
Chapter 13
Epidemic-Logistics Network Considering
Time Windows and Service Level

In this chapter, we present two optimization models for optimizing the epidemic-
logistics network. In the first one, we formulate the problem of emergency materials
distribution with time windows to be a multiple traveling salesman problem. Knowl-
edge of graph theory is used to transform theMTSP to be a TSP, then such TSP route
is analyzed and proved to be the optimal Hamilton route theoretically. Besides, a new
hybrid genetic algorithm is designed for solving the problem. In the second one, we
propose an improved location-allocation model with an emphasis on maximizing the
emergency service level. We formulate the problem to be a mixed-integer nonlinear
programming model and develop an effective algorithm to solve the model. In this
chapter, we present two optimization models for optimizing the epidemic-logistics
network. In the first one, we formulate the problem of emergency materials distri-
bution with time windows to be a multiple traveling salesman problem. Knowledge
of graph theory is used to transform the MTSP to be a TSP, then such TSP route is
analyzed and proved to be the optimal Hamilton route theoretically. Besides, a new
hybrid genetic algorithm is designed for solving the problem. In the second one, we
propose an improved location-allocation model with an emphasis on maximizing the
emergency service level. We formulate the problem to be a mixed-integer nonlinear
programming model and develop an effective algorithm to solve the model.

13.1 Emergency Materials Distribution with Time
Windows

13.1.1 Introduction

With rapid development of the global economy, a new biological virus can get any-
where around the world in 24 h. Virus which lurked in the forest or other biological
environment before, have been forced to face human ecologywhen its nature ecology
environment destroyed, and this would cause some new type diseases such as Mar-
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burg hemorrhagic fevers in Angola, SARS in China, Anthrax mail in USA, Ebola in
Congo,smallpox and so on. Bioterrorism threats are realistic and it has a huge influ-
ence on social stability, economic development and human health. Without question,
nowadays the world has become a risk world, filling with all kinds of threaten from
both nature and man made.

Economywould always be the most important factor in normal materials distribu-
tion network. However, timeliness is much more important in emergency materials
distribution network. To form a timeliness emergency logistics network, a scientific
and rational emergency materials distribution system should be constructed to cut
down the length of emergency rescue route and reduce economic loss.

In 1990s, America had invested lots of money to build and perfect the emergency
warning defense system of public health, aiming to defense the potential terror-
ism attacks of biology, chemistry and radioactivity material. Metropolitan Medical
Response System (MMRS) is one of the important parts, which played a crucial role
in the “9.11” event and delivered 50 tons medicine materials to New York in 7 h
[1]. In October 2001, suffered from the bioterrorism attack of anthrax, the federal
medicine reserve storage delivered a great deal of medicine materials to local health
departments [2].

Khan et al. [3] considered that the key challenge of anti-bioterrorism is that people
don’t knowwhen, where and in whichway theywould suffer bioterrorism attack, and
what they can do is just using vaccine, antibiotics and medicine to treat themselves
after disaster happened. Because of this, Venkatesh and Memish [4] mentioned that
what a country most needed to do is to check its preparation for bioterrorism attacks,
especially the perfect extent of the emergency logistics network which includes the
reserve and distribution of emergency rescue materials, and the emergency response
ability to bioterrorism attacks. Other anti-bioterrorism response relative researches
can be found in Kaplan et al. [5].

Emergencymaterials distribution is one of themajor activities in anti-bioterrorism
response. Emergency materials distribution network is driven by the biological virus
diffusion network, which has different structures from the general logistics network.
Quick response to the emergency demand after bioterrorism attack through efficient
emergency logistics distribution is vital to the alleviation of disaster impact on the
affected areas, which remains challenges in the field of logistics and related study
areas [6].

In the work of Cook and Stephenson [7], importance of logistics management in
the transportation of rescue materials was firstly proposed. References Ray [8] and
Rathi et al. [9] introduced emergency rescue materials transportation with the aim of
minimizing transportation cost under the different constraint conditions. A relaxed
VRP problem was formulated as an integer programming model and proved that’s
a NP-Hard problem in Dror er al. [10] Other scholars have also carried out much
research on the emergency materials distribution models such as Fiedrich et al. [11],
Ozdamar et al. [12] and Tzeng et al. [13].

