifests
an age-dependent accumulation in bone mass due to increased
osteoblast differentiation9 and those mice are also susceptible to
pressure overload-induced cardiac hypertrophy10. Interestingly,
CKIP-1 inhibits macrophage proliferation specifically at the late
stage after M-CSF stimulation in cultured cells and Ckip-1−/−

mice spontaneously develop a macrophage-dominated spleno-
megaly and myeloproliferation11, indicating a role of CKIP-1 in
macrophage regulation.

Since macrophage plays a critical role in the development of
atherosclerosis12,13, we hypothesized that CKIP-1 might partici-
pate in the regulation of atherogenesis. We therefore generated
double knockout mice lacking Ckip-1 and Apoe. Here, we show
that knocking out Ckip-1 causes a significant increase in aortic
root macrophage content, increases vascular inflammation, and
enhances oxLDL uptake in macrophages, which culminates in
heightened plaque burden in Apoe−/− mice. Mechanistically,
CKIP-1 interacts with the proteasome activator REGγ and targets
the transcriptional factor Oct-1 for degradation, thereby sup-
pressing the transcription of scavenger receptor LOX-1. More-
over, bone marrow transplantation reveals that Ckip-1 deficiency
in hematopoietic cells is sufficient to increase atherosclerotic
plaque formation. Altogether, these findings provide insights to
the role of CKIP-1 in the pathogenesis of atherosclerosis.

Results
Deletion of Ckip-1 promotes foam cell formation. We first
assessed the possible involvement of CKIP-1 in foam cell for-
mation and found a dose-dependent and time-dependent increase
of CKIP-1 protein level in the oxLDL-treated bone marrow-
derived macrophages (BMDMs) (Fig. 1a). Treatment of macro-
phages with oxLDL also upregulated the level of CKIP-1 mRNA
(Fig. 1b). Similar results were obtained in peritoneal macrophages
(pMΦ) (Supplementary Fig. 1a, b). We found that only oxLDL,
but not unmodified LDL or acetylated LDL (acLDL), upregulated
CKIP-1 expression on BMDMs (Fig. 1c). Notably, the upregula-
tion of CKIP-1 protein and mRNA by oxLDL was markedly
inhibited by the treatment with NF-κB inhibitor BAY11-7082
(Fig. 1d). To explore the role of CKIP-1 in the foam cell for-
mation, wild-type (WT) and Ckip-1−/− BMDMs were incubated
with oxLDL or serum from atherosclerosis-prone apolipoprotein
E-deficient (Apoe−/−) mice, which contained atherogenic lipo-
protein to induce foam cell formation. Ckip-1−/− BMDMs
showed an enhanced foam cell formation and accumulated more

cholesteryl ester and free cholesterol compared with WT BMDMs
(Fig. 1e, Supplementary Fig. 1c). Importantly, reconstitution of
Ckip-1−/− BMDMs with ectopic CKIP-1 reduced foam cell for-
mation and cholesterol accumulation in macrophages (Fig. 1f,
Supplementary Fig. 1d). These results strongly indicate that
Ckip-1 deficiency promotes foam cell formation.

To investigate whether increased uptake of modified forms
of LDL could account for enhanced foam cell formation in Ckip-
1−/− macrophages, we performed uptake assays with Dil-labeled
oxLDL. Immunofluorescence revealed a 2.5-fold increase of
uptake in Ckip-1−/− BMDMs compared with WT BMDMs
(Fig. 1g). The enhanced oxLDL uptake by Ckip-1−/− macro-
phages was reversed by restoration of ectopic CKIP-1 expression
(Fig. 1h), substantiating a role of CKIP-1 in uptake of modified
lipoproteins. When examining whether CKIP-1 is involved in
cholesterol efflux, 3H-labeled cholesterol tracer was used to
analyze the efflux to lipid-poor ApoA1 or HDL. Induction of
cholesterol efflux or LXR agonists TO-901317 had no significant
effect on the expression of CKIP-1 (Supplementary Fig. 1e, f) and
cholesterol efflux to lipid-poor ApoA1 or HDL was comparable in
WT and Ckip-1−/− BMDMs (Supplementary Fig. 1g).

CKIP-1 diminishes the expression of scavenger receptor LOX-
1. To explore the mechanism of increased foam cell formation in
Ckip-1-deficient macrophages, we performed RNA sequencing
(RNA-seq) in WT and Ckip-1−/− BMDMs. Total 667 differen-
tially expressed genes (DEGs) were identified by RNA-seq
including 459 upregulated and 208 downregulated genes in
Ckip-1−/− BMDMs (Fig. 2a, Supplementary Fig. 2a and Supple-
mentary Data 1). Further analysis with Gene Ontology (GO) and
KEGG pathway indicated that these DEGs were enriched for
KEGG pathways for cell adhesion molecules and GO terms of
multiple biological processes, molecular functions, and signaling
pathways in Ckip-1-deficient macrophages (Supplementary
Fig. 2b, c). Deletion of Ckip-1 did not affect the expression levels
of either ATP-binding cassette transporters responsible for cho-
lesterol efflux, including ABCA1, ABCG1, and SR-BI (Supple-
mentary Fig. 3a–c) or the enzyme required for cholesterol
esterification (Supplementary Fig. 3d). Remarkably, the expres-
sion of scavenger receptor LOX-1 was upregulated by CKIP-1
deficiency (Fig. 2b). There are several major scavenger receptors
in macrophages that are critical in active uptake of modified
lipoproteins, such as CD36, SR-A, and LOX-114. We found the
basal level of LOX-1 was significantly increased in Ckip-1−/−

