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Data-driven Markov models and their application in the evaluation
of adverse events in radiotherapy
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Decision-making processes in medicine rely increasingly on modelling and simulation techniques; they are
especially useful when combining evidence from multiple sources. Markov models are frequently used to
synthesize the available evidence for such simulation studies, by describing disease and treatment progress,
as well as associated factors such as the treatment’s effects on a patient’s life and the costs to society. When
the same decision problem is investigated by multiple stakeholders, differing modelling assumptions are
often applied, making synthesis and interpretation of the results difficult. This paper proposes a standardized
approach towards the creation of Markov models. It introduces the notion of ‘general Markov models’, pro-
viding a common definition of the Markov models that underlie many similar decision problems, and devel-
ops a language for their specification. We demonstrate the application of this language by developing a
general Markov model for adverse event analysis in radiotherapy and argue that the proposed method can
automate the creation of Markov models from existing data. The approach has the potential to support the
radiotherapy community in conducting systematic analyses involving predictive modelling of existing and
upcoming radiotherapy data. We expect it to facilitate the application of modelling techniques in medical
decision problems beyond the field of radiotherapy, and to improve the comparability of their results.
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INTRODUCTION

Normal tissue complications play an important role in the
evaluation of radiation therapy. Treatment decisions are not
only based on the prognosis of tumour control but on other
possible side effects, ‘adverse events’ (AE), on the patient:
severe limitations of the function of organs or tissues in
vicinity of the irradiated tumour which can have a perman-
ent impact on the patient’s quality of life.

While important for medical decision-making, realistic
long-term data on such effects is difficult to obtain, mainly
due to the limited duration of medical studies. In situations
where relevant real-world data is not available, modelling pro-
vides an analytic framework for the synthesis of evidence and

allows extrapolation of intermediate clinical endpoints to final
outcomes or outcomes beyond the duration of clinical studies
[1]. Investigating the ‘optimal’ distribution of limited health
care resources often involves comparing the value (‘utility’) of
an outcome (a ‘health state’) to the costs for achieving it [2].
Models for medical decision-making therefore typically use a
simplified representation of the underlying disease or inter-
vention process, together with cost and utility information.
Depending on the problem to be modelled, the most suit-
able approach has to be chosen from a variety of estab-
lished modelling structures [3], the decision model has to
be defined by experts to fit the given decision problem and
the model parameters may then be determined based on
available data sources, literature or expert opinion [4, 5].
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However, in situations where the same decision problem
is investigated by multiple stakeholders, synthesis and inter-
pretation of the results may be difficult: e.g. the literature
on cost-effectiveness of particle therapy was found to be
‘non-comparable’ due to differences in modelling assump-
tions and model parameters [6]. Homogenization of model-
ling assumptions may therefore increase the comparability
of simulation outcomes and, indeed, similar model struc-
tures can be used to investigate a family of related ques-
tions, such as cost-effectiveness of an intervention for
multiple distinct tumour entities [7].

This paper attempts to formalize that approach by intro-
ducing the notion of ‘general models’ as generic definitions
of model structures, describing the common features of a
family of models. So-called Markov models are among the
most commonly used types of models for health technology
assessment [8] and are particularly suitable for describing
problems that involve repeating events over time and do not
require interaction between individuals [3, 9].

The paper therefore focuses on ‘general models’ for
Markov models and proposes a methodology for their der-
ivation from existing data, based on ‘Markov Model
Templates’ (MMT), a high level description of health states
and their relations.

Figure 1 illustrates the proposed approach: the character-
istics of a ‘general Markov model’ are expressed in com-
putable form by the MMT language. Any such description,
an ‘MMT instance’, can be processed by a programme
(denoted ‘MMT interpreter’ in Fig. 1) which constructs
Markov model states from data available in a data reposi-
tory, following the rules specified by the MMT instance,
and computes transition probabilities among the resulting
Markov states. Depending on the given data, the same
‘general Markov model’ may result in distinct specific
Markov models as indicated in Fig. 1.

Fig. 1.

This standardized approach towards the creation of
Markov models may, for example, facilitate the systematic
analysis of existing and future radiotherapy data by generat-
ing specific Markov models for a range of parameters, such
as different tumour entities or beam qualities.

In the following, a general Markov model for the evalu-
ation of adverse events in radiotherapy and a specification
language (MMT) for general Markov models are devel-
oped. The expressiveness of the MMT language is then
demonstrated using the example of the general adverse
event model.

