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Massive studies have focused on the understanding of the pathobiology of cellular and molecular changes and injury mechanisms
after traumatic brain injury (TBI), but very few studies have specially discussed the role of synapses in the context of TBI. This paper
specifically highlights the role and therapeutic potentials of synapses after TBI. First, we review and conclude how synapses interact
with constant structural, metabolic, neuroendocrine, and inflammatory mechanisms after TBI. Second, we briefly describe several
key synaptic proteins involved in neuroplasticity, which may be novel neuronal targets for specific intervention. Third, we address
therapeutic interventions in association with synapses after TBI. Finally, we concisely discuss the study gaps in the synapses after
TBI, in hopes that this would provide more insights for future studies. Synapses play an important role in TBI; while the
understandings on the synaptic participation in the treatments and prognosis of TBI are lacking, more studies in this area are
warranted.

1. Introduction

It is well established that traumatic brain injury (TBI) is
closely related to the occurrences, evolvements, and prog-
nosis of psychiatric disorders, neuronal dysfunction, and
cognitive impairment [1–3]; however, the mechanisms
underlying the diseases at the cellular and molecular levels
such as inflammation involvement, metabolic homeostasis
imbalance, and synaptic injury remain elusive. If remain
untouched, it may increase the potentials for many short-
term (bleeding, headaches) and long-term (cognitive impair-
ments) symptoms [2]; therefore, the studies on the mecha-
nisms elaborating the cellular and molecular pathology
should be put on the top agenda of TBI researches.

Synapse as a basic element for brain structure has been
believed to play a significant role in the disadvantageous
influences following TBI; the regular fusing of the synaptic
vesicle and the plasma membrane and the orderly releasing
of neurotransmitters into the synaptic cleft seem to be

essential to the normal neuronal interaction [4]. Although
it is now widely acknowledged that synapse is important to
brain development and cognitive functions [5–7], the molec-
ular mechanisms that the synapse structure and function
changes induced by TBI remain largely unclear [8–10].
Besides, the databases on synapse categories have identified
109 domains involved in synaptic functions and more than
5000 synaptic proteins [11], yet very few of the synaptic
proteins have been proven to be related with the synaptic
dysfunction after TBI. Comprehensive reviews on the role
of synapses after TBI are significantly necessary to figure
out the study status and to elucidate future studies.

TBI is a kind of disease with a lot of factors involved; the
prognosis differs from one to another, and it is under the
interaction of various mechanisms working unitedly or
orderly, which make TBI treatment quite complicated.
Therefore, we conducted this comprehensive review on
the role of synapse after TBI, which mainly focused on
the interactions between different functional mechanisms
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and synapses (Figure 1), the related synaptic proteins
(Figure 2), and the targeted treatments on improving the
synaptic plasticity after TBI, to provide insights into future
studies in this area.

2. The Interactions between Functional
Mechanisms and Synapses

2.1. The Interaction between Direct Structural Injury and
Synapses after TBI. It is under estimation that more than
1011 neurons exist in the adult human brain, and each of
them is constructed with 104 synapses [12]. Synaptic struc-
tures have been reported to be highly vulnerable to the direct
or indirect concussion attack following TBI in experimental
and clinical settings [13, 14]. The focal mechanical attack
resulting from the direct or contoured violence may lead to
the structurally or functionally synaptic disconnection, and
the structural changes of the synaptic cleft, the presynaptic
and postsynaptic densities (PSDs), may cause temporary or
long-term synaptic loss. This primary damages may trigger
the biophysical and neurochemical change cascades and
finally give rise to either synaptic repair or eternal loss.

2.2. The Interaction between Disturbed Energy Metabolism
and Synapses after TBI.Membrane depolarization is initiated
instantly by the damage on neuronal membranes and
axons induced by TBI [15], leading to massively excitatory
neurotransmitter release such as glutamate [16, 17]. The
glutamate not only results in intracellular calcium accumu-
lation but also activates the N-methyl-D-aspartate receptor
(NMDAR) and α-amino-3-hydroxy-5-methyl-4-isoxazole-
propionic acid receptor (AMPAR) [18, 19]. Additionally,
mitochondrial dysfunction may occur due to the elevated cal-
cium influx activating the intracellular proteases and finally
lead to neuronal apoptosis. A huge body of energies are
needed to maintain the metabolic and ionic homeostasis,
and accordingly, the demand for blood glucose will increase,
causing an imbalance between glucose supply and demand.