BMDMs compared with WT BMDMs, while no difference was
observed in the expression levels of CD36 and SR-A (Fig. 2c).
This phenomenon was confirmed by immunofluorescence mea-
surement (Supplementary Fig. 3e). Under the condition of
exposure with oxLDL, deletion of Ckip-1 further increased LOX-1
expression at both mRNA and protein levels, but exerted no
marked effect on CD36 or SR-A expression (Fig. 2c, d and
Supplementary Fig. 3f, g). Similar results were obtained in peri-
toneal macrophages derived from WT and Ckip-1−/− littermates
(Supplementary Fig. 3h). Upon reconstitution of ectopic CKIP-1
in Ckip-1−/− macrophages, the LOX-1 expression was reduced
while the expression of CD36 and SR-A was unaffected by CKIP-
1 overexpression (Fig. 2e), demonstrating that CKIP-1 specifically
regulates the expression of LOX-1. We used a specific anti-LOX-1
antibody to block the LOX-1-mediated effect. Indeed, uptake of
oxLDL was decreased by ~50% in Ckip-1−/− BMDMs due to the
neutralization of LOX-1 (Fig. 2f). Although there are alternative
pathways other than scavenger receptor to mediate the uptake of
lipoprotein, such as pinocytosis, we observed no difference in
pinocytosis between the tested groups (Supplementary Fig. 3i).
These data suggest that deletion of Ckip-1 augments the

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-018-07895-3

2 NATURE COMMUNICATIONS | (2019)10:425 | https://doi.org/10.1038/s41467-018-07895-3 | www.nature.com/naturecommunications

www.nature.com/naturecommunications
www.nature.com/naturecommunications


cellular uptake of oxLDL, at least in part, through upregulation of
LOX-1.

Overexpression of CKIP-1 significantly inhibited the activity of
a luciferase reporter driven by LOX-1 promoter region (Fig. 2g),
suggesting that CKIP-1 inhibits the transcription of LOX-1
directly. We next investigated the mechanism of how CKIP-1

regulates the transcription of LOX-1. NF-κB has been reported to
play a critical role in inflammation and transcriptionally regulate
LOX-1; however, CKIP-1 did not affect the expression of NF-κB
in macrophages (Supplementary Fig. 3j) and NF-κB inhibitor
BAY 11-7082 exerted no marked effect on the upregulated
expression of LOX-1 in Ckip-1−/− BMDMs (Supplementary
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Fig. 3k). There is evidence for octamer-binding transcription
factor 1 (Oct-1, encoded by POU2F1) to foster LOX-1 expres-
sion15. We observed that the overexpression of Oct-1 significantly
enhanced the reporter activity of LOX-1 promoter and co-
expression of CKIP-1 repressed the transcriptional factor activity
of Oct-1 towards LOX-1 promoter (Fig. 2h). Interestingly, the
expression of Oct-1 protein was increased in Ckip-1−/− BMDMs
compared with WT cells (Fig. 2i), suggesting that CKIP-1
regulates Oct-1 expression level rather than NF-κB level. Cell
fractionation analysis showed that endogenous Oct-1 was mainly
localized in the nucleus of BMDMs and deletion of Ckip-1
resulted in an increase of nuclear Oct-1 (Fig. 2j). Ectopic
expression of CKIP-1 resulted in a marked reduction of Oct-1
protein in a dose-dependent manner (Fig. 2k). Importantly, the
levels of Oct-1 mRNA were comparable in WT and Ckip-1−/−

BMDMs (Fig. 2l). Protein half-life analysis showed that Oct-1
protein was more stable in Ckip-1−/− BMDMs as compared with
WT BMDMs (Fig. 2m), suggesting that CKIP-1 negatively
regulates the stability of Oct-1 protein. Knockdown of Oct-1 by
two independent shRNAs in Ckip-1−/− macrophages reduced the
expression of LOX-1 (Fig. 2n), substantiating a role of Oct-1 in
CKIP-1-mediated repressive effect on LOX-1 expression.

CKIP-1 promotes proteasomal degradation of Oct-1 via REGγ.
We therefore explored the mechanism of the destabilization of
Oct-1 protein by CKIP-1. Initially, we performed a co-
immunoprecipitation (Co-IP) assay to test whether CKIP-1
interacts with Oct-1 directly, but failed to detect an obvious
binding (Fig. 3a). To identify the possible mediator linking CKIP-
1 and Oct-1, we performed a yeast two-hybrid assay with CKIP-1
as the bait to screen a human adult brain library. One of the
positive clones encoded the full-length REGγ (regulator γ of
proteasome, also known as PA28γ, PSME3) (Supplementary
Table 1), a member of 11S family of proteasome activator of the
core proteasome16. Recent studies indicate that REGγ can target
intact proteins for degradation in ubiquitin- and ATP-
independent manner17. Several transcriptional factors or coacti-
vators, such as SRC-3, p53, and c-Myc, have been identified as
REGγ targets18–20. We then examined the interaction between
CKIP-1 and REGγ, and Co-IP assays readily revealed an asso-
ciation between CKIP-1 and REGγ (Fig. 3b). The endogenous
interaction between CKIP-1 and REGγ was also observed in
BMDMs (Fig. 3c). Immunofluorescence analysis showed that
endogenous CKIP-1 was expressed and localized in both the
nucleus and the cytoplasm, whereas REGγ was found mainly in
the nucleus and co-localized with CKIP-1 (Fig. 3d). Strikingly, we
found that REGγ interacted with Oct-1 as well (Fig. 3e, f). We
then asked whether REGγ contributes to the CKIP-1-mediated
regulation of Oct-1 protein stability, and expectedly, we found
that knockdown of REGγ abrogated the CKIP-1-mediated
downregulation of Oct-1 protein levels (Fig. 3g). As a support,
the overexpression of REGγ promoted the degradation of Oct-1,

and CKIP-1 and REGγ had the synergic function on Oct-1 reg-
ulation (Fig. 3h, i). Furthermore, knockdown of REGγ by shRNA
caused an increase in Oct-1 protein levels in macrophages
(Fig. 3j). In addition, knockdown of REGγ prolonged the half-life
of Oct-1 protein in macrophages (Fig. 3k). Treatment with
MG132, a potent proteasome inhibitor, completely blocked the
REGγ-mediated Oct-1 degradation (Fig. 3l), indicating that
REGγ-promoted Oct-1 degradation is dependent on the protea-
some activity. Ectopic expression of WT REGγ but not its inactive
mutant REGγ-N151Y promoted the degradation of Oct-1
(Fig. 3m). The interaction between CKIP-1 and Oct-1 could
not be detectable until REGγ was introduced into the cells
(Fig. 3n). In the presence of REGγ, both CKIP-1 and Oct-1 could
be co-immunoprecipitated with REGγ (Fig. 3n). Taken together,
these findings indicate that the CKIP-1-dependent destabilization
of Oct-1 protein is mediated, at least partially, by the interaction
of CKIP-1 with the proteasome activator REGγ.

