
AGING NEUROSCIENCE
REVIEW ARTICLE

published: 28 July 2014
doi: 10.3389/fnagi.2014.00176

Alzheimer’s disease: relevant molecular and
physiopathological events affecting amyloid-β brain
balance and the putative role of PPARs
Juan M. Zolezzi1*, Sussy Bastías-Candia1, Manuel J. Santos2 and Nibaldo C. Inestrosa3,4,5*
1 Laboratorio de Biología Celular y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Tarapacá, Arica, Chile
2 Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
3 Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad

Católica de Chile, Santiago, Chile
4 Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
5 Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile

Edited by:
Robert Marr, Rosalind Franklin
University of Medicine and Science,
USA

Reviewed by:
Aurel Popa-Wagner, Clinic of
Psychiatry, Germany
Eliezer Masliah, University of
California, San Diego, USA

*Correspondence:
Juan M. Zolezzi, Laboratorio de
Biología Celular y Molecular,
Departamento de Biología, Facultad
de Ciencias, Universidad de
Tarapacá, Gral. Velásquez 1775,
Arica, 1000007, Chile
e-mail: juan.zolezzimoraga@
gmail.com;
Nibaldo C. Inestrosa, Centro de
Envejecimiento y Regeneración
(CARE), Departamento de Biología
Celular y Molecular, Facultad de
Ciencias Biológicas, Pontificia
Universidad Católica de Chile,
Alameda Lib. Bernardo O’Higgins
340, Santiago, 8331150, Chile
e-mail: ninestrosa@bio.puc.cl

Alzheimer’s disease (AD) is the most common form of age-related dementia. With the
expected aging of the human population, the estimated morbidity of AD suggests a critical
upcoming health problem. Several lines of research are focused on understanding AD
pathophysiology, and although the etiology of the disease remains a matter of intense
debate, increased brain levels of amyloid-β (Aβ) appear to be a critical event in triggering
a wide range of molecular alterations leading to AD. It has become evident in recent
years that an altered balance between production and clearance is responsible for the
accumulation of brain Aβ. Moreover, Aβ clearance is a complex event that involves more
than neurons and microglia. The status of the blood-brain barrier (BBB) and choroid plexus,
along with hepatic functionality, should be considered when Aβ balance is addressed.
Furthermore, it has been proposed that exposure to sub-toxic concentrations of metals,
such as copper, could both directly affect these secondary structures and act as a
seeding or nucleation core that facilitates Aβ aggregation. Recently, we have addressed
peroxisomal proliferator-activated receptors (PPARs)-related mechanisms, including the
direct modulation of mitochondrial dynamics through the PPARγ-coactivator-1α (PGC-1α)
axis and the crosstalk with critical aging- and neurodegenerative-related cellular pathways.
In the present review, we revise the current knowledge regarding the molecular aspects
of Aβ production and clearance and provide a physiological context that gives a more
complete view of this issue. Additionally, we consider the different structures involved
in AD-altered Aβ brain balance, which could be directly or indirectly affected by a nuclear
receptor (NR)/PPAR-related mechanism.

Keywords: brain homeostasis, blood-brain barrier, Aβ balance, systemic Aβ clearance, neurodegenerative disorders,
nuclear receptors

INTRODUCTION
During recent decades, it has become evident that the efficiency
of an organism’s homeostatic mechanisms is closely related to its
lifespan, suggesting that aging implies the alteration/modification
of several cellular processes necessary to sustain homeostasis
(Buga et al., 2011; Popa-Wagner et al., 2011; Basha and Poojary,
2014; Ureshino et al., 2014). Interestingly, aging is recognized as
the primary risk factor associated with some chronic degenerative
diseases, such as cancer, and/or some neurodegenerative disor-
ders, such as Alzheimer’s (AD) or Parkinson’s disease (Zlokovic
et al., 2010). Moreover, recent published works strongly sug-
gest that the clearance of amyloid-β (Aβ), a key peptide in
AD, and the alteration of this mechanism could be closely
related to different stages of the disease, e.g., the establish-
ment and/or progression of AD (Figure 1; Cramer et al., 2012).

A genetic component has been described for this disease (famil-
ial form); however, it is important to note that genetic-based
cases usually account for a limited or reduced number of total
cases.

