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A B S T R A C T

South American subterranean rodents are mainly described as solitary and mutual synchronization was never
observed among individuals maintained together in laboratory. We report that a single birth event was capable
of disrupting the robust nocturnal activity rhythm of singly housed tuco-tucos from north-west Argentina.
“Around-the-clock activity” was displayed by 8 out of 13 animals whose cages were closer to the newborn pups.
However, experimental exposure to a pup vocalization did not produce a similar effect on the rhythms of adult
animals. Our results indicate an effect of social interaction in the expression of biological rhythms even in
solitary animals.

1. Introduction

Social modulation of circadian rhythms [1–3] has been reported in
several species, such as birds [4–6], rodents [7–12], bats [13],
primates [14–16] and invertebrates [17–20]. For a review, see
[2,21]. Although several examples involve social animals, social
modulation of activity rhythms could be particularly relevant in solitary
species, such as hamsters [11,12], since encounters for reproduction
and/or the need of intraspecific avoidance during non-breeding
seasons require timing and synchronization among individuals. This
synchronization could be mediated by non-photic social cues, such as
pheromones, sound and sight of conspecifics.

Tuco-tucos (genus Ctenomys) are herbivorous subterranean ro-
dents endemic to South America. The genus is very speciose, with circa
60 described species, and can be found in a great variety of habitats
[22]. Despite evidence of sociality in some species (C. sociabilis [23],
most tuco-tucos are deemed strictly solitary [24]. Among non-social
species, reports of more than one animal found together are rare and
restricted to mating couples or females with young [25,26]. In this

context, we report that a single birth event unexpectedly disrupted the
robust nocturnal wheel-running activity rhythm of a group of 13 singly
housed tuco-tucos (Ctenomys sp) captured in La Rioja province in
Argentina. This peculiar response of the other captive animals, which
lasted one entire day on average for females and longer for males,
revealed that circadian rhythms can be modulated by social cues, in
this solitary subterranean rodent. An experiment was performed to test
if this social modulation was intermediated by acoustic cues using
playbacks of a pup vocalization.

2. Study species and ethical aspects

The animals used in this study were captured in the province of La
Rioja, Argentina, in the locality of Anillaco (28° 48´ S; 66° 56´ W;
1445 m). The population of Ctenomys found in the area is called the
Anillaco tuco-tuco however, species determination has not been
completed yet. Morphological, molecular and genetic analysis for this
purpose are ongoing.

During the time of this case report, tuco tucos were caught year-
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round for various experiments using PVC tube traps placed at fresh
surface mounds inside natural burrows. Capture technics and labora-
tory experimentation protocols were approved and authorized by the
Legal Technical Board (Oficina de Técnica Legal) of the Environmental
Department of La Rioja (Secretaria de Ambiente, Ministerio de
Producción y Desarrollo Local), Argentina (permission no 062-08).
Every procedure followed the guidelines of the American Society of
Mammalogists for animal care and handling [27].

3. Case report: effect of a birth event on activity rhythms

In the animal facility (410×300 cm), 13 adult animals (10 females
and 3 males) were kept individually in acrylic cages (53×27 cm and
29 cm high) equipped with wire mesh lids and stainless steel running
wheels. Cages were distanced from each other by 9 cm and animals
were kept in 12 h light:12 h dark cycles (LD12:12) and 23 ± 2 °C. Food
(fresh vegetables, seeds and rabbit pellets) was offered daily at random
times. Because tuco-tucos obtain water from food, water was not
provided. Wheel-running activity data was continuously recorded with

the ArChron Data Acquisition System (Simonetta System, Universidad
Nacional de Quilmes, Buenos Aires) at 5-minute intervals. Graphical
output (actograms) and rhythm analysis were carried out using the El
Temps software (A. Díez-Noguera, Universitat de Barcelona, 1999).