Because REGγ can promote the degradation of Oct-1, we
examined whether REGγ affects Oct-1-mediated expression of
LOX-1 using a luciferase reporter gene assay. We found that
knockdown of REGγ significantly increased the activity of LOX-1
promoter, which could be reversed by Oct-1 knockdown (Fig. 3o).
Moreover, REGγ could suppress the Oct-1-mediated transcrip-
tional response of LOX-1 promoter and the repressive effect
could be further enhanced by CKIP-1 (Fig. 3p). These results
demonstrate that CKIP-1 cooperates with REGγ to repress the
Oct-1-mediated transcription of LOX-1. The role of Oct-1 in
transcriptional regulation has been described for a number of
target genes21–23. We also detected the regulation of CKIP-1 and
REGγ on other Oct-1 targets, such as Cdx-2, interleukin-2 (IL-2),
and HMGB3. Deletion of CKIP-1 or knockdown of REGγ in
macrophages upregulated the expression of HMGB3, but exerted
no marked effect on the expression of Cdx-2 or IL-2
(Supplementary Fig. 3l, m), which may be cell type-specific or
tissue-specific genes regulated by Oct-1.

Our previous studies demonstrated that Ckip-1−/− mice
spontaneously developed splenomegaly with enlarged lymphoid
follicles, and flow cytometry data revealed that the number of
splenic macrophages and monocytes, but not T or B cells, were
significantly increased in Ckip-1−/− mice compared to WT
littermates11. We also performed complete blood cell analysis of
peripheral blood from WT and Ckip-1−/− mice and observed no
difference in red blood cells, total white blood cells, or neutrophils
levels between the tested groups (Supplementary Fig. 3n).

Loss of Ckip-1 promotes atherosclerosis. Based on the above
findings, we hypothesized that deletion of Ckip-1 might promote
atherosclerosis. Thioglycollate-elicited pMΦ isolated from Wes-
tern diet-fed Apoe−/− mice, which is commonly used for foam
cells formation in vivo, showed much higher expression of CKIP-
1 mRNA compared with macrophages from chow-fed mice
(Fig. 4a). We found that CKIP-1 was expressed in the

Fig. 1 CKIP-1 reduces foam cell formation in macrophages. a CKIP-1 expression was assessed by western blot in BMDMs incubated with oxLDL (50 μg per
ml) for the indicated time (left) and in BMDMs exposed to different doses of oxLDL for 24 h (right). b Real-time PCR analysis of mRNA levels for CKIP-1 in
BMDMs after incubation with oxLDL (50 μg per ml) for indicated time. c Analysis of CKIP-1 expression in BMDMs treated with oxLDL, LDL, or acLDL
(50 μg per ml) for 24 h. d BMDMs were treated with or without NF-κB inhibitor BAY11-7082 (10 μM) for 1 h and then stimulated with oxLDL (50 μg per ml)
for 24 h. Protein levels and mRNA levels of CKIP-1 were assessed. e Increased foam cell formation and accumulation of unesterified cholesterol and
cholesteryl ester in Ckip-1−/− BMDMs after treatment with oxLDL (50 μg per ml) for 24 h. Scale bar, 50 μm. f Restoration of CKIP-1 into Ckip-1−/− BMDMs
(Ckip-1−/−R) reduced foam cell formation after treatment with oxLDL (50 μg per ml) for 24 h. Scale bar, 50 μm. g Total uptake of Dil-oxLDL was quantified
in BMDMs from mice with the indicated genotypes. Scale bar, 25 μm. h Restoration of CKIP-1 into Ckip-1−/− BMDMs reduced induced uptake. Scale bar,
25 μm. Data represent mean ± s.e.m. of n= 3 biologically independent experiments (b–h). P values were calculated by one-way ANOVA (b) and two-tailed
Student’s t-test (c–h). *P < 0.05, **P < 0.01, ***P < 0.001. The precise P value and statistics source data are shown in Supplementary Data 2. Unprocessed
original scans of blots are shown in Supplementary Fig. 6
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increasing amount of Myc-CKIP-1 as indicated. The protein levels were determined by western blot. l mRNA levels of Oct-1 in WT and Ckip-1−/− BMDMs.
m WT and Ckip-1−/− BMDMs were treated with cycloheximide (CHX, 10 μg per ml) for the indicated times. Western blot showing relative protein
expression levels. n Knockdown of Oct-1 expression in WT and Ckip-1−/− macrophages transfected with Oct-1-shRNA #1, #2 by lentivirus and proteins
were analyzed by western blot. Data represent mean ± s.e.m. of n= 3 biologically independent experiments (d, f, g, h, l, m). P values were calculated by
two-tailed Student’s t-test (d, f, g, h, l) and two-way ANOVA (m). *P < 0.05, **P < 0.01, ***P < 0.001. The precise P value and statistics source data are
shown in Supplementary Data 2. Unprocessed original scans of blots are shown in Supplementary Fig. 6
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CKIP-1, Oct-1, REGγ plasmids as indicated. Data represent mean ± s.e.m. of n= 3 biologically independent experiments (k, o, p). P values were calculated by
two-way ANOVA (k) and two-tailed Student’s t-test (o, p). *P < 0.05, **P < 0.01, ***P < 0.001. The precise P value and statistics source data are shown in
Supplementary Data 2. Unprocessed original scans of blots are shown in Supplementary Fig. 6
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CD68-positive macrophages in aortic sinus plaques of Apoe−/−

mice (Fig. 4b). The co-localization of CKIP-1 and REGγ was also
observed in the mouse atherosclerotic lesions (Fig. 4c). Compared
with the WT mice, the expression of CKIP-1 mRNA in the aortic
arch, which is the second atherosclerosis-prone site in mice, was
more abundant in Apoe−/− mice and was further upregulated in
the Western diet-fed mice (Fig. 4d). Similar results were obtained
with the Ldlr−/− mouse model of atherosclerosis (Fig. 4e).
Western blot analysis also revealed that CKIP-1 was highly
expressed in Western diet-fed Apoe−/− mice compared with
chow-fed mice (Fig. 4f). Importantly, CKIP-1 was also expressed
in human atherosclerotic lesions (Fig. 4g), suggesting that CKIP-1
expression is a common feature of mouse and human athero-
sclerotic plaques.