During the actual process of emergency material distribution, the Emergency
Command Center(ECC) would always supply the emergency materials demand
points(EMDP) in groups based on the vehicles they have. Besides, each route
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wouldn’t repeat, which made any demand point get the emergency materials as fast
as possible. To the best of our knowledge, this is a very common experience in China.
Under the assumption that any demand point would be satisfied after once replen-
ishment, the question researched would be turn into a multiple traveling salesman
problem (MTSP) with an immovable origin. In the work of Bektas [14], the author
gave a detailed literature review on MTSP from both sides of model and algorithm.
Malik et al. [15], Carter and Ragsdale [16] illustrate some more results on how to
solve the MTSP.

To summarize, our model differs from past research in at least three aspects.
First, nature disaster such as earthquake, typhoons, flood and so on was always
used as the background or numerical simulation in the past research, such kind of
disaster can disrupt the traffic and lifeline systems, obstructing the operation of rescue
machines, rescue vehicles and ambulances. But situation in anti-bioterrorism system
is different, traffic would be normal and the epidemic situation could be controlled
with vaccination or contact isolation. Second, to the best of our knowledge, this is the
first time to combine research on the biological epidemic model and the emergency
materials distribution model, and we assume that emergency logistics network is
driven by the biological virus diffusion network. Therefore, it has a different structure
from the general logistics network. Third, the new hybrid genetic algorithm we
designed and applied in this study is different from all the traditional ways, we
improved the two-part chromosome which proposed by Carter and Ragsdale [16],
and custom special set order function, crossover function and mutation function,
which can find the optimal result effectively.

13.1.2 SIR Epidemic Model

Although rule of the virus diffusion isn’t the emphasis in our research, it is the
necessary part when depicting the emergency demanded. Figure 13.1 illustrates SIR
epidemic model with natural birth and death of the population.

Then we can get the mathematic formulas as follows.
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Fig. 13.1 SIR model with natural birth and death
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d R

dt
= bR + γ I − dR

(13.1)

where S, I and R, represent number of the susceptible, infective and recovered
population, respectively. b and d, stand for the natural birth and death coefficient, α
is the death coefficient for disease, β is the proportion coefficient from S to I in unit
time, and last, γ is the proportion coefficient from I to R.

Note that number of the susceptible and the infective persons would be gotten via
computer simulation with value of the other parameters preset. Then, the emergency
materials each point demanded can be also calculated based on the number of sick
person.

13.1.3 Emergency Materials Distribution Network with Time
Windows

Figure 13.2 is the roadway network of a city in south China, numbers beside the
road are the length of the section (unit: km). Point O is the ECC and the other nodes
1–32 are the EMDPs. Now, there are some emergency materials arrived at the ECC
by air transport and we need to send it to each demand point as fast as possible. We
assumed that all the EMDPs are divided into 4 groups, and any demand point in the
network would be satisfied after once replenishment, then the question researched
was turn into a MTSP with an immovable origin. However, time windows constraint
wasn’t considered.

In this study, we use the new hybrid GA to solve the MTSP with time windows.
Using SIR epidemic model in Sect. 13.2, number of the susceptible and infective
people can be forecasted before emergency distribution. Then symbol ti is set to
show how much time is consumed in demand point i , i = 1, 2, . . . , 32. We assume
it has a simple linear functional relationship with number of the infective person as
follows.

ti = Ii
vvac

(13.2)

where Ii is number of the infective people in demand point i , vvac is the average
speed of vaccination. Another assumption for this research is that vehicle speed is
the same as in any roadway section in the network, which noted as a symbol V .
So, question researched in this study is: Based on the epidemic model analysis,
how can we distribute the emergency materials to the whole EMDPs with a time
windows constraint? How many groups should be divided? And, how can we get
the optimization route? With the analysis above, objective function model can be
formulated as follows.
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Fig. 13.2 Roadway network of the city

min
32∑

i=1

32∑

j=1

si j xi j
V

+
32∑

i=1

ti (13.3)

s.t.
32∑

j=1

xoj = n (13.4)