Under light/dark cycles, all tuco-tucos displayed very robust 24 h
rhythms, with wheel-running activity concentrated in the dark phase
(Fig. 1A). An unusual event of rhythm disruption was registered in
several individuals: On October 22th 2008, one of the females
(captured in July of the same year) gave birth to two pups in the
animal facility. The female abandoned the pups, which wandered
around the cage for two days until perishing. This event caused an
unusual response in several other animals present in the room: out of
13 animals, seven females ran during the whole day and night (animals
# 9, 19, 21, 23, 27, 29 and 24, the female with pups), displaying
“around-the-clock” activity for one entire day. One male (# 10) also
displayed this continuous 24 h activity but then totally interrupted
activity for three continuous days. Two other males displayed long-
term arrythmicity that lasted for at least 14 days (# 20 and 26) and
rhythmicity was then restored without an observable phase shift (data

Fig. 1. Daily activity rhythms and spatial distribution of 13 individuals. A) Wheel-running activity rhythms depicted in double-plotted actograms. Each line represents two consecutive
days and black marks denote activity. Black and white bars denote times of darkness and light, respectively, of an LD 12:12 cycle. On October 22, animal # 24 gave birth to two pups
(shown with an arrow). B. Distribution of the animals within the animal facility. Animals # 15 and # 18 were farther away from the mom/pups and did not show any change in their
rhythmic pattern.
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not presented). One female died after running all day and night (# 28).
Only two females maintained intact nocturnal rhythmicity (# 15 and 18
Fig. 1A) and these were notably those whose cages were farthest (340–
300 cm away) from the pups (see Fig. 1B).

4. Experiment: effect of acoustic cues on activity rhythms

4.1. Playback tests

To test if acoustic stimuli emitted by the pups can cause the
observed rhythmic disruption, another new set of 10 adult animals (5
females and 5 males) were exposed to playbacks of vocalizations from a
new pup. The recorded vocalization consisted of calls emitted by a pup
captured with the approximate age of 15 days. This estimation was
based on its weight (29 g), size of incisive and time during which care-
eliciting calls were recorded. Upon capture the pup was placed in a lab
terrarium (60 cm×100 cm and 50 cm high), filled with wood ships and
diverse plastic and cardboard tubes used as burrows and nest. The
terrarium was set by and open window and ambient temperature
remained at 24 ± °C. Ad lib feeding included sweet potatoes, carrots,
sunflower seeds, oatmeal, rabbit pellets as well as items of its natural
diet collected weekly from the field (Larrea sp, Opuntia sp,
Parkinsonia praecox). Vocalizations were recorded using a Zoom
H4n digital hand recorder system with built-in microphones (fre-
quency range 30–22.050 Hz) placed on the top of the terrarium.
Sounds were recorded at a sample rate of 44.1 kHz and at 16 bit depth
and then transferred to a personal computer for posterior playback-
section mounting. The care-elicitation vocalization recorded in this
specimen is very similar to those recorded for Ctenomys talarum [28],
however determination of the details of this similarity is an ongoing
study (Amaya et al., unpublished [44]).

A three-min interval of these recordings in the terrarium was
selected, based on its long duration, frequent and clear vocalizations,
as well as free of background noise, to be used to assemble the 10-h
playback section used in this experiment. Two different sequences were
mounted for the playback sections. In the first (non-continuous calls)
the selected three-min interval was repeated during 30 min followed by
a 30-min interval of silence; this continued for the remaining 9 h. In
the second sequence (continuous calls), 30 min interval of silence was
eliminated and vocalizations were played throughout the 10-h pulse.
Intensity was the same in both sequences. Two loudspeakers were
placed in the animal facility orientated towards the 10 experimental
animal cages in such a way that the distance between them and the
cages was always within 1–2 m. Playback sections occurred in two
times along the light-dark cycle, one along the light-phase, from 09:00
to 19:00 h, and the second along the dark-phase, from 21:00 to 09:00.
However only the 5-h middle section was used for analysis to avoid
potential effects due to the presence of the experimenters in the limits
of the playback interval.