To explore the possible role of CKIP-1 in atherosclerosis
in vivo, Ckip-1−/− mice were crossed with atherosclerosis-prone
Apoe−/− mice, both of which were in the C57BL/6 backgrounds.
Then age- and sex-matched Apoe−/− Ckip-1−/− and Apoe−/−

littermates were fed a Western diet for 8 weeks (Supplementary
Fig. 4a). Body weights and plasma cholesterol levels of mice with
the indicated genotypes before and after being fed a Western diet
for 8 weeks were comparable (Supplementary Fig. 4b). The levels
of fasting triglycerides and lipoprotein profiles were also not

significantly different between both genotypes fed a Western diet
(Supplementary Fig. 4c). Despite similar cholesterol profiles, en
face analysis of Oil Red O-stained atherosclerotic lesion area
revealed an about 2.2-fold increase in Apoe−/− Ckip-1−/− mice
when compared to Apoe−/− mice (Fig. 5a). Quantification of
lesion burden by cross-sectional analysis of the aorta revealed that
loss of CKIP-1 increased the lesion areas (Fig. 5b–e). The lesions
were grouped into three categories as previously described24 and
our analysis showed that Apoe−/− Ckip-1−/− plaques had
undergone more severe plaque progression (Fig. 5f), indicating
that loss of CKIP-1 promotes the progression of atherosclerotic
lesions to more advanced stages.

We then conducted a more detailed analysis of aortic root
plaque composition. Staining for biomarkers of macrophages
(CD68), smooth muscle cells (α-smooth muscle actin, αSMA), or
T cells (CD3) confirmed more macrophages in the plaques of
Apoe−/− Ckip-1−/− mice (Fig. 5g) and no difference in CD3-
positive and αSMA-positive areas (Fig. 5h, i). To explore the role
of CKIP-1 in cell apoptosis, we stained serial sections from the
proximal aorta with terminal deoxynucleotidyl transferase-
mediated dUTP nick-end-labeling (TUNEL). The percentage of
TUNEL-positive (TUNEL+) cells in atherosclerotic lesions
showed no difference between the two groups of mice
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(Supplementary Fig. 4d). The expression of scavenger receptor
LOX-1 was upregulated in peritoneal macrophages from Western
diet-fed Apoe−/− Ckip-1−/− mice (Supplementary Fig. 4e).
Furthermore, the expression of LOX-1 in atherosclerotic lesions

was significantly increased in the absence of CKIP-1 with no
significant difference in expression of CD36 and SR-A (Fig. 5j and
Supplementary Fig. 4f, g). Analysis of plaque morphology showed
that Ckip-1 deficiency significantly increased the necrotic core
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areas (Fig. 5k) and promoted the degradation of collagen (Fig. 5l),
which are important features of vulnerable plaques.

Ckip-1 deletion increases systemic inflammation and MMP
activity. We next analyzed the expression of genes involved in
vascular inflammation in the aortic wall of Apoe−/− and Apoe−/−

Ckip-1−/− mice by mRNA expression array technology. The
expression levels of the proinflammatory cytokines including
interleukin (IL)-1β, IL-6, and matrix metalloproteinase (MMP)-9
were significantly upregulated in Apoe−/− Ckip-1−/− mice
(Fig. 6a). Consistent with the array data, statistically significant
differences were observed in the mRNA levels of IL-1β, IL-6, and
CCL-2 detected by RT-PCR in the absence of CKIP-1 (Fig. 6b).
Vascular cell adhesion molecule 1 (VCAM-1) expression by
vascular cells is a characteristic feature of atherosclerosis,
reflecting the inflammatory state in the plaque25. Similar to
higher mRNA levels of VCAM-1, increased expression of
VCAM-1 positive areas in Apoe−/− Ckip-1−/− lesions was
observed (Fig. 6b, c). In accordance with the mRNA level
(Fig. 6a), there was a significant increase of MMP-9-positive areas
and MMP activity assessed by in situ zymography in Apoe−/−

Ckip-1−/− mice lesions (Fig. 6d, e). As rupture of atherosclerotic
plaques has been associated with increased activity of MMPs26,
enhanced MMP activity may contribute to increased collagen
breakdown in lesions of Apoe−/− Ckip-1−/− mice.

CKIP-1 in hematopoietic lineage regulates atherosclerosis.
Finally, to determine whether CKIP-1 expression in cells of the
hematopoietic lineage or in stromal cells of the arterial com-
partment regulates atherosclerosis in Apoe−/− mice, bone mar-
row transplantation was carried out with lethally irradiated mice
as recipients. After 4-week recovery, mice were put on a high-fat
diet for 8 weeks (Supplementary Fig. 5a). Successful reconstitu-
tion of recipient bone marrow with donor bone marrow was
verified by PCR (Supplementary Fig. 5b). Homologous transfers
of Apoe−/− bone marrow into Apoe−/− mice and of Apoe−/−

Ckip-1−/− bone marrow into Apoe−/− Ckip-1−/− mice were
served as controls. The atherosclerotic plaque burden was
increased to a similar extent in Apoe−/− mice receiving Apoe−/−

Ckip-1−/− bone marrow, whereas no effect on atherosclerosis was
observed in chimeras with Apoe−/− bone marrow in an Apoe−/−

Ckip-1−/− background (Fig. 7a). In line with these findings was
the analysis performed for atherosclerotic lesions at the aortic
root (Fig. 7b). There was no significant difference among these
groups in body weight, plasma cholesterol, and triglyceride levels
(Supplementary Fig. 5c). Collectively, these results of bone mar-
row chimeras strongly suggested that the hematopoietic expres-
sion of CKIP-1 plays a causal role in atherosclerosis.