MATERIALS AND METHODS

Markov models for medical decision-making
In medical decision-making Markov models are often used
to describe the disease progress of chronic diseases, repre-
sented by a finite number of discrete and mutually exclu-
sive ‘health states’ that are connected by ‘transitions’
corresponding to clinically important events [10, 11].
Transition probabilities among them express the likelihood
for a patient to change from one health state to another.
Measures for cost and outcome can be associated with
states and transitions to account for resource use over the
course of treatment and the gain or loss of life quality as
perceived by the patient. Based on this information, cost
and outcome of a particular treatment strategy can be esti-
mated by simulating the path of a fictitious patient popula-
tion through the model (detailed example in [11]).
Transition probabilities are evaluated in fixed time intervals
over a given number of ‘cycles’, and utilities and costs
according to transitions and state occupation are accumu-
lated. Depending on the evaluation type, costs, utilities and
transition probabilities can be applied deterministically,
according to a point estimate, or probabilistically, taking

Automatic creation of Markov models from distinct data sources, based on common Markov Model Template (MMT).
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into account the variability of the respective measure in
every evaluation.

Generalized Markov model for adverse events

We introduce a general Markov model that describes the
course of treatment-related side effects after radiotherapy.
The model allows the analysis of side effects across a range
of tumours, which is of interest when examining global
toxicity levels associated with a specific treatment tech-
nique or technology. This model combined with a cost
model of treatment costs and quality of life could for
example be used to assess the benefit of new radiotherapy
technologies, such as volumetric modulated arc therapy
(VMAT), CyberKnife and proton beam therapy.

Figure 2 shows the generic Markov model. The model is
divided into two sub-models. The ‘acute AE model’
describes ‘acute’ side effects that occur during and within
six weeks after treatment. The ‘chronic AE model’ illus-
trates the course of ‘late’ effects after treatment. Since it is
envisaged that data is used from treatments comprising a
variety of tumour volumes and treatment doses, side effects
are grouped coarsely into ‘mild” and ‘severe’ effects, where
‘mild’ covers toxicity grades less than 3 including ‘no side
effect’, and ‘severe’ comprises toxicity Grades 3 and 4. All
examples presented here are based on the Common
Terminology Criteria for Adverse Events (CTCAE). The
health states in the acute sub-model are possible combina-
tions of acute side effects (al; a2; al,a2; etc.) and
treatment-related death. The late-effects model includes pos-
sible combinations of late effects (c1; c2; c1,c2; etc.). Over
time, patients may develop further chronic adverse events,
progressing into health states with a higher number of

adverse events or into the ‘Death’ state. When examining
treatments that differ in outcome, the health states after
treatment need to be paired with the characteristic of either
having ‘tumour control’ or having ‘no tumour control’.

The length of a Markov cycle is ideally chosen to be the
shortest clinically meaningful time interval [8], in the case
of chronic adverse events approximately one year.

Language for generalized Markov models

In order to be able to express the conditions for states and
relations within a general Markov model, the MMT lan-
guage was developed using the Spoofax Language
Workbench [13]. Figure 3 illustrates the main concepts of
this language.

‘State Groups’ specify groups of Markov health states
that share common characteristics such as the ‘severe
adverse event’ states or the ‘death’ state of Fig. 2.
Transitions between distinct ‘State Groups’ are defined by
‘State Group Transitions’.

The MMT language defines patient populations and ap-
plicable health states by queries over data sources. To
ensure that a given MMT instance, specifying a general
Markov model, is applicable to a wide range of data
sources, only minimum assumptions on the logical repre-
sentation of clinical information in those data sources have
been made. We assume that the clinical information avail-
able about a patient can be factored into ‘clinical contexts’
(diagnosis, treatment, follow-up, etc.), ‘observations’ within
such clinical contexts, and ’medical findings’ recorded in
each of those observations. Depending on the data source,
the context of clinical data for each patient can be modelled
explicitly or be inferred, e.g. by the temporal relation

Fig. 2. State transition diagram for a general Markov model describing adverse events after radiotherapy.

Generalization from [12].
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Fig. 3. Main concepts of ‘Markov Model Template’ (MMT) language for the description of generic Markov models.

between treatment and observation. A medical finding in
this model corresponds to an attribute-value pair in a data
repository and can be identified by means of a query
expression.