The synapses play a significant role in this process. Long-
term potentiation (LTP) may be triggered by the activation of
excitatory synapses, a process that requires intracellular cal-
cium accumulation in the dendritic spine by activating
NMDAR [20, 21]. The magnesium ions may block these
receptor channels in a physiological situation with voltage-
controlled method; however, in the stressing conditions
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Figure 1: A brief drawing of the synaptic interaction with constant structural, metabolic, neuroendocrine, and inflammatory
mechanisms after TBI; AMPAR: α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor; NMDAR: N-methyl-D-aspartate
receptor; Glu: glutamate.
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induced by TBI, the cell depolarization largely by activating
AMPAR may extrude the magnesium ions [22, 23]. There-
fore, the NMDAR and AMPAR can significantly influence
the LTP and eventually the energy metabolism.

2.3. The Interaction between Changed Neuroendocrine
Secretion and Synapses after TBI. The disturbance of the
hypothalamic-pituitary-adrenal (HPA) axis has been
reported in several TBI studies [24–26]. The TBI may lead
to increased serum cortisol and adrenocorticotropic hor-
mone (ACTH) level to regulate other organs in this stressing
condition; on one hand, those neuroendocrine hormones
may alert the body to better deal with TBI, and on the other
hand, the overexpression of stress hormones can significantly
facilitate the TBI. However, it should be pointed out that

although HPA axis changes after TBI is well documented,
the direct linkages between synaptic dysfunction and HPA
after TBI remain not clear, and the direct linkage of synaptic
dysfunction to post-TBI HPA dysfunction needs to be fur-
ther explored in future studies.

At the same time, it should be noted that the secretions of
neurotrophins in the hippocampus are reduced after TBI.
Neurotrophins served as “autocrine” in regulating the brain
as the target organ contain many secretory proteins including
brain-derived neurotrophic factor (BDNF), nerve growth
factor (NGF), neurotrophin-3 (NT-3), and so on. Close rela-
tionships have been found between neurotrophins and syn-
apse structures and functions; the neurotrophins may
influence axonal and dendritic branching and remodelling
[27–29], synaptogenesis in arborizing axon terminals [30],
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synaptic transmission [31–33], and synapsis maturation [32,
34]. In the context of TBI, the stress hormones are excessively
secreted and neurotrophin secretion decreases; accordingly,
the synapses tend to be seriously damaged. How to control
and adjust the neuroendocrine secretion and synapsis devel-
opment after TBI is a tricking yet promising problem in the
treatment of TBI.

2.4. The Interaction between Increased Inflammation
Responses and Synapses after TBI. TBI-induced physiological
changes may give rise to neuroinflammation and neuron
death [35]. A body of proinflammatory cytokines are rapidly
elevated in the acute period including IL-6, TNF-α, and so on
[36]; besides, the increased cytokines levels in the brain are
dramatically higher than the corresponding levels in serum
[37]. Generally, the existence of proinflammatory cytokines
are required for preserving synaptic strength at excitatory
synapses, and it is essential to synaptic plasticity [38, 39],
but excessive secretion of proinflammatory cytokines may
produce detrimental effects on the synapses [40].

The TBI-induced blood-brain barrier (BBB) integrity
disruption acts an important role in the neuroinflammatory
response [41], which allows increased cytokine pour into
the brain and ultimately activate microglia in excess. The
microglia is highly alerted in the acute period after TBI
[41]. The microglia offers a beneficial hand to neuronal cir-
cuit formation via phagocytosing weak synapses and regulat-
ing neurogenesis [42], but excessive microglia accumulations
may cause serious impairments to the synaptic pruning and
disrupt the synaptic plasticity [43, 44]. It should be empha-
sized that microglia might be linked to synaptic integrity in
the inflammation response, yet no studies have specifically
dealt with this issue in the context of TBI. The direct evidence
linking microglia activation and cytokine elevation of synap-
tic changes after TBI is lacking, more studies on these issue
are warranted.

3. The Major Synaptic Proteins Involved in TBI

Up to date, more than 5000 synaptic proteins have been
identified [11], and most of them have been found in
association with neurological diseases such as stroke, TBI,
Alzheimer’s disease, and so on. Based on literature review,
we identify several key synaptic proteins and introduce
them briefly (Figure 2).