Discussion
Lipid metabolism disorder and recruitment of immune cells to
the artery wall are the underlying pathological processes of CAD
and cerebrovascular disease1. Even at very early stages of ather-
ogenesis, many macrophages ingest and process lipoproteins,
displaying membrane-bound lipid droplets in the cytoplasm and
acquiring a foam cell phenotype. A number of key signaling
pathways are highly relevant to foam cell formation, including
Ras and MAPK activation, TNF-α and related family members
leading to activation of NF-κB and effects of reactive oxygen
species (ROS) on signaling27.

CKIP-1 has originally been identified as an interacting protein
of CK2 kinase, an ubiquitously expressed member of the PLEKH
family which has been implicated in many key cellular processes
in diverse cell types. Our previous studies demonstrated that
CKIP-1 is a critical regulator of pathological cardiac hypertrophy
and macrophage proliferation11,28. Here, we establish that CKIP-
1 is expressed in mouse and human atherosclerotic plaques and
show that genetic deletion of Ckip-1 promotes atherosclerosis in a
hyperlipidemic mouse model. We further show that Ckip-1
deficiency leads to increased formation of foam cells and
inflammation. Aortic plaque burden is significantly higher in
Apoe−/− Ckip-1−/− mice on Western diet than in Apoe−/−

controls. In addition, we find that Ckip-1 deletion increases
MMPs expression, and may thus support an instable plaque
phenotype. Bone marrow transplantation experiments show that
hematopoietic cells derived from Apoe−/− Ckip-1−/− donors are
sufficient to increase atherosclerotic plaque formation when
transplanted to recipient mice. In vitro cell assays show that Ckip-
1 deficiency leads to increased intracellular accumulation of CE
and to foam cell formation. Mechanistically, CKIP-1 interacts
with REGγ and promotes the degradation of Oct-1, thus inhi-
biting the transcriptional activity of Oct-1 on LOX-1. In this
manner, CKIP-1 attenuates cellular oxLDL uptake in macro-
phages and reduces the formation of foam cells. In contrast, Ckip-
1 deficiency results in the increased expression of LOX-1, facil-
itates uptake of oxLDL and accumulation of cholesterol within
the cells, and further results in the promotion of atherosclerosis.
On the basis of these findings, we can assume a protective role for
CKIP-1 during foam cell formation and atherosclerosis (Fig. 8).

The current study provides genetic evidence demonstrating
that CKIP-1 is not only an inducible protein upon oxLDL (but
not unmodified LDL and acLDL) stimulus, but also a brake-like
regulator of foam cell formation and atherosclerosis. The
underlying mechanism of foam cell formation may consist of an
elevated uptake of proatherogenic lipoproteins, or an inability to
remove cholesterol from cells resulting from a defective choles-
terol efflux3. In this regard, we showed that Ckip-1 deficiency
leads to an increased uptake of lipoproteins without obvious
effects on cholesterol removal. Early work suggested that uptake

Fig. 5 Deficiency of Ckip-1 leads to severe atherosclerosis in Apoe−/− mice. a Apoe−/− and Apoe−/− Ckip-1−/− littermates were fed a Western diet for
8 weeks. Representative images of en face Oil Red O-stained aortas from mice with the indicated genotypes. n= 10. b Quantification of lesion area of aortic
plaques from each genotype. n= 5. c Lesion area of atherosclerotic plaques of the aortic roots of Apoe−/− and Apoe−/− Ckip-1−/− mice, presented for each
genotype across the 400 μm of the aortic root. n= 4. d Representative images of cross-sections of the aortic roots from mice with the indicated genotypes.
Scale bar, 400 μm. e Representative images of cross-sections of the aortic sinus stained with oil red O. Scale bars, 400 μm. f The distribution of early,
moderate, and advanced plaques based on histological staging of the atherosclerotic lesions. g CD68-positive macrophages in lesions from mice with
indicated genotypes on a Western diet for 8 weeks. Scale bar, 500 μm. n= 3. h, i Analysis of plaque composition: sections from aortic sinuses were stained
with antibodies against CD3 (h, T cells; scale bar, 100 μm) or αSMA (i, smooth muscle cells; scale bar, 200 μm). n= 3. j Immunohistochemical detections
of LOX-1 in aortas. Scale bars, 100 μm. n= 3. k Representative sections of H&E-stained aortic roots from each group (asterisk indicates necrotic area).
Scale bar, 200 µm. The bar graph shows quantification of necrotic areas, n= 5. l Representative pictures showing the collagen (blue) content from each
group. Collagen content statistics are also shown, n= 5. Scale bar, 400 µm. Data represent mean ± s.e.m. P values were calculated by two-tailed Student’s
t-test (a–c, f–l). *P < 0.05, **P < 0.01, ***P < 0.001. The precise P value and statistics source data are in Supplementary Data 2
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of oxidized LDL occurs via scavenger receptors14. Strikingly, we
identified CKIP-1 as a specific suppressor of the expression of
LOX-1, but not that of CD36 and SR-A. LOX-1 was originally
identified as a receptor for oxLDL in endothelial cells29 and was
also expressed in macrophages30. Baseline LOX-1 expression is
very low in macrophages; however, it can be upregulated under
circumstances of pathological stress such as atherosclerosis and
plays a critical role in foam cell formation and inflammatory
response in atherosclerotic plaques31. Accumulating evidence
implicate an association between the expression of LOX-1 and the
pathophysiology of atherosclerosis. Neutralization of LOX-1 is
sufficient to decrease the uptake of oxLDL in Apoe−/− Ckip-1−/−

macrophages, suggesting that LOX-1 is involved in the inhibition

of oxLDL uptake by CKIP-1. Thus, these findings add CKIP-1
into the LOX-1 axis of the complicated network regulating the
development of atherosclerosis.

Our results provide insights into the stability control of Oct-1.
A recent study showed that the ubiquitin E3 ligase TRIM21
enhances Oct-1 ubiquitylation and proteasomal degradation32.
Here, we show that CKIP-1-dependent destabilization of Oct-1
protein is mediated, at least partially, by the interaction of CKIP-1
with the proteasome activator REGγ. CKIP-1 coupled the pro-
teasome activator REGγ to directly recruit Oct-1 for proteasomal
degradation, which process might be ubiquitin- and ATP-
independent since it is the typical working pattern of REGγ.
Recent findings revealed crucial roles of REGγ in regulating
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various processes or diseases, including energy homeostasis,
tumorigenesis, inflammatory bowel disorder, rheumatoid arthri-
tis, and host defense33–37. The identification of Oct-1 as a sub-
strate of REGγ suggests that REGγ might also play a role in
atherosclerosis, which is worthy of further investigations in the
future.