In the present review, we approach the Aβ clearance problem
from different perspectives, including the molecular basis of Aβ

imbalance, systemic considerations that favor or impair Aβ final
excretion, and a wider view of how different tissues should inter-
play to ensure Aβ balance, thus preventing the development of
pathologic processes. In the same manner, based on our expe-
rience, we discuss the perspectives regarding nuclear receptors
(NRs) stimulation, particularly peroxisome proliferator-activated
receptors (PPARs) and some of the cellular signaling path-
ways that could be behind the effects observed for this family
of NRs.

Frontiers in Aging Neuroscience www.frontiersin.org July 2014 | Volume 6 | Article 176 | 1

http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org/Aging_Neuroscience/editorialboard
http://www.frontiersin.org/Aging_Neuroscience/editorialboard
http://www.frontiersin.org/Aging_Neuroscience/editorialboard
http://www.frontiersin.org/Aging_Neuroscience/about
http://www.frontiersin.org/Journal/10.3389/fnagi.2014.00176/abstract
http://www.frontiersin.org/Journal/10.3389/fnagi.2014.00176/abstract
http://www.frontiersin.org/Journal/10.3389/fnagi.2014.00176/abstract
http://community.frontiersin.org/people/u/129855
http://community.frontiersin.org/people/u/155008
http://community.frontiersin.org/people/u/172723
http://community.frontiersin.org/people/u/33098
mailto:juan.zolezzimoraga@gmail.com
mailto:juan.zolezzimoraga@gmail.com
mailto:ninestrosa@bio.puc.cl
http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Aging_Neuroscience/archive


Zolezzi et al. Aβ-clearance, putative roles of PPARs

FIGURE 1 | Aβ brain balance, a systemic event. Although the link
between Aβ and AD has been known from decades, the importance of Aβ

balance, as the result of clearance mechanisms along with brain Aβ

production and influx events, has become important only recently.
Moreover, the link between the Aβ brain levels and the involvement of brain
adjacent tissues, such as the blood-brain barrier (BBB) or the ChP, as well
as, with systemic alterations have been emerged as an interesting matter
to examine. Indeed, recent studies have explored the potentialities of
systemic interventions in order to reduce Aβ brain levels. Several studies
have demonstrated that ApoE levels, the main Aβ chaperone within the
brain, is a key element of Aβ brain removal and along with the BBB
ApoE-related transporters account for almost the total Aβ brain clearance.
Additional structures, such as the ChP, has also been demonstrated to play
a key role in the Aβ removal from the brain to the CSF and to blood. At the
basis of the Aβ brain clearance, emerge an Aβ sink established by the
systemic excretion of the Aβ, a process carried out mainly by the liver and
in less proportion by the kidneys. Whether normal or abnormal levels of Aβ

production (increased APP or BACE expression, in the lipid rafts) the Aβ sink
in the final Aβ brain balance is clearly critical. If an impaired systemic Aβ

excretion due to failure of the liver or kidney, compromise the chances to
properly reduce the blood Aβ charge, and additional elements, such as the
RAGE, might start to act and inducing Aβ influx to the brain, starting or
aggravates the Aβ accumulation. BBB, blood-brain barrier; ChP, Choroid
plexus; ApoE, apolipoprotein E; APP, amyloid precursor protein; BACE, β-site
APP cleaving enzyme; RAGE, receptor for advanced glycation end products.

AD OVERVIEW
AD is an age-associated neurodegenerative disorder characterized
by progressive memory loss and cognitive impairment, and it is
related to selective neuronal death in memory and learning brain
areas, which eventually leads to patient disability and ultimately
death (Braak and Braak, 1991; Morgan et al., 2007; Salmon and
Bondi, 2009; Savva et al., 2009; Ballard et al., 2011; Serrano-
Pozo et al., 2011; Godoy et al., 2014). Although many efforts are
committed to AD research, this disease represents a prevalent neu-
rodegenerative disorder that has become a serious public health
concern due to the aging of the world population (Lutz et al.,
2008). Clinically, AD precipitates a gradual neurodegeneration
affecting the short-term memory at the beginning of the disease,
followed by long-term memory loss (Braak and Braak, 1991;
Gómez-Isla et al., 1997; Perl, 2010). Brain atrophy and gradual
loss of neurons, mainly in the hippocampus, frontal cortex, and
limbic areas, together with the extracellular accumulation of Aβ

plaques and the intra-neuronal formation of neurofibrillary tan-
gles (NFT), are pathological hallmarks of the disease (Salmon and
Bondi, 2009; Perl, 2010; Manji et al., 2012). Whether in the famil-
ial or sporadic form, increased levels of Aβ have been described