4.2. Statistical analysis

Activity levels during the 5 h interval with playback and during the
corresponding time in the previous day were compared using paired T-
test with significance when P < 0.05, in R 2.12.1 [29], as done in similar
test protocols for acute effects on rhythmicity [30]. Activity levels
during the 5 h intervals were quantified as the total number of 5-
minute bins displaying a detected wheel-running revolution. The
experiment was then repeated using the continuous calls and the same
comparison was done in the expression of running-wheel revolutions.
Additionally, in this second experiment, general activity levels were
also registered using infrared sensors located in the middle-top of each
cage, which are sensible to subtle movements.

In the first experiment, using non-continuous calls, we observed
only a slight increase in nocturnal, and not in diurnal wheel-running
levels (diurnal: t(9)=1.32, p=0.22; nocturnal: t(9)=−3.70,p < 0.01)

(Fig. 2A). We then increased only the frequency of calls in the second
experiment. No significant changes were observed in wheel-running
activity (diurnal: t(9)=−2.07, p=0.06; nocturnal: t(9)=−1.26, p=0.23),
but a significant decrease in diurnal (t(4)=6.16, p < 0.01) and increase
in nocturnal (t(4)=−4.96, p < 0.01) general activity was detected
(Fig. 2B).

5. Discussion

5.1. Around-the-clock activity caused by a birth event

Because light/dark cycles are strong synchronizers of circadian
rhythms, social modulation of rhythmic parameters have better been
revealed in rodents under constant lightning conditions and after long-
term cohabitation [8,11,12]. In this context, it's notable that several
experiments had already been conducted with tuco-tucos under con-
stant darkness conditions [31, see this work also for more details on
laboratory conditions; 32-34], but never before had any mutual
synchronization among individuals been detected. The animals cannot
see each other and we also know that they do not react to the sight of

Fig. 2. Activity levels of captive tuco-tucos measured with running wheels and infrared
detectors during the playback experiment 1 (a) and 2 (b) (mean number of activity bouts
± SE). White bars represent activity levels during the light phase (11:00 to 16:00) at the
day without the playback (No Playback: NP) (plain white) and the correspondent time at
the day with the playback (Playback: P) (hatched white; P). Dark grey bars represent
activity levels during the dark phase (23:00 to 04:00) at the night without the playback
(No playback: NP) (plain grey) and the correspondent time at the night with the playback
(Playback: P) (hatched grey). * P < 0.05 in the respective paired T-test analysis.
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others, even when two translucent cages are placed side-by-side. Their
cages were not, however, isolated in terms of sound or smell, suggest-
ing that these factors could have mediated the observed rhythmic
changes.

Changes in rhythmic patterns intermediated by chemical cues have
been shown, for instance, in social interactions between two rodent
Acomys species [35] and among socially interacting Octogon degus
individuals [36]. It has been reported that through close inspection of
urine, feces or dirt, tuco-tucos can discriminate chemical cues and use
them to assess the reproductive condition of conspecifics [37,38]. In
this sense, social modulation of rhythmicity could potentially be
mediated by chemical factors in tuco-tucos, although such phenomen-
on has not been described before.

Acoustic signals in tuco-tucos seem to be particularly important in
social interactions, as they extensively use vocalizations to commu-
nicate between individuals in the same burrow as well as in different
burrows [26,28,39–43]. This genus displays complex vocalization
patterns, which have been described for C. talarum [28,42,43], C.
pearsoni [26,39–41] as well as for the Anillaco species referred to here
[44]. One of the vocalizations described is the high frequency distress
call emitted by newborn pups when far from their mother [40,42,43].
We hypothesize that either calls and/or chemical cues emitted by pups
could have triggered the around-the-clock activity displayed by most of
the animals.

Surprisingly, males were also affected by the social event however,
the response was different and longer-lasting. They displayed at least
14 days of arrythmicity before resuming normal rhythmicity. Another
possibility is that the mother emitted signal that affected the males. The
fact that the female abandoned the pups is an indication that this
female was stressed maybe because the captivity conditions were not
ideal for rearing pups or because she detected the presence of other
animals. The presence of other animals during parturition in a solitary
species may be a strong threatening stimulus.