In summary, we propose a working model that CKIP-1 couples
proteasome activator REGγ to target Oct-1 for degradation,
thereby suppressing the transcription of LOX-1. CKIP-1 is an
intrinsic negative regulator of macrophage lipid uptake, and thus
may act as a brake during foam cell formation and athero-
sclerosis. These data extended our understandings of CKIP-1 as a
regulator of inflammatory response as well as atherogenesis
progression, suggesting a potential strategy for atherosclerosis
treatment based on targeting Oct-1-LOX-1 axis.

Methods
Animal. Ckip-1−/− mice (C57BL/6 background) were generated and characterized
in our laboratory9. Apoe−/− (B6.129P2-Apoetm1Unc/J) mice (C57BL/6 background)
were purchased from the Jackson Laboratory. Ckip-1−/− mice were intercrossed
with Apoe−/− mice38 to generate Apoe−/− mice and Apoe−/− Ckip-1−/− littermate
controls. Atherosclerosis was induced by feeding gender-matched 8-week-old
Apoe−/− mice and Apoe−/− Ckip-1−/− mice with a Western diet from Harlan
Teklad (TD88137) for indicated times. All experimental procedures in mice were
approved by the Laboratory Animal Center of Chinese Academy of Military
Medical Sciences and complied with all relevant ethical regulations.

Cells, plasmids, and reagents. HEK293T (ATCC CRL-3216) and HeLa (ATCC
CCL-2) were obtained from the American Type Culture Collection (ATCC). Full-
length of CKIP-1 and REGγ were constructed by inserting PCR amplified frag-
ments into the related vectors. Detailed construct information is available upon
request. Haemagglutinin (HA)-tagged Oct-1 was purchased from Addgene. The
protein synthesis inhibitor cycloheximide (CHX) and the NF-κB inhibitor BAY 11-
7082 were purchased from Sigma-Aldrich (St. Louis, MO, USA). The proteasome
inhibitor MG132 was purchased from Calbiochem (Germany).

Antibodies. All antibodies were purchased as follows: Anti-CKIP-1 (sc-50225; for
immunohistochemical analysis (IHC), 1:100 dilution; for immunofluorescent
analysis (IF), 1:1000 dilution; for western blot analysis (WB), 1:500 dilution), anti-
Oct-1 (sc-8024; for WB, 1:500 dilution; for immunoprecipitation analysis (IP), 1:50
dilution), anti-ABCG1 (sc-11150; for IF, 1:100 dilution; for WB, 1:200 dilution),
anti-Lamin (sc-518013; for WB, 1:200 dilution), anti-SR-B (sc-32342; for IF, 1:100
dilution; for WB, 1:200 dilution), and anti-actin (sc-1616; for WB, 1:1000 dilution)
antibodies were purchased from Santa Cruz. Anti-REGγ (ab157157; for WB, 1:500
dilution; for IP, 1:50 dilution; for IF, 1:100 dilution), anti-CD68 (ab125212; for
IHC, 1:200 dilution; for IF, 1:200 dilution), anti-CD3 (ab16669; for IHC, 1:100
dilution), anti-SMA (ab9465; for IHC, 1:200 dilution), anti-ABCA1 (ab18180; for
IF, 1:200 dilution; for WB, 1:200 dilution), and anti-ACAT-1 (ab168342; for WB,
1:500 dilution) antibodies were purchased from Abcam. Anti-LOX-1 (AF1564; for
IHC, 1:200 dilution; for IF, 1:200 dilution; for WB, 1:1000 dilution), anti-CD36
(AF2519; for IHC, 1:200 dilution; for IF, 1:200 dilution; for WB, 1:1000 dilution),
anti-SR-A (AF1797; for IHC, 1:200 dilution; for IF, 1:200 dilution; for WB, 1:1000
dilution), anti-MMP-9 (AF909; for IHC, 1:200 dilution), and anti-VCAM-1
(AF2519; for IF, 1:200 dilution) antibodies were purchased from R&D. Anti-HA
(M180-3; for WB, 1:1000 dilution) and anti-Myc (M047-3; for WB, 1:1000 dilu-
tion) antibodies were purchased from MBL. Anti-Flag (F7425; for WB, 1:1000
dilution) antibody was purchased from Sigma. Anti-NF-κB (8242; for WB, 1:1000
dilution) antibody was purchased from Cell Signaling Technology.

Bone marrow transplantation. Bone marrow was collected from sex-matched
donor mice femur and tibia. Recipient mice were exposed to lethal irradiation with
two 5.5 Gy doses (total 11 Gy) at a 4 h interval in order to minimize radiation
toxicity and then transplanted with 107 bone marrow cells by tail vein injection.
Transplanted mice were then fed with a Western diet for 8 weeks after 4 weeks
recovery. Bone marrow reconstitution was confirmed by PCR analysis.

Atherosclerotic lesion analysis. Mice fed a Western diet for 8 weeks were
anesthetized and euthanized. The entire aortas were isolated and were stained with
Oil Red O (Sigma-Aldrich, St. Louis, MO, USA) for en face analysis. For the aortic
sinus analysis, aortic roots were dehydrated and paraffin embedded and serial
cryosections were taken from the region of the proximal aorta through the aortic
sinuses and stained with hematoxylin and eosin (H&E). Oil Red O staining for
lipids in cryosections of aortic root was performed using Oil Red O staining Kit
(Genmed Scientifics Inc., USA) as recommended by manufacturer’s instructions.
Morphological analysis of collagen contents in the lesion was stained with Masson’s
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trichrome. The necrotic core was defined as a clear area that was H&E free.
Classification of aortic plaques was carried out according to severity as early stage:
lesions with early fatty streaks, moderate stage: moderate lesions with a collagenous
cap, and advanced stage: advanced lesions with involvement of the media and
increased necrotic area, as described before24. Apoptotic cells were labeled by
TUNEL using the In Situ Cell Death Detection Kit (Roche, Switzerland) according
to manufacturer’s instruction and observed using fluorescence microscopy. MMP
activity was studied by in situ zymography assay. Non-fixed aorta sections prepared
by cryostat were thawed and incubated using In Situ Zymography Kit (Genmed
Scientifics Inc., USA) as recommended by manufacturer’s instructions and
observed using fluorescence microscopy.