32∑

j=1

x jo = n (13.5)

32∑

i=1

xi j = 1,∀ j = 1, 2, . . . , 32 (13.6)
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32∑

j=1

xi j = 1,∀i = 1, 2, . . . , 32 (13.7)

∑

i /∈S

∑

j∈S
xi j ≥ 1,∀S ⊆ V \{O}, S �= ∅ (13.8)

Tk ≤ TTW , k = 1, 2, . . . , n (13.9)

xi j ∈ {0, 1},∀(i, j) ∈ G (13.10)

where xi j = 1 means that the emergency materials is distributed to point j immedi-
ately after point i , otherwise, xi j = 0. si j represent the shortest route between point
i and j . n is number of the distribution groups. Tk is time consumed in group k. TTW
is the time windows. Equations (13.4) and (13.5) are the grouping constraints, (13.6)
and (13.7) insure that each demand point would be supplied once. Equation (13.8)
assures that there is no sub loop in the optimal route. Equation (13.9) is the time
windows constraint. And last, Eq. (13.10) is the parameter specification. The hybrid
genetic algorithm are presented as follows.

Step 1:Using SIR epidemic model in Sect. 13.2 to forecast number of the susceptible
and infective people, and then, confirm the emergency distribution time in each
EMDP;
Step 2: Generate the original population based on the code rule;
Step 3: Using the custom set order function to optimize the original population and
make the new population have finer sequence information;
Step 4: Estimate that whether the results satisfy the constraints (4) to (10) in the
model, if yes, turn to the next step, if not, delete the chromosome;
Step 5: Using the fitness function to evaluate fitness value of the new population;
Step 6: End one fall and the best one doubled policy are used to copy the population;
Step 7: Crossover the population using the custom crossover function;
Step 8:Mutate the population using the custom mutation function;
Step 9: Repeat the operating procedures (3)–(8) until the terminal condition is sat-
isfied;
Step 10: 10 approximate optimal routes would be found by the new hybrid genetic
algorithm and then the best equilibrium solution would be selected by the local
search algorithm.

13.1.4 Numerical Tests

In order to evaluate the practical efficiency of the proposed methodology, parameters
of the SIR epidemic model are given as follows, b = d = 10−5, β = 10−5, α =
0.01, γ = 0.03, and initializing S = 10,000, I = 100, R = 0. vvac = 2000,
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Fig. 13.3 Virus diffusion with time

TTW = 12, V = 40, Day = 5. And we assume that each EMDP has the same
situation. Figure 13.3 illustrates that number of the susceptible and infective people
changed. Similarly, with different initial value of the Si and Ii in different EMDP,
number of the susceptible and infective people in any EMDP and any time can
be forecasted, and then, time consumed in each demand point can be calculated.
Figure 13.4 illustrates the magnitude of the differences in the solution spaces for the

Fig. 13.4 Solution space of the MTSP
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three chromosomes for a MTSP with n = 32 demand points as the group number is
varied from 1 to 32. From this figure we can see that when n ≥ 4, size of the solution
space in Two-part chromosome is distinguish to the other two styles.

Figures 13.5 and 13.6 show the fitness and route length vary with iterate times
using the new hybrid GA, respectively. From the figures we can see that each group
would be converged effectively, 10 approximate optimal routes would be obtained.

Comparison of the 10 approximate optimal routes is illustrated in Fig. 13.7, and the
best equilibrium solution of emergency materials distribution is shown in Fig. 13.8.