as the starting point of the pathological changes observed in
AD (Selkoe, 2001; Karran et al., 2011). Aβ aggregates are often
surrounded by dystrophic neurites and reactive glial cells, and Aβ

peptide has been described as the major neurotoxic agent causing
these alterations (Li et al., 2010). Moreover, recent evidence clearly
supports the hypothesis that Aβ oligomers are a key factor in
synaptic impairment and the spatial memory decline associated
with neuronal dysfunction (Lacor et al., 2004; Haass and Selkoe,
2007; Cerpa et al., 2008; Dinamarca et al., 2012), including the
synaptic failure associated with the loss of synaptic proteins that
contributes to the progression of the disease (Scheff et al., 2007;
Mucke and Selkoe, 2012; Borlikova et al., 2013). Additionally, it
have been consistently demonstrated that Aβ also affects energy
homeostasis mainly because an altered insulin signaling and due
to Aβ-induced mitochondrial dysfunction (Abramov et al., 2004;
Paula-Lima et al., 2011; Popa-Wagner et al., 2013), suggesting a
severe cellular compromise which leads to general failure of the
cellular machinery.

These neurodegenerative pathological changes of AD ulti-
mately reflect the damage of the neuronal network due to altered
synaptic structure and synaptic functionality (Perl, 2010; Sheng
et al., 2012; Godoy et al., 2014). Pathologic modifications of the
presynaptic neurotransmitter-releasing machinery and/or altered
expression of specific postsynaptic proteins, such as the postsy-
naptic density protein-95 (PSD-95), are at the basis of the synaptic
impairment observed in AD (Sheng et al., 2012; Südhof, 2012,
2013). Importantly, although neuronal network damage occurs
across the entire brain, the hippocampus, which is associated
with memory and cognition, is one of the most critically involved
regions (Oliva et al., 2013; Shaerzadeh et al., 2014).

Regrettably, although AD was described more than a cen-
tury ago and important progress has been made in the under-
standing of this disease, effective AD treatments remain elusive
because there are no disease-modifying therapies that can slow or
definitively stop the progression of the neurodegenerative process
(Langbaum et al., 2013). From the initial cholinergic hypothesis
to the actual tau and amyloid hypotheses, research has confirmed
several aspects of AD-involved molecular pathways; however, no
satisfactory mechanisms have been revealed to enable an effec-
tive intervention against this disorder. Recently, an increasing
body of evidence has directed attention toward the mechanisms
involved with Aβ balance, namely the Aβ production/excretion
rate (Cramer et al., 2012; LaFerla, 2012; Fitz et al., 2013; LaClair
et al., 2013; Landreth et al., 2013; Price et al., 2013; Tesseur
et al., 2013; Veeraraghavalu et al., 2013; Zolezzi and Inestrosa,
2014).

MOLECULAR BASIS OF Aβ BIOLOGY: PHYSIOLOGICAL AND
PATHOLOGICAL CONSIDERATIONS
Aβ is a 37–49 peptide generated from the post-translational amy-
loidogenic processing of the amyloid precursor protein (APP),
a transmembrane protein that is present in several cell types,
including neurons. The precise function of the APP remains not
fully understood, although nervous system nerve differentiation
during development and both signaling and cell adhesion have
been related to this protein (Turner et al., 2003; Priller et al., 2006;
Zheng and Koo, 2006). APP possess a highly complex processing
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FIGURE 2 | APP processing, critical cellular choice. The main source of Aβ

production within the brain are the neurons. Two proteolytic processing
pathways of APP have been described with two clear outputs. The
non-amyloidogenic pathway will lead to the final release of the p3 and sAPPα,
a small peptide with still poorly understood cell function. The cleaving
enzymes which act to produce the sAPPα are the α- and γ-secretase. On the
other hand, the activity of the β- and γ-secretase leads to the formation of the
sAPPβ and the Aβ, the main neurotoxic agent described in AD. The role of the
BACE is out of question and it is considered the Aβ production rate limiting

enzyme. Interestingly, the recent work of Singh et al. (2013) clearly indicates
that external factors might influence the expression levels of BACE,
suggesting the potential up-regulation of the amyloidogenic processing of the
APP. In the same context, it have been recently proposed that the APP
amyloidogenic processing machinery is located in the lipid rafts rich in
cholesterol. The increased lipid content within the cells, for example, as a
result of increased systemic lipids levels, might also influence which APP
processing machinery will be prompted to act. sAPPα/β, soluble APP
fragment α/β; p3, 3-KDa peptide; BACE, β-site APP cleaving enzyme.