Histological analysis of human tissue. Human atherosclerotic and normal aortic
tissues were obtained at the time of autopsy from donors, with informed consent
and approval from Chinese PLA General Hospital Ethical Committee. Paraffin-
embedded aortic tissues were deparaffinized in xylene and re-hydrated following
antigen retrieval and washed by phosphate-buffered saline. Endogenous tissue
peroxidase activity was quenched by 3% H2O2, and blocked in bovine serum
albumin. The primary antibody for CKIP-1 (Santa Cruz Biotechnology, CA, USA;
sc-50225, 1:100 dilution) was incubated overnight. The sections were washed next
day and incubated in secondary antibody. The expression of CKIP-1 was visualized
by ABC kit (Boster, CA, USA).

Immunohistochemistry. Cross-sections of the aortic root were stained with pri-
mary antibodies followed by HRP-conjugated secondary antibodies and developed
with DAB substrate (brown). Images were captured under the Nikon Bx60
microscope connected to a Nikon DP70 camera with Cell-F imaging software (Soft
Imaging System) and quantification was performed with Image Pro Plus Software.

Immunofluorescence. For frozen sections, frozen sections were fixed in acetone,
and processed for antibodies according to standard protocols. For cells, cells were
fixed in 4% formaldehyde, permeabilized with 0.2% Triton X-100, and blocked
with 3% BSA/PBST. Cells were then incubated with primary antibodies. The
corresponding secondary antibodies were from CWBIO (Beijing, China). Images
were captured and processed using identical settings in the Zeiss LSM 510 Meta
inverted Confocal Microscope.

Lipids analysis and lipoprotein profile measurement. Mice were fasted over-
night before blood samples were collected. Plasma was separated by centrifugation
and stored at −80 °C. Total and free cholesterol and triglycerides were enzymati-
cally measured with Cholesterol/CE Quantitation Kit II (Biovision, Mountain
View, CA, USA) and Triglyceride Quantification Kit (Biovision, Mountain View,
CA, USA) as recommended by manufacturer’s instructions. The concentrations of
HDL-cholesterol and LDL-cholesterol in plasma were determined using enzymatic
colorimetric assays (Zhongsheng Beikong Bio-technology and Science Inc., Beijing,
China) according to the manufacturer’s instructions. Cellular protein concentra-
tion was assessed using Pierce BCA Protein Assay Kit (Thermo, CA, USA).

Foam cell formation. Cells were plated on 12-well plates and incubated with
oxLDL (Unionbiol, Beijing, China) for 24 h and then the cells were fixed with 4%
formaldehyde, stained with oil red O (Sigma-Aldrich, St. Louis, MO, USA) and
counterstained with hematoxylin.

Uptake of oxLDL. BMDMs were incubated with 10 µg per ml fluorescence-labeled
oxLDL (Dil-oxDL, Unionbiol, Beijing, China) for 4 h at 37 °C to assess uptake of
Dil-oxLDL. We subjected cells to an excess of unlabeled oxLDL (200 µg per ml) as a
negative control. Fluorescence intensity was analyzed under a fluorescence
microscope and quantified with Image Pro Plus Software.

Yeast two-hybrid. Yeast two-hybrid screening of CKIP-1 interacting proteins in
human adult brain library was performed with the ProQuestTM two-hybrid system
(Invitrogen, CA, USA). Briefly, the WW domains plus the HECT domain (aa
236–731) of human Smurf1 were cloned in-frame with the GAL4 DNA binding
domain in the vector pDBLeu to create pDBLeu-Smurf1-WH. MaV203 yeast cells
were transformed with pDBLeu-Smurf1-WH and human liver cDNA library in
pPC86 vector. A total of approximately 1 × 106 independent transformants were
analyzed, and clones were selected for positive interactions based on screening for
expression of reporter genes His, LacZ, and URA3.

Pinocytosis and cholesterol efflux assay. Lucifer Yellow CH (Sigma-Aldrich, St.
Louis, MO, USA) was dissolved in 10% FBS/RPMI medium at 0.5 mg per ml. The
Lucifer Yellow medium was then added to macrophages cultured in 12-well plates.
The culture plates were then either maintained on ice, or at 37 °C for 2 h. The wells
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Fig. 8 A proposed model for the role of CKIP-1 in atherosclerosis. CKIP-1 regulates the formation of foam cells by coupling proteasome activator REGγ to
target the transcription factor Oct-1 for degradation, thereby suppressing the transcription of LOX-1 and the macrophage lipid uptake. On the contrary,
Ckip-1 deficiency results in the increased expression of LOX-1, facilitates uptake of oxLDL and accumulation of cholesterol within the cells, and further
results in the promotion of atherosclerosis
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were drained, washed with ice-cold 0.2%BSA/RPMI medium 3 times and with PBS
for 5 times. Triton X-100 (0.05%, 600 μl per well) was added to each well to lyse
cells. Fluorescence of the lysate was detected using spectrofluorometer with exci-
tation at 430 nm and emission at 540 nm.

For cholesterol efflux assay, cells were incubated with RPMI media containing
in the presence of 2 μCi per ml of 3H-cholesterol (Perkin Elmer Life Sciences,
Boston, MA) and 50 μg per ml of oxLDL (Unionbiol, Beijing, China) with
supplemented 1 μM LXR agonist TO-901317 (Sigma-Aldrich, St. Louis, MO, USA)
as required. After equilibration, the cells were incubated with RPMI media
containing indicated concentrations of either BSA, or HDL (Unionbiol, Beijing,
China), or ApoA1 (Unionbiol, Beijing, China). Radioactivity was quantified in the
media and in cells.