A linear polymer microfilament called F-actin, which is
essential for such important cellular functions as the mobility
and contraction of cells during cell division [45, 46], is con-
sidered to have structural polarity which is critical to synap-
totagmins [47, 48]. Synaptotagmins family is a kind of
calcium-binding protein located in the synaptic vesicles,
and Syt-I and Syt-IV are the most relevant in TBI. Syt-I pro-
teolysis may hinder the synaptic vesicle from docking to the
presynaptic membrane terminal [49, 50]; besides, the accu-
mulation of deformed Syt-I may cause disadvantageous
effects on presynaptic function [51], while Syt-IV increases
massively after TBI and tends to reduce synaptic activity
[52]. The synapsins are a family of phosphoproteins with a
function of regulating the release of neurotransmitter in the

presynaptic area [53]. It has been hypothesized that increased
oxidative stress after TBI may lead to synapsin-I loss and fur-
ther disturb the interactions between synapses [54]. Synapto-
physin is a kind of calcium-binding glycoprotein acting in
vesicular trafficking, docking, synaptogenesis, and synaptic
plasma membrane fusing in the presynaptic. It is noteworthy
that the role of synaptophysin involved in TBI remains
unclear; it is found that synaptophysin levels change differ-
ently between the mild and severe TBI [55], but another
study addressing these issues remains somewhat contradic-
tory [56]. Synaptojanins act a significant role in recycling ves-
icles at the presynaptic area. Synaptojanin-I is predominantly
distributed in nerve terminals and is extremely sensitive to
calpain digestion [57]; therefore, it has been taken as a novel
target for degradomic calpain [51].

4. The Treatments Targeted on Synapses
after TBI

With consideration to the important role synapses played
in the TBI prognosis, lots of strategies have been adopted
to enhance the synaptic plasticity and promote synaptic
function, and even though the treatments may largely dif-
fer, the basic principles for speeding recovery from TBI
remain similar, that is, promoting synaptogenesis and syn-
aptic terminal reconnection and then exerting the neuro-
protective effects [58].

Exercises are believed to be effective in improving TBI
prognosis; the underlying mechanisms include changing the
brain structural integrity by enhancing neurogenesis and
angiogenesis with more secretions of growth factors promot-
ing synaptic plasticity [59–61]. Notably, aerobic exercises
such as tai chi and yoga have been popularly promoted for
its potential advantages in healthy and ill-attacked popula-
tions [62–67]; however, the frequency and burden of exercise
after TBI differ from one to another and remain to be further
elucidated [68].

Several experiments in the animal with significant synap-
tic function improvement should be considered. Inhibiting
endocannabinoid degradation may ameliorate the neurobe-
havioral, neuroinflammatory, and glutamate dyshomeostasis
after TBI via reducing synaptic hyperexcitability [69]. Pycno-
genol, one kind of bioflavonoid with significant antioxidant
and anti-inflammatory properties, provides a beneficial effect
on improving CA3-CA1 synaptic function in rats after TBI
[70]. Another lab study [71] indicates that tyrosine kinase
EphB3 produces deleterious effects on maintaining synaptic
stability and plasticity after TBI. Resveratrol, a polyphenol
compound with antioxidant properties, can upregulate
synaptophysin and PSD 95 and suppress neuronal autophagy
[72]. Rapamycin may exert suppressing effects on the neuro-
genesis and synaptic reorganization shortly after TBI in the
dentate gyrus and cause a neuroprotective effect [73]. Addi-
tionally, dietary omega-3 fatty acids intake can protect
against the decreased synaptic plasticity and impaired learn-
ing ability after TBI [74]. Meanwhile, the low-level laser ther-
apy after TBI seem to increase the BDNF level and promote
synaptogenesis [75]. However, these data only indicate the
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potential use for TBI treatments [76, 77], and more clinical
evaluations are needed to assess the value of these findings.

5. Study Gaps and Future Direction

The understanding on the synaptic mechanisms involved in
TBI still remains incomplete, and the interactions between
synapses and the other injury mechanisms still need to be
ascertained. Also, even though three-dimensional in vitro
injury systems have been proposed to connect the injury
degree and cell responses [78], the majority of studies are
conducted in animals but not in humans, and verifying these
findings in human use is a big step to move on. Particularly,
the synaptic proteins in TBI are not well-studied; most
studies are confined in the pathological conditions of stroke
or subarachnoid hemorrhage, and more synaptic protein-
related studies may facilitate the identification of new pro-
teins and protein-targeted treatments.

Notably, the synapses seem to respond differently to
the mild and severe TBI, indicating that subanalysis on the
role of synapses in accordance with the degree of TBI is war-
ranted, and based on the literature review, we found that the
studies on the severe TBI were rather insufficient, regardless
of molecular mechanisms or treatment options. In addition,
it is important to take the dynamic characteristics of TBI into
consideration; the synapses may act differently at different
post-TBI periods. Besides, some studies conclude that com-
bined therapies seem to exert synergistic effects and are more
beneficial than single therapies [79, 80]; the role of synapse in
this condition is not fully understood.

In conclusion, synapses play a significant part in the
evolvement of TBI with a complicated link to various
responsive mechanisms. With more acting mechanisms,
synaptic protein treatments and synapsis-related treat-
ments await to be elucidated, and further studies on this
area are necessitated.
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