From Figs. 13.6 and 13.7, though length of the route in group 9 is the shortest
one, it isn’t the best equilibrium solution. In other words, some demand points can be
supplied immediately but others should wait for a long time. This is not the objective
we pursue. From Fig. 13.7, inside deviation of group 7 is the minimum one, which
means route in group 7 is the best equilibrium solution, though it isn’t the shortest
route. In other words, all the demand points can be supplied in the minimum time
difference at widest possibility. Another problem worthy to be pointed out is that
group 10 is the suboptimal to group 7, and this can be used as a candidate choice for
commander under the emergency environment.

Fig. 13.5 Fitness with iteration
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Fig. 13.6 Route length with iteration

Fig. 13.7 The inside deviation of each group

13.1.5 Discussion

In fact, results in the prior section are too idealized, for we just considered emer-
gencymaterials distribution at the beginning of the virus diffusion (Day = 5) andwe
assume that each EMDP has the same situation. In fact, it is impossible. Each param-
eter preset would affect the result at last immensely. Some of them are discussed as
follows.

(1) Time consumed with different initial size of S

There are 32 EMDPs in this distribution network, actually, each point has a different
number of the susceptible people to others, and we can assume they are distributed
from 10,000 to 50,000. With the SIR epidemic model in Sect. 13.1.2, different size
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Fig. 13.8 Best equilibrium solution of the MTSP

Fig. 13.9 Time consumed with different initial size of S

of the initial susceptible people will bring different size of infective people at last,
and then, time consumed in these EMDPs would be varied. Figure 13.9 illustrates
that time consumed in one EMDP with different initial size of S as date increased.
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There is almost no distinguish among them in the first 30 days (a month), however,
distinguish is outstanding in the following days. The larger the initial size of S is,
the faster increment speed of the time consumed. In Sect. 13.1.4, S = 10, 000 is
taken for each EMDP and the time consumed almost no more than 1 h, this is a very
simple situation, and the optimal route with timewindows can be depicted easily. But
when initial size of S increased, the problem would become much more trouble for
satisfying the time window constraint, and then, we should divided the distribution
route in much more groups.

(2) Time consumed with different initial size of I

Asmentioned before, each EMDP also has a different number of the infective people
to others, and we can assume they are distributed from 50 to 200. Figure 13.10
illustrates that time consumed in one EMDP with different initial size of I as date
increased. It also can get that time consumed in the first 30 days is smoothly, but
distinguish is outstanding in the following days. Similar as before, the larger the initial
size of I is, the faster increment speed of the time consumed. Another interesting
result is that vary I from 50 to 200, distinguish of the time consumed in each situation
isn’t very outstanding, and size of the time consumed is around 1 h. In other words,
model in Sect. 13.1.3 is still serviceable and we needn’t change the grouping design.

(3) Time consumed with different initial size of β

β is one of themost important parameters in SIR epidemicmodel, it affects number of
the infective people in the population directly, and then, it affects the time consumed
in EMDP accordingly. Vary value of β from 10−5 to 5 × 10−5, and we get time
consumed with it changed as show in Fig. 13.11. Still we have conclusion that time
consumed in the first 30 days is more or less in different situations, but distinguish
is outstanding in the following days. Similar as before, the larger the initial size of β

is, the faster increment speed of the time consumed. With initial size of β increased,
distribution groups should be adjusted for satisfying the time windows.

Fig. 13.10 Time consumed with different initial size of I
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Fig. 13.11 Time consumed with different initial size of β

Based on the analysis above, we can see that time consumed in the first 30 days
always stay in a lower level. It is important information for emergency relief in
the anti-bioterrorism system, which means the earlier the emergency materials dis-
tributed, the less affect would be brought by parameters varied. This also answers the
actual question that why emergency relief activities always get the best effectiveness
at the beginning.

13.1.6 Conclusions

Emergencymaterials distribution problemwith aMTSPTWcharacteristic in the anti-
bioterrorism system is researched in this study, and the best equilibrium solution
is obtained by the new hybrid GA. Modeling the MTSP using the new two-part
chromosome proposed has clear advantages over using either of the existing one
chromosome or the two chromosome methods. Besides, combined with the SIR
epidemic model, relationship between the parameters and the result are discussed at
last, which makes methods proposed in this study more practical.