It is also interesting to note that, unlike most reports of social
synchronization in long-cohabiting rodent species [8,12], the around-
the-clock activity of tuco-tucos was immediately triggered by unpre-
dictable social stimuli.

5.2. Playback tests

Results of the playback tests were not consistent with the observed
around-the-clock phenomenon, which could not be reproduced by
merely imposing the pup sound. It could be that the vocalization that
was recorded did not correspond to the particular newborn pattern that
triggered the rhythmic disruption of tucos. In C. talarum, a care
eliciting vocalization pattern has been registered from birth to 5 weeks
of life [42,43] but there is a possibility of age changes, and our recorded
pup was aged around 2 weeks. Besides this, our results can indicate
that the vocalization alone, if any, was not the triggering stimulus,
rescuing the role of the olfactory and perhaps other sensory compo-
nents. We could be sure, however, with these results, that the activity
rhythm of tuco-tucos is not easily modulated by sound.

Around-the-clock activity has emerged in a variety of biological
contexts and has been recognized as a special, “extreme form of
chronobiological plasticity” [45]. Because day/night segregation is
displayed by most physiological and behavioral variables, the emer-
gence of around-the-clock activity in some species, under particular
contexts should possess a strong functional value. This seems the case,
for instance, of nocturnal flight displayed by diurnal birds during
migration [46], nursing eusocial insects caring day and night for
developing larvae [20], frequent day and night feeding of small
herbivore mammals [47–49] and around-the-clock vigilance of aquatic
mammals [50]. The around-the-clock activity displayed by closely
caged female tuco-tucos was clearly associated in time with the birth
of pups and seemingly lasted the two days of their unattended life.
After a long 3-month gestation, females give birth to relatively

precocious pups that are poorly furred and, consequently, have
probably deficient thermoregulatory capability. These characteristics
imply strong dependency on the maternal-pup bond for survival. In
fact, in another solitary species of Ctenomys, Pereira [51] described a
clear dependency on maternal care reflected in high daily maternal
investment; mothers spend 90% of their time in the nest in close
contact with the pups during the first week postpartum. During the
second week, pups open their eyes, start wondering around, self-groom
and eat solid food. The incidence and duration of maternal activities
decreases gradually until nutritional weaning between 30 and 50 days
postpartum while social weaning occurs later on. Considering this
strong mother-pup bond and the known fact that lactating females
accept and nurse not only their own pups but also alien ones, despite
recognizing they are not their own [51], adult females should be
sensitive to pups and this may explain the hyperactive response
observed in these data. Despite being an unexpected laboratory artifact,
it nevertheless reveals that tuco-tucos might display social modulation
of activity rhythms.

It is also interesting that the birth event caused a long-lasting effect
(arrhythmicity) in two of the males and a 24 h continuous activity
followed by three days of activity suppression in a third one. This
suggests the existence of individual variation in responses to social
stimuli, reinforcing the need to better understand such social effects on
activity rhythms in this and other species. In natural conditions males
have no contact with offspring's whatsoever so that sensitivity to pups
signal would not be expected unless it served to restrain approxima-
tion. On the other hand, males have contact with adult females for
reproduction purposes so that female´s signals would be expected to
affect males in some way. We cannot rule out that all the animals were
affected by signals from the female instead of the pups.

In general, little is known about social contacts that occur during
breeding seasons in Ctenomys species considered solitary, and there is
much to be known about trends in sociality [52].

6. Concluding remarks

Although solitary, the tuco-tucos found in Anillaco might be
susceptible to activity rhythm modulation by social cues and offer an
intriguing example of immediately evoked around-the-clock activity
related to maternal care. Possible social cues that trigger this phenom-
enon are of chemical and/or acoustic nature, but this remains spec-
ulative for the moment. Nevertheless, these results open a novel path
for investigation on the social interaction of subterranean rodents and
emphasize the importance of considering social interactions in future
studies with this and other subterranean species considered solitary.
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