machinery, including three site-specific cleaving enzymes termed
α-, β-, and γ-secretase, the differential action of which leads
to the non-amyloidogenic or amyloidogenic processing of APP
(Figure 2). The coordinated processing of α- and γ-secretase leads
to the formation of soluble APP-α (sAPPα) fragments, while the
action of β- and γ-secretase causes the release of sAPPβ and
the neurotoxic Aβ (Grimm et al., 2013; Yan and Vassar, 2014).
β-secretase, also known as β-site APP cleaving enzyme (BACE1
and 2), is considered to be the Aβ production rate limiting
enzyme, and BACE-directed therapy is currently one of the aims
of several research projects (Grimm et al., 2013; Buggia-Prévot
et al., 2014; Yan and Vassar, 2014). Similarly, mutations in any
of the γ-secretase subunits, particularly presenilin (PSEN1 and
2), have been proven to induce the aberrant processing of the
APP, causing an increase in Aβ levels and favoring AD early
onset (Bekris et al., 2011; Benitez et al., 2013; Larner, 2013).
Increasing interest in β- and γ-secretase clustering has emerged in
various investigations, which indicate that this event is favored in
cholesterol-rich domains of the plasma membrane, termed lipid
rafts (Kapoor et al., 2010; Marquer et al., 2011). Some authors
have proposed that lipid rafts would be appropriate targets of
potential therapeutic interventions against AD (Ben Halima and
Rajendran, 2011).

The significance of APP processing and the importance of
BACE results are evident from several studies focused on under-
standing the cognitive decline and the memory impairment
observed in patients with chromosome 21 trisomy, where APP
and BACE genes are encrypted (Mok et al., 2013). The critical
role of BACE as an Aβ-level modulator is no longer debated,
and recent work has suggested the importance of understanding
how BACE polymorphisms determine not only Down’s syndrome
AD onset but also sporadic AD cases (Zhou et al., 2010; Mok
et al., 2013; Natunen et al., 2013). Moreover, the recent work of
Singh et al. (2013), which demonstrates that sub-toxic plasma
concentrations of copper may influence the expression of BACE1,
highlights the importance of non-evident or non-clinical events
that could be at the basis of some of the pathological changes that
will ultimately lead to AD onset.

It is important to note that the deficient expression of genes
related to the non-amyloidogenic processing of APP, such as
ADAM 9, 10, and/or 17, which have demonstrated α-secretase
activity, should also be addressed. These genes are related to
increased Aβ levels as a consequence of the increased amyloido-
genic processing of APP (Bekris et al., 2011).

Due to the complexity of APP processing and the genes
involved in this process (from the APP itself to the genes
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coding for each of the subunits necessary for the APP post-
translational modification), the study of the genetic variations,
such as polymorphisms or single nucleotide polymorphisms
(SNPs), is mandatory to correctly evaluate each patient and to
develop directed therapies that are not based on underestimated
genetic conditions. In the same way, we believe that a deep
understanding of this matter should enable the development of
new in vitro/in vivo models of AD that are necessary to evaluate
new therapeutic strategies.

BRAIN Aβ LEVELS IN THE INTERSTITIAL FLUID (ISF),
CEREBROSPINAL FLUID (CSF) AND BLOOD
Current knowledge indicates that Aβ begins to accumulate out-
side the cell, within the interstitial fluid (ISF), where its aggre-
gation might be facilitated due to an altered microenvironment
leading ultimately to the formation of senile plaques (Näslund
et al., 2000; Karran et al., 2011; Li et al., 2012). It was initially
believed that plaques were responsible for neuronal damage and
the concomitant cognitive impairment, but the poor correlation
between plaque burden and cognitive compromise prompted
researchers to question the role of the plaque in AD ethiology
(Lesné et al., 2013). Today, it is widely accepted that it is not
the plaque but instead the Aβ oligomers levels that are the basis
of neuronal damage (LaFerla et al., 2007; Lesné et al., 2013).
Although the following remains controversial, several authors
have proposed that the intracellular accumulation of Aβ could
account for the initial synapse and neurite damage registered
during the first stages of the disease (LaFerla et al., 2007; Gouras
et al., 2010; Zheng et al., 2012). The mechanisms regarding
intracellular Aβ accumulation have been proposed to be related
to endogenous cellular aspects, such as the intracellular APP
export and cleavage, which can occur wherever APP encounters
the necessary enzymatic machinery (LaFerla et al., 2007; Gouras
et al., 2010; Jiang et al., 2014), and to an altered neuronal
catabolism of Aβ (Nilsson and Saido, 2014). Regarding the first,
it is quite important to note that APP have been encountered
in different cellular compartments, such as Golgi, endoplasmic
reticulum (ER), endosomal, lysosomal, and mitochondrial mem-
branes (Mizuguchi et al., 1992; Xu et al., 1995; Kinoshita et al.,
2003; Zheng et al., 2012). On the other hand, autophagy has been
recognized as a critical cellular process which impairment results
determinant for increased intraneuronal Aβ levels. Alterations
in Rab GTPases family members as well as altered activity of
lysosomal enzymes, such as cathepsins, are part of the basic
cellular mechanism to deal with Aβ (Nixon et al., 2001; Nilsson
and Saido, 2014). As mentioned above, it has been proposed that
when this systems fails, it will allow the rise of intracellular Aβ