A problem worthy to be pointed out is that the shortest route between any two
EMDPs in the new hybrid GA is calculated by Dijkstra algorithm, so, the optimal
result would be gotten even if some sections of the roadway are disrupted, which
makes applicability range of the method projected in this study expanded. Research
on the emergency materials distribution is a very complex work, only some idealized
situations are analyzed and discussed in this study, and some other constraints such
as loading capacity of the vehicles, death coefficient for disease, distribution mode
and so on, which could be directions of further research.
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13.2 An Improved Location-Allocation Model
for Emergency Logistics Network Design

Emergency logistics network design is extremely important when responding to
an unexpected epidemic pandemic. In this study, we propose an improved location-
allocationmodelwith an emphasis onmaximizing the emergency service level (ESL).
We formulate the problem to be a mixed-integer nonlinear programming model
(MINLP) and develop an effective algorithm to solve the model. The numerical
test shows that our model can provide tangible recommendations for controlling an
unexpected epidemic.

13.2.1 Introduction

Over the past decade, various types of diseases have erupted throughout the
world, i.e., SARS (2003), human avian influenza (2004), H1N1 (2009), and Ebola
(2014–2015). These unconventional diseases not only seriously endanger humanity’s
life, but also have significant impacts on economic development. A recent example
is the 2014–2015 Ebola pandemic occurring in West Africa, which infected 28,610
individuals, causing 11,300 fatalities and $32.6 billion in economic losses.

To satisfy the emergency demand of epidemic diffusion, an efficient emergency
service network,which considers how to locate the regional distribution center (RDC)
and how to allocate all affected areas to these RDCs, should be urgently designed.
This problem opens a wide range for applying the OR/MS techniques and it has
attracted many attentions in recent years.

For example, Ekici et al. [17] proposed a hybridmodel, which estimated the spread
of influenza and integrated it with a location-allocation model for food distribution
in Georgia. Chen et al. [18] proposed a model which linked the disease progression,
the related medical intervention actions and the logistics deployment together to help
crisis managers extract crucial insights on emergency logistics management from a
strategic standpoint. Ren et al. [19] presented a multi-city resource allocation model
to distribute a limited amount of vaccine tominimize the total number of fatalities due
to a smallpox outbreak. He and Liu [20] proposed a time-varying forecasting model
based on a modified SEIR model and used a linear programming model to facili-
tate distribution decision-making for quick responses to public health emergencies.
Liu and Zhang [21] proposed a time-space network model for studying the dynamic
impact of medical resource allocation in controlling the spread of an epidemic. Fur-
ther, they presented a dynamic decision-making framework, which coupled with a
forecasting mechanism based on the SEIR model and a logistics planning system to
satisfy the forecasted demand andminimize the total operation costs [22]. Anparasan
and Lejeune [23] proposed an integer linear programming model, which determined
the number, size, and location of treatment facilities, deployed medical staff, located
ambulances to triage points, and organized the transportation of severely ill patients
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to treatment facilities. Büyüktahtakın et al. [24] proposed a mixed-integer program-
ming (MIP)model to determine the optimal amount, timing and location of resources
that are allocated for controlling Ebola in West-Africa. Moreover, literature reviews
on OR/MS contributions to epidemic control were conducted in Dasaklis et al. [25],
Rachaniotis et al. [26] and Dasaklis et al. [27].

In this study, we propose an improved location-allocation model for emergency
resources distribution.We define a new concept of emergency service level (ESL) and
then formulate the problem to be a mixed-integer nonlinear programming (MINLP)
model. More precisely, our model (1) identifies the optimal number of RDCs, (2)
determines RDCs’ locations, (3) decides on the relative scale of each RDC, (4)
allocates each affected area to an appropriate RDC, and (5) obtains ESL for the best
scenario, as well as other scenarios.