Cell transfections, immunoprecipitation, and immunoblotting. Cells were
transfected with various plasmids using TuboFect in vitro transfection reagent
(Fermentas, CA, USA) or Lipofectamine 2000 (Invitrogen, CA, USA) reagent
according to the manufacturer’s protocol. For immunoprecipitation assays, cells
were lysed with HEPES lysis buffer (20 mM HEPES, pH 7.2, 50 mM NaCl, 0.5%
Triton X-100, 1 mM NaF, and 1 mM dithiothreitol) supplemented with protease-
inhibitor cocktail (Roche, Switzerland). Immunoprecipitations were performed
using the indicated primary antibody and protein A/G agarose beads (Santa Cruz
Biotechnology, CA, USA) at 4 °C. The immunocomplexes were then washed with
HEPES lysis buffer four times. Immunoblot was performed using the standard
protocol. Unprocessed original scans of blots are shown in Supplementary Fig. 6.

Quantitative real-time PCR. Total RNA was isolated using TRIzol reagent
(Invitrogen, CA, USA) and reverse-transcribed using ReverTra Ace (Toyobo,
Japan). Quantitative real-time PCR was performed using Realtime PCR Master Mix
(Toyobo, Japan) and an iQ5 real-time PCR system (Bio-Rad, CA, USA). The data
were normalized by β-actin. The primer sequence for RT-PCR used in this study is
provided in Supplementary Table 2.

Small interfering RNA. Small interfering RNA (siRNA) targeted to human REGγ
gene was synthesized by Shanghai Gene Pharma Co, Ltd. REGγ siRNA#1: 5′-GAA
UCA AUA UGU CAC UCU AUU-3′, siRNA#2: 5′-UCU GAA GGA ACC AAU
CUU AUU-3′, Oct-1 siRNA: 5′-CAC CUU ACA CCG AGU AUG U-3′, and
negative control siRNA: 5′-UUC UCC GAA CGU GUC ACG U-3′.

Viral infection. Mouse CKIP-1 cDNAs were inserted into murine stem cell virus
(MSCV)-IRESGFP or (MSCV)-IRES-Puro vector for overexpression assay, Oct-1
and REGγ shRNAs were inserted into U6-Puro-GFP vector for knockdown assays.
CKIP-1 vectors, Oct-1-lentiviral shRNA#1 (5′-GCT GCT CAG TCT TTA AAT
GTA CTC-3′), shRNA#2 (5′-CAG TGA AGA GTC GGG AGA TTC CTC-3′) and
REGγ-lentiviral shRNA#1 (5′-GGA GGA AAC AGT TGC TGA ACT-3′),
shRNA#2 (5′-GGA AAC AGT TGC TGA ACTA-3′) were transfected with packing
plasmids into 293T cells for 2 days, and virus particles were used to infect mac-
rophages as indicated.

Reporter gene assays. The 3058-bp (−3000 to +58) LOX-1 promoter was
amplified from genomic DNA and then cloned into the pGL3 basic vector (Pro-
mega, Madison, WI, USA). 293T cells (5 × 104 cells per well in 24-well plates) were
transfected with LOX-1 promoter construct plasmids, phRL-TK vector with or
without pcDNA3.1-CKIP-1 or pCGN-Oct-1 plasmid. Luciferase activity was
assessed by Dual-Luciferase® Reporter Assay System (Promega, Madison, WI,
USA).

Cell fractionation. Cytoplasmic and nuclear fractions were separated by using NE-
PER Nuclear and Cytoplasmic Extraction Reagents Kit (Thermo, CA, USA).

Gene expression analysis by PCR array. Capital Bio Mouse Genome Oligo Array
from Capital Corporation was used for the examination of the expression pattern
of genes involved in atherosclerosis. By using different arrays, the fold-change for
aortic gene of Apoe−/− Ckip-1−/− mice with respect to Apoe−/− mice on a 12-week
Western diet was calculated. Data are expressed as mean ± s.e.m. of triplicate
simples. Microarray data that support the findings of this study have been
deposited in the Gene Expression Omnibus (GEO) under the accession code
GSE109698.

RNA-sequencing and gene expression analysis. The RNA-seq library was pre-
pared for sequencing using standard Illumina protocols. Total RNA samples from
Ckip-1−/− BMDMS and WT BMDMs were isolated using TRIzol reagent (Invi-
trogen) and treated with RNase-free DNase I (New England Biolabs, MA, USA), to
remove any contaminating genomic DNA. Library construction and sequencing
were performed by Novogene (Beijing). For the data analysis, basecalls are per-
formed using CASAVA. Clean reads were aligned to the genome using STAR
(v2.5.1b) and HTSeq v0.6.0 was used to count the reads numbers mapped to each
gene. Differential expression was determined using the edgeR package and the

significance of the differential expression of genes was defined by the bioinfor-
matics service according to the combination of the absolute value of log2-fold-
change ≥ 1 and P value ≤ 0.05. GO, and pathway annotation and enrichment
analyses were based on the Gene Ontology Database (http://www.geneontology.
org/), and KEGG pathway database (http://www.genome.jp/kegg/), respectively.
The software Cluster and Java Treeview were used for hierarchical cluster analysis
of gene expression patterns. The original sequence data have been submitted to the
database of the NCBI Sequence Read Archive (http://trace.ncbi.nlm.nih.gov/traces/
sra) under the accession number PRJNA478820.

Statistical analysis. Data are presented as mean ± s.e.m. The statistical sig-
nificance of differences was evaluated with the Student’s t test or one-way analysis
of variance (ANOVA). All statistical analyses were performed with GraphPad
Prism 6 and SPSS 22.0 software. Significance was accepted at the level of P < 0.05.
The resource data are shown in Supplementary Data 2.

Reporting Summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this Article.

Data availability
The RNA-seq data in WT and Ckip-1−/− BMDMs have been submitted to the
database of the NCBI Sequence Read Archive under the accession number
PRJNA478820. Microarray data that support the findings of this study have been
deposited in the Gene Expression Omnibus under the accession code GSE109698.
A Reporting Summary for this Article is available as a Supplementary Information
file. The authors declare that all the relevant data supporting the findings of this
study are available within the Article and its Supplementary Information files, or
from the corresponding author on reasonable request.
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