levels leading to the accumulation and aggregation of Aβ within
the cells and, ultimately to cell death (Li et al., 2012; Nilsson and
Saido, 2014). Additionally, Aβ reuptake has been described and is
of the most interest in the context of the high affinity between Aβ

and the α7 nicotinic acetylcholine receptor (LaFerla et al., 2007;
Inestrosa et al., 2013), a situation that leads to the internalization
of the receptor/Aβ complex and increasing intracellular Aβ levels.

Whether of an extracellular or intracellular origin, the Aβ must
finally be removed from brain parenchyma in order to prevent

Table 1 | Aβ levels critical control points.

Degradation

Intracellular Autophagy (Lysozymes: cathepsins)
Extracellular

monomers Neprilysin
insoluble forms Matrix Metalloproteases (MMPs: 1, 2, 9)

Transport

ApoE Aβ chaperone
ABC Transporters family related to ApoE movilization
LRP1 Main ApoE receptor
sLRP1 plasmatic soluble fragment of LRP1, Aβ chaperone

ApoE, apolipoprotein E; ABC, ATP binding cassette; LRP1, low density lipopro-

tein related receptor protein 1; sLRP1, soluble LRP1.

its accumulation and aggregation (Karran et al., 2011). At this
point, the activity of glial cells is fundamental not only due to
the phagocytic activity that they exert against Aβ (Guo et al.,
2004; LaFerla, 2012; Zhu et al., 2012), but because they are the
primary source of apolipoprotein E (ApoE), which is the main
chaperone of Aβ within the central nervous system (CNS; LaDu
et al., 2000). To date, three isoforms of ApoE have been described
(ε2, ε3, and ε4), and the ApoEε4 variant is considered to be one of
the most relevant risk factors for AD (Corder et al., 1993; Zhu
et al., 2012; Tai et al., 2014). Additionally, ApoJ, transthyretin
and α2-macroglobulin (α2M) have been described as secondary
chaperones and are considered to play a role in Aβ brain efflux
(Deane et al., 2008). Considering the relevance of ApoE, it is clear
that the expression of this chaperone could strongly influence the
rate of Aβ brain removal. Several authors have proposed ApoE
as a primary target for future AD therapies (Cramer et al., 2012;
Frieden and Garai, 2012; Lane et al., 2012).

Additionally, Aβ could undergo enzymatic degradation via
neprilysin, the main soluble Aβ degrading enzyme, the expression
of which has been reported as decreased in brains of several
murine models of AD and in in vitro models (Tampellini et al.,
2011; Grimm et al., 2013). Moreover, several authors have sug-
gested a direct link between the APP process and neprilysin
regulation in a type of feedback regulatory mechanism that is
directed by the APP intracellular domain released during APP
cleavage (Vásquez et al., 2009; Grimm et al., 2013). However,
neprilysin is only able to degrade soluble forms of Aβ; thus, once
the insoluble Aβ forms, such as fibrils, are present, the role of
glial cells and matrix metalloporteases, such as MMP-1, -2 and
-9, is fundamental and, as has been demonstrated systematically,
alterations in glial response as well as an altered activity of MMPs
could be well related to neurodegeneration and AD (Mroczko
et al., 2013; Table 1). In addition to the enzymatic removal of
Aβ, efflux to the blood across the blood-brain barrier (BBB) and
via drainage from the CSF complements the brain Aβ clearance
system (Deane et al., 2008).