13.2.2 Model Formulation

(1) Definition of ESL

In this study, ESL includes two components. ESL1 is constructed to reflect the
level of demand satisfaction and ESL2 is proposed for the relative level of emergency
operation cost. These two aspects are given by the weight coefficient α and 1 − α

respectively. The influence of these two factors on the ESL is illustrated in Fig. 13.12.
Figure 13.12a represents that ESL1 increases as the level of demand satisfaction
raised. As we can see that it is a piecewise curve. Before demand is completely
met, it is an S-shape curve from zero to α. After that, it becomes a constant, which
means the additional emergency supplies cannot improve the ESL. Figure 13.12b
identifies that ESL2 decreases as the relative total cost increases. When emergency
operation cost is minimized, the ESL2 arrives at its best level of 1 − α. Similarly,
when emergency operation cost is maximized, the ESL2 is zero.

(2) Mathematic Model

0 1

α

ESL1

Demand 
Satisfaction

1-α

ESL2

Total Cost
min

2f
max

2f

(a) (b)

Fig. 13.12 Schematic diagram of ESL
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Our model depicts the problem of location and allocation for emergency logistics
network design. The network is a three-echelon supply chain of strategic national
stockpile (SNS), RDCs, and affected areas. The core problem is to determine the
number and locations for the RDCs. In each affected area, there is a point of dis-
pensing (POD). To model the problem, we first present the relative parameters and
variables as follows.

Parameters:
I : Set of SNSs, i ∈ I .
J : Set of RDCs, j ∈ J .
K : Set of affected areas, k ∈ K .
α: Weight coefficient for the two parts of ESL.
dk : Demand for emergency supplies in affected area k.
(xk, yk): Coordinates of affected area k.
(xi , yi ): Coordinates of SNS i .
CT L : Unit transportation cost from SNS to RDC.
CLT L : Unit transportation cost from RDC to affected area.
CRDC

j : Cost for operating a RDC. It is decided by the relative size of the RDC j .
Ui : Supply capacity of SNS i .

Variables:
Di j : Distance from SNS i to RDC j . For simplify, the Euclidean distance is adopted.
Djk : Distance from RDC j to affected area k.
ε jk : Binary variable. If RDC j provides emergency supplies to affected area k,
ε jk = 1; otherwise, ε jk = 0.
z j : Binary variable. If RDC j is opened, z j = 1; otherwise, z j = 0.
x jk : Amount of emergency supplies from RDC j to affected area k.
yi j : Amount of emergency supplies from SNS i to RDC j.
(x j , y j ): Coordinates of RDC j .

According to the above notations,we candefine the optimizationmodel as follows.

Max ESL = ESL1 + ESL2 (13.11)

Herein, ESL1 is defined as (13.12)–(13.14). These equations reflect that the less
the unsatisfied demand is, the higher ESL1 is.

ESL1 = α
1

K

K∑

k=1

pk(h) (13.12)

pk(h) = e
−hk
1−hk (13.13)

hk = 1 −
∑J

j=1 ε jk x jk

dk
(13.14)
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ESL2 is defined as follows. First, we formulate the total operation cost as (13.15):

f2 = CT L

J∑

j=1

I∑

i=1

z j yi j Di j+CLT L

J∑

j=1

K∑

k=1

ε jk x jk D jk +
J∑

j=1

z jC
RDC
j (13.15)

where CRDC
j is the operating cost for RDC j when it is opened. It is decided by the

relative size of the RDC, which can be expressed as:

CRDC
j = f (s j ) (13.16)

s j =
∑K

k=1 x jk
∑J

j=1

∑K
k=1 x jk

,∀ j (13.17)

Second, to non-dimensionalize the cost function f2, we calculate the following
two extreme values for Eq. (13.15).