Every Markov model reflects the disease progression of
a certain patient population, with specific demographic
characteristics and medical conditions, undergoing a well-
defined treatment. The ‘Cohort Selection Query’ allows
preselecting the patient population accordingly for any
MMT instance.

We define Markov health states as sets of medical find-
ings, recorded in a single observation. Using this definition,
health states can be specified by query expressions over the
clinical context in which an observation had been made
(e.g. follow-up after radiation therapy), ‘Clinical Context
Query’, and the medical findings (e.g. severe adverse
event), ‘Medical Finding Query’, found in any observation
in that context. Depending on the specificity of the query
expressions and the granularity and completeness of the re-
spective data source, the queries defining a ‘State Group’
may identify zero, one or many medical findings for every
patient and observation. Since any combination of medical
findings forms one distinct health state, a single ‘State
Group’ definition may result in multiple specific Markov
health states. All these Markov states are members of that
‘State Group’, ‘parameterized’ by their unique combination
of medical findings.

‘State Type’ defines a property of all health states within
a ‘State Group’ that restricts the possible transitions
between the members of that group. While ‘normal’ states
allow transitions to all other members and to the states
themselves, ‘transient’ states can only be occupied for a
certain time period by any individual and therefore are
modelled (as a sequence of) states without transitions back
into the respective state itself. Once entered, ‘absorbing’
states, such as the ‘Death’ state in Fig. 2, cannot be left and
therefore only allow transitions to themselves with a prob-
ability of one. In addition to defining the ‘State Type’ of
members of any ‘State Group’, further modelling assump-
tions can be expressed by excluding certain transitions within
a ‘State Group’ a priori and irrespective of the information

the data source may provide. For example, in the generic
adverse event model (Fig. 2) we may want to include a mod-
elling assumption that any chronic adverse event a patient
experiences will persist over the patient’s lifetime.
‘Transition Exclusion Rules’ allow adding ‘State Refinement
Expressions’ to any ‘State Group’ for defining such con-
straints. These expressions apply only for ‘parameterized
states” and allow the specification of forbidden transitions by
formulating conditions on ‘Source State’ and ‘Target State’.

Normally, not all states required in a Markov model can
be expressed by a single query, so that multiple ‘State
Groups’ need to be defined for the generic description of
the full Markov model. A ‘State Group Transition’ allows
the definition of transitions between members of two state
groups by referencing the identifier of a source and target
‘State Group’. In case the referenced ‘State Group’ contains
more than one state, it is assumed that transitions between
all members of the source and target state group are pos-
sible. Again, ‘Transition Exclusion Rules’ provide a way to
restrict the possible transitions between individual health
states within source and target ‘State Groups’.

RESULTS

Figures 4 and 5 show the generic Markov model for
adverse event analysis (Fig. 2), expressed in terms of the
MMT language. The generic model consists of two distinct
MMT instances, corresponding to Markov models for acute
(Fig. 4) and chronic (Fig. 5) adverse events, respectively.
‘Query Expressions’ in this example are defined in the
Structured Query Language (SQL) and are based on a spe-
cific database schema. The schema was developed to docu-
ment patient-, tumour- and treatment-related information as
well as adverse event reports after radiotherapy [14].

Since both models describe distinct clinical contexts,
‘during treatment’ for acute adverse events and ‘after treat-
ment’/‘follow-up’ for chronic adverse events, their MMT
instances use different ‘Clinical Context Query’ expressions
in their ‘State Group’ definitions, based on the temporal re-
lation between observation date and the end of radiotherapy
treatment.



Data-driven Markov models i53

Fig. 4. MMT representation of generic Markov model for acute severe adverse events.

Fig. 5. MMT representation of generic Markov model for chronic severe adverse events.

The ‘State Groups’ in Figs 4 and 5 are further distin-
guished by their ‘Medical Finding Queries’. Health states
corresponding to a combination of severe adverse events,
such as (al; a2; al,a2; etc.) in Fig. 2, are defined by
queries for adverse events recorded with severity Grade 3
or 4. When multiple adverse events for every patient and
observation are found to match these criteria, the State
Group’ definition results in multiple Markov health states,
as illustrated in Fig. 2. Health states corresponding to the
death of a patient, if treatment-related, are defined by the
existence of an adverse event with severity score 5.