BBB AND CHOROID PLEXUS (ChP) Aβ TRANSPORTERS
Aβ transport across the BBB is the main pathway in main-
taining appropriate brain Aβ levels. While this primary mech-
anism directly exports Aβ from the brain ISF to the blood, a
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secondary pathway involving ChP/CSF bulk flow and CSF/blood
Aβ exchange at the Virchow-Robin space also contributes to brain
Aβ balance (Deane et al., 2008). Due to its electrochemical nature,
Aβ requires specialized carriers to cross the BBB and ChP barriers
(Zlokovic, 2010; Zolezzi and Inestrosa, 2013). Importantly, the
carriers present at each barrier are the same (Pascale et al.,
2011).

The low-density lipoprotein receptor-related protein (LRP1
and 2) and the ATP binding cassette (ABCB1, C1, G2, and G4)
are the two main families of transporters related to brain Aβ

efflux (Bell et al., 2007; Bell and Zlokovic, 2009; Jaeger et al.,
2009; Cramer et al., 2012; Kanekiyo et al., 2012). Although both
pathways play an important role in Aβ clearance, several studies
suggest that BBB alteration is not only a consequence of the
AD neurodegenerative process but could be the basis of these
changes (Zlokovic, 2010, 2011; Erickson and Banks, 2013; Zolezzi
and Inestrosa, 2013). In the same manner, any genetic variation
of such transporters could have an enormous impact on the
establishment and progression of AD (Erickson and Banks, 2013;
Zolezzi and Inestrosa, 2013).

It is important to note that the main Aβ chaperone in the
plasma is the soluble form of the LRP and in the CSF is the
lipocalin-type prostaglandin D synthase β-trace (Deane et al.,
2008; Sagare et al., 2011). This situation is most relevant for final
Aβ elimination, a process that primarily occurs in the liver (Ghiso
et al., 2004; Tamaki et al., 2006; Sagare et al., 2012), and to a lesser
extent, in the kidneys (Ghersi-Egea et al., 1996; Sagare et al., 2007;
Figure 3).

AD AND THE SYSTEMIC REGULATION OF Aβ LEVELS: THE
ROLE OF THE LIVER AND KIDNEYS
As previously mentioned, the liver is the most important place
for final Aβ removal, where the binding of liver LRP1 to the
Aβ and the posterior elimination generates a sink that ensures
continuous Aβ elimination (Sagare et al., 2012). The works of
Tamaki et al. (2007) and Ito et al. (2010) provided evidence that
the blockade of LRP1-Aβ binding in the liver causes an increase
of plasmatic Aβ levels, which could be related with increases in
brain Aβ levels. It has been demonstrated that an increase in
the plasma levels of Aβ could induce Aβ influx into the brain
through a specific BBB transporter, the receptor for advanced
glycation end products (RAGE; Deane et al., 2012; Sagare et al.,
2012), leading to accumulation and aggregation in the brain,
with subsequent damage to the neuronal network. Therefore, the
appropriate expression level of liver LRP and the health status
of hepatocytes are of great relevance in regulating systemic Aβ

levels and in avoiding dangerous increases of this neurotoxic agent
(Sagare et al., 2012).

On the other hand, although the renal excretion of sLRP
and Aβ has been described, the relevance of this process has
been poorly addressed (Sagare et al., 2007; Shea et al., 2014).
However, as evidenced by several authors, vascular health, as
a result of an appropriate renal function, plays a fundamen-
tal role in AD establishment and progression (Zlokovic, 2010,
2011; Erickson and Banks, 2013; Zolezzi and Inestrosa, 2013,
2014). Cerebral microinfarcts, microbleedings, elevated blood

FIGURE 3 | Aβ balance, systemic overview. The main discussion
regarding Aβ clearance has been centered at the brain level. Increased
production and decreased removal from the brain certainly constitutes a
highly relevant issue. The relevance of the BBB integrity or the Aβ excretion
through the ChP are now recognized as key elements regarding Aβ brain
levels. However, a growing body of evidence suggest the critical role of
systemic final excretion of Aβ in AD. In this regard, expression levels of
LRP 1 within the liver and hepatocyte are critical for the appropriate liver
excretion of Aβ, which could account for up to the 60% of the total systemic
Aβ clearance. On the other hand, even when not fully understood, kidneys
not only play an important role in systemic Aβ clearance, but the precise
renal function might account for blood vessels health and appropriate blood
pressure levels which could influence the BBB integrity and its functionality.
LRP, low density lipoprotein-related receptor protein; sLRP-Aβ, soluble LRP
bond to Aβ; BCSFB, brain-cerebrospinal fluid barrier; ChP, choroid plexus.

pressure, cardiac failure, and stroke are only some of the
pathological conditions that reflect or could alter blood ves-
sels (Zlokovic, 2010, 2011). Moreover, the relationship between
the compromise of renal function and pathological changes
in the brain has been demonstrated (Liu et al., 2008; Busch
et al., 2012). However, there is a lack of knowledge regard-
ing this issue, and it should be considered when a multisys-
temic approach to AD or other neurodegenerative disorders is
pursued.