Min
var∈S

f2(var) = fmin
2 , Max

var∈S
f2(var) = fmax

2 (13.18)

F2 = 1 − f2(var) − fmin
2

fmax
2 − fmin

2

= fmax
2 − f2(var)

fmax
2 − fmin

2

(13.19)

ESL2 = (1 − α)F2 (13.20)

where var represents all variables and S represents the following constraints. f min
2

and f max
2 are the minimum and maximum values obtained by solving (13.15) with-

out considering the ESL1. The definition of ESL2 means that the lower the total
operation cost is, the higher the ESL is. The constraints for the optimization model
are given as follows:

s.t.
J∑

j=1

ε jk = 1,∀k ∈ K (13.21)

J∑

j=1

ε jk x jk ≤ dk,∀k ∈ K ; (13.22)

I∑

i=1

z j yi j =
K∑

k=1

ε jk x jk,∀ j ∈ J (13.23)

ε jk ≤ z j ,∀ j ∈ J, k ∈ K (13.24)
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J∑

j=1

z j ≤ J (13.25)

J∑

j=1

yi j ≤ Ui ,∀i ∈ I (13.26)

z j , ε jk = {0, 1},∀ j ∈ J, k ∈ K (13.27)

x jk, yi j ∈ Z+
0 ,∀i ∈ I, j ∈ J, k ∈ K (13.28)

(x j , y j ),∀ j ∈ J are continuous variables. (13.29)

Constraint (13.21) indicates that each affected area is serviced by a single RDC.
Constraint (13.22) specifies that the supplies to each affected area should not bemore
than its demand. Constraint (13.23) is a flow conservation constraint. Constraint
(13.24) shows that only the opened RDC can provide distribution service. Constraint
(13.25) specifies the upper bound of RDC number. Constraint (13.26) is the supply
capacity constraint of each SNS. Finally, constraints (13.27)–(13.29) are variables
constraints.

13.2.3 Solution Procedure

The proposed model for emergency services network design is a MINLP model
as it involves multiplication of two variables (i.e., ε jk x jk). More importantly, the
optimization model includes a continuous facility location-allocation model with
unknown number of RDCs. To avoid the complexity of such MINLP model, we
modify it by adding two auxiliary variables. The detail of the modification was
introduced in McCormick [28]. Our solution procedure integrates an enumeration
search rule and a genetic algorithm (GA), which are applied iteratively. As GA is a
mature algorithm [29], details of the GA process are omitted here. We summarize
the proposed solution methodology as below.

Step 1: Data input and parameters setting, which includes I, J, K, α, dK ,
(xk, yk), (xi , yi ),CT L ,CLT L , andCRDC

j and the related parameters for GA.
Step 2: Initialization. Generate the original population according to the constraints.
Step 3: Evaluation. Fitness function is defined as the reciprocal of ESL.
Step 4: Selection. Use roulette as the select rule.
Step 5: Crossover. Single-point rule is used.
Step 6: Mutation. A random mutation is applied.
Step 7: If termination condition is met, go to the next Step; else, return to Step 4.
Step 8: Output the results.
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13.2.4 Numerical Test

(1) Data Setting

To clarify the effect of the model, we conduct a numerical test. Assuming there is an
unexpected epidemic outbreak in a 100 × 100 square region with 10 affected areas
in it. In the square region, only three SNSs can provide emergency supplies. Because
at the early stage of the outbreak, there is a large demand for emergency supplies.
The supply capacity of these SNSs is less than the total demand in affected areas,
which are set at 700, 600 and 400 respectively. The coordinates of the SNSs and the
affected areas are obtained in advance. The upper bound of RDC number is set to
be 8. The cost of operating a RDC is defined as 6760 × √

s j . The demand in each
affected area is randomly generated. Finally, unit transportation cost from SNS to
RDC is set to be 80 and unit transportation cost from RDC to affected area is 160.

(2) Test Results

Based on the above data setting, we solve our model by using MATLAB software
and obtain the results in Fig. 13.13. As it shows in this figure, one can observe that
there is a trade-off between the two components of the ESL. In our example, we test
the parameter α from 0.4 to 0.9, which means the demand satisfaction is more and
more important in our decision making. The result shows that when α is equal to 0.6,
the total ESL can arrive at its best value (0.9258). Beyond which it decreases again.
In practice, the decision makers may have different value of α according to the actual
needs. Correspondingly, it will lead to different ESL.