A ‘Transition Exclusion Rule’ in the MMT ‘State
Group’, representing chronic adverse event states (Fig. 5),
expresses the modelling requirement that any chronic
adverse event, suffered once, will persist over the lifetime
of the patient.

From these queries, the relevant health states for a
Markov model can be determined, describing the disease
progress of the selected patient population.

A proof-of-concept implementation of the ‘state builder’
component in the ‘MMT interpreter’ in Fig. 1 successfully
operates with the following selection algorithm. First, the
data of all individuals fulfilling the ‘Cohort Selection
Query’ is partitioned into distinct observations, from which
the ones relevant to a particular ‘State Group’ are selected
according to the ‘Clinical Context Query’. For each of
those observations, medical findings corresponding to the
‘Medical Finding Query’ are identified: every unique com-
bination of medical findings forms one distinct Markov
health state within that ‘State Group’.

Transition probabilities can then be calculated from the
identified Markov health states and the transition rules
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specified in ‘State Group’ and ‘State Group Transition’, fol-
lowing well-established procedures such as [15, 16].

DISCUSSION

We introduced the notion of ‘general Markov models’,
developed a language for their specification and demon-
strated their application for adverse event analysis in radio-
therapy. The proposed method allows the encoding of the
medical understanding of a disease in computable defini-
tions of health-states and transitions, expressed as query
and constraint expressions. These definitions can be used to
automatically create relevant Markov health states and tran-
sitions based on available data and to compute the transi-
tion probabilities.

Feasibility to identify model structure from information
specified in MMT instances was successfully tested on a gen-
erated toxicity dataset; the module for the computation of
transition probabilities between states is under development.

In agreement with modelling recommendations such as
[5, 17], the structure of the resulting Markov model is dir-
ectly determined by a modeller’s choice (through the MMT
instance), and needs to be designed according to current
medical knowledge of the health condition. As recognized
by [4, 5], details of the final structure of the model may be
subject to the availability of data, since this directly deter-
mines the realized health states.

While Markov models generated in this way may not be
of completely general validity, they provide an accurate ab-
straction of the disease progress observed within the dataset
used for their generation. As such, they can be used for
making predictions within the context in which they have
been created.

We anticipate the proposed general model for adverse
events to be particularly useful for the analysis of historic
clinical follow-up data, where both acute and long-term
toxicities may have been reported only to a low level of
detail. Its use for this purpose remains to be validated.

The model can easily be adapted to reflect the granular-
ity and type of data available. For newer and prospective
studies, the model will be able to make use of traditional
objective toxicity data, collected according to reporting
recommendations that propose the recording of specific ob-
jective endpoints for long-term toxicities [18], as well as
subjective patient reported outcome measures (PROMs).
Since subjective symptom clustering from validated PROM
tools has been shown to be able to act as a sensitive pre-
dictor of long-term toxicity [19], we envisage including
both forms of measurement, objective measures and
PROMs, into the Markov model.

Application of the proposed approach to Markov model
generation in practice requires further development of infor-
mation models and software tools: examples in Figs 4 and
5 assume information to be organized in a fixed data model

against which queries for the definition of health states can
be formulated. To facilitate the re-use of Markov model
templates, however, the definition of health states must be
possible regardless of the underlying data model. Query
expressions may be formulated against a simplified data
schema, and mappings supplied to the MMT interpreter in
order to work with distinct data sources.

When a suitable query translation mechanism has been
established, the same generic MMT can be applied to dif-
ferent (interoperable) datasets, resulting in multiple Markov
models with differing parameters but adhering to the same
modelling principles. Other parameters, such as costing or
quality of life information associated with states and transi-
tions need to be determined and synthesized into the gener-
ated Markov model. After the design of the initial general
Markov model, the generation of specific Markov models
does not require additional modelling experience, thus low-
ering the expertise required for creating decision analytic
models.

Making the resulting Markov model more accessible for
decision analytic simulation studies requires a further lan-
guage or exchange format for Markov model simulations,
such as [20], that specifies all the information relevant to a
simulation task in computable form. Software platforms for
decision analytic modelling and simulations can then be
used to compute the outcome of a simulation study based
on the generated Markov models.

We expect such an automated approach for the creation
of Markov models to facilitate the application of modelling
techniques in medical decision problems and to improve
the comparability of their results.
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