NUCLEAR RECEPTORS (NRs): PPARs AND THEIR POTENTIAL
ROLE IN A MULTISYSTEMIC THERAPEUTIC STRATEGY
NRs are a highly complex transcription factor superfamily that
is fundamental for several cell processes. The main function of
NRs has been related to both the extracellular and intracellular
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media (Olefsky, 2001). NRs play a critical role within cells, as
indicated in several reports that correlated NR dysfunction with
pathological conditions such as cancer, insulin resistance and
infertility (Olefsky, 2001; Gronemeyer et al., 2004). As cell sensors,
NRs interact with different cellular signaling pathways, such as
Wnt, phosphoinositide 3-kinase (PI3K) and mitogen-activated
protein kinases (MAPK), exerting gene expression regulation of
a wide range of target genes (Mulholland et al., 2005; Fuenzalida
et al., 2007; Inestrosa and Toledo, 2008).

NRs can be divided into two main categories: Type I, such
as the androgen, estrogen, and progesterone receptors; and Type
II, including the thyroid receptor, the retinoid X receptor (RXR)
(homodimer), the vitamin D receptor, the retinoic acid recep-
tor, the liver X receptor (LXR), and the PPARs (Olefsky, 2001;
Mulholland et al., 2005; Zolezzi and Inestrosa, 2013, 2014). The
main difference between types is their ability to form homodimers
(Type I) or heterodimers with the RXR (Type II) (Mulholland
et al., 2005).

Several studies have been conducted on the pharmacological
potentialities of different NRs, including cancer research, neu-
rodegenerative disorders, and acute brain injury, among others
(Aleshin et al., 2013; Fu et al., 2014; Garattini et al., 2014). Among
the NR superfamily, PPARs are the most studied ones (Aleshin
et al., 2013).

To date, three different mammalian PPARs have been identi-
fied: PPARα, PPARβ/δ, and PPARγ (Neher et al., 2012). Although
all PPARs have been described in both the adult and developing
brain (Heneka and Landreth, 2007), PPARγ is the most stud-
ied isoform and has shown the most promising neuroprotective
effects in different models of neurodegenerative disorders, such
as AD (Inestrosa et al., 2005, 2013; Santos et al., 2005; Toledo
and Inestrosa, 2010; Chen et al., 2012; Neher et al., 2012). A
common feature of PPARs is that part of it activity is medi-
ated by the direct binding to DNA, specifically to the peroxi-
some proliferators-response elements (PPREs), a DNA consensus
sequence (AGGTCA-N-AGGTCA) localized mainly at the pro-
moter region of PPARs-genes (Heinäniemi et al., 2007). However,
as mentioned above, when potential PPARs target genes are
evaluated, the RXR target genes must also be considered. Several
genes have been linked to the different PPARs, including some
Apo-family of lipid transporters; other nuclear receptors, such as
LXR; the UCP-3 (energy metabolism); among others (Kanehisa
and Goto, 2000; Heinäniemi et al., 2007; Kanehisa et al., 2014).
Interestingly, some authors have demonstrated that among the
PPAR target genes might also be present some key components
of relevant cellular signaling pathways, such as Wnt (Toledo and
Inestrosa, 2010) and mTOR (Hagland et al., 2013), among others.

Although PPARs were identified long ago, the recent work
of Cramer et al. (2012) has directed attention to this nuclear
receptor subgroup as a key target for Aβ clearance in AD therapy.
Indeed, prior to Cramer’s work, several authors have already
stated the relevant role of PPARs in the brain Aβ-clearance
(Camacho et al., 2004; Kalinin et al., 2009; Escribano et al.,
2010; Espuny-Camacho et al., 2010). Our laboratory and others,
have been working with PPARs for many years, and we have
systematically described the benefits of PPARs activation in sev-
eral in vitro and in vivo models of AD (Fuentealba et al., 2004;

Inestrosa et al., 2005, 2012; Fuenzalida et al., 2007; Nenov et al.,
2014). Moreover, recent works suggest an interesting role for
PPARs in mitochondrial dysfunction protection and functionality
(Zolezzi et al., 2013a,b), which could be part of a series of PPAR-
triggered mechanisms at the foundation of the benefits observed
against AD.