Our model also determines the optimal number, locations and relative sizes for
the RDCs. The test results are shown in Table 13.1. For example, RDC1 deliver
emergency supplies to affected areas 2, 7 and 9. Its relative size is 33.23%, which
means emergency supplies transshipped in this RDC occupies the corresponding
proportion in total emergency distribution.

Table 13.2 illustrates the proportion of demand satisfaction for each affected area.
For an example, demand for emergency supplies in affected area 2 is 149, and all
this area’s demand is totally satisfied. However, one can also observe that demands
in some areas are partly supplied due to the supply capacity limitation. For example,
only 69.5% of the demand in affected area 1 is delivered.

Fig. 13.13 ESL with
different scenario of α
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Table 13.1 Location and relative scale of each RDC

RDC Location Relative scale (%) Affected area

1 (18.1651, 33.8696) 33.23 2, 7, 9

2 (38.2318, 39.6607) 10.24 10

3 (75.9550, 37.1063) 21.24 4, 6

4 (61.6731, 93.3449) 13.41 1, 5

5 (48.1101, 84.0045) 21.88 3, 8

Table 13.2 The proportion of demand satisfaction in each affected area

Number Affected areas Demand Supply Proportion (%)

1 (81.5, 15.7) 141 98 69.5

2 (90.6, 89) 149 149 100

3 (31.7, 85.7) 158 158 100

4 (48.5, 31.3) 170 170 100

5 (3.2, 70) 188 130 69.15

6 (8.7, 4.2) 191 191 100

7 (27.8, 42.1) 208 208 100

8 (54.7, 91.6) 214 214 100

9 (55.8, 79.2) 208 208 100

10 (36.4, 26) 233 174 74.68

(3) Sensitivity Analysis

(1) Impact of α on the ESL

To understand the impact of α on the ESL, we solve our model with 6 different
values of this parameter, meaning that decision makers have different considerations
of the two components of the ESL. We compare the test result in Table 13.3. It can
be observed that ESL1 increases along with the emphasis on demand satisfaction.
However, the actual proportion of ESL1 is always staying at 90% of the setting of α.

Table 13.3 Sensitivity analysis on weight of ESL

α ESL1 Proportion (%) ESL2 Proportion (%) ESL

0.4 0.3537 88.425 0.5466 91.1 0.9003

0.5 0.4381 87.62 0.4839 96.78 0.9220

0.6 0.5398 89.96 0.386 96.5 0.9258

0.7 0.6378 89.99 0.2822 94.07 0.9200

0.8 0.7269 90.86 0.1876 93.8 0.9145

0.9 0.8182 90.91 0.0914 91.4 0.9096
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Fig. 13.14 ESL with
different demand in affected
areas
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As to the ESL2, one can note that it increases at first and then decreases as α varied
from 0.4 to 0.9.

(2) Sensitivity analysis on different demand in each affected area

We also examined the impact of different demand in each affected area. The test
results are shown in Fig. 13.14. We change the original demand in each affected
area for five scenarios. That means different demand situations when an unexpected
infectious epidemic happened. One can easily observe the more the demand is, the
lower the optimal ESL is. That is because when the demand increases, the supplies
of SNSs remain original, which leads a reduction in ESL1. When the demand in each
affected area changes, ESL2 varies slightly. Which shows that the change of the total
operation cost for the emergency logistics is not obvious when the scale of disease
becomes smaller.

13.2.5 Conclusions

In this study, we propose an improved location-allocation model with an emphasis
on maximizing the emergency service level (ESL). We formulate the problem to be
a mixed-integer nonlinear programming model and develop an effective algorithm
to solve the model. Moreover, we test our model through a case study and sensitivity
analysis. Themain contribution of this research is the function of ESL, which consid-
ers demand satisfaction and emergency operation cost simultaneously. Our definition
of ESL is different from the existing literature and has a significant meaning for guid-
ing the actual operations in emergency response. Future studies could address the
limitations of our work in both the disease forecasting and logistics management.
For example, the dynamics of epidemic diffusion could be considered and thus our
optimization problem can be extended to a dynamic programming model.
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