However, it is important to note, that the vast majority of
information regarding PPARs benefits against neurodegenera-
tive disorders, such as AD, have arose from in vitro and in
vivo studies based on different animal models. Moreover, some
clinical trials have been conducted, with dissimilar results, and
others are actually under development (Ryan, 2014). On this
regard, several questions remains regarding PPARs mechanisms of
action.

PPARs AND THE BBB
Among the Aβ neurotoxic mechanisms, oxidative stress and
mitochondrial damage are two of the most cited effects of Aβ

exposure. Several authors have suggested that the perivascular
accumulation of Aβ damages the BBB, leading to microbleed-
ings, inflammatory reactions, and subsequent damage to the
neuronal network (Zlokovic, 2010; Popa-Wagner et al., 2013;
Zolezzi and Inestrosa, 2013). On this regard, several authors
have demonstrated the role of PPARs as an endothelial protective
agents (Zhou et al., 2008; Bae et al., 2010; Kröller-Schön et al.,
2013; Zarzuelo et al., 2013; d’Uscio et al., 2014; Hawkes et al.,
2014). Recently, it has been demonstrated that PPARs are able to
protect endothelial cells from oxidative damage, thus preventing
vascular dysfunction, which could favor brain parenchyma alter-
ations (d’Uscio et al., 2012; Papadopoulos et al., 2013). Based
on current knowledge and on our own work, we have proposed
that PPAR activation, through natural or synthetic ligands, could
protect and recover BBB integrity and functionality by increas-
ing cell antioxidant capacity and improving energy metabolism,
leading to the increased expression of specific transporters that
could influence the Aβ-clearance rate (Nicolakakis et al., 2008;
Zolezzi and Inestrosa, 2013; Zolezzi et al., 2013b; Hawkes et al.,
2014). Energy metabolism is vital for both, neurons and the BBB,
primarily because the preservation of the ion gradients (in the
case of neurons) and the traffic across the BBB requires large
amounts of energy (Abbott et al., 2010; Liebner and Plate, 2010;
Popa-Wagner et al., 2013).

Although the main effects resulting from PPAR stimulation
have been related to microglial and astrocytic activation as the
key events that allow brain Aβ clearance (Mandrekar-Colucci
et al., 2012; Yamanaka et al., 2012), additional mechanisms,
such as the PPARγ-LXR-mediated increased expression of ApoE
(Cramer et al., 2012; Mandrekar-Colucci et al., 2012) along with
the increased expression of ApoE-Aβ carriers (the ABC family of
transporters), indicate a close relationship between these mecha-
nisms and the foundational role of Aβ trafficking across the BBB
that can properly explain the benefits observed after PPAR stim-
ulation in several models of AD (Mysiorek et al., 2009; Cramer
et al., 2012; Hoque et al., 2012; Figure 4). Importantly, although
different authors recognize the relevance of the BBB traffic system,
only a small proportion of research has focused on the disease-
related expression variations of BBB transporters. Less is known
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FIGURE 4 | PPARs, potential for systemic Aβ clearance. PPARs are a
complex subfamily of NRs. Several PPARs agonists have been studied
under different physiological and pathological conditions, and numerous
effects have been reported for this group of drugs in several organs. Central
nervous system (CNS), liver and kidneys are some of the tissues which
have demonstrated to respond to PPAR agonist treatments. In this regard,
the present scheme summarizes part of the current knowledge relative to
PPARs agonists and the potential that they might exert in different organs
regarding the Aβ systemic clearance. Of course, much research is needed
in order to properly address the importance of PPARs as therapeutic
agents, but the approach presented here suggest the study of new
therapeutic strategies including additional intervention levels.

regarding the disease-induced modification of transporters at the
ChP, indicating that this is an enormous field to investigate.

PPARs AND THE SYSTEMIC CLEARANCE OF Aβ

As previously indicated, the main plasmatic chaperone protein of
Aβ is sLRP (Tamaki et al., 2006; Sagare et al., 2012). Interestingly,
sLRP has been reported to be in an oxidized state (which reduces
the affinity of sLRP for Aβ) in AD patients (Sagare et al., 2007).
Several investigations suggest that the activation of PPARs can
protect against oxidative damage (Hernanz et al., 2012). Addi-
tionally, PPARs have been demonstrated to protect the liver, thus
preventing the impairment of systemic antioxidant production
and the loss of intact hepatocytes with LRP surface expression,
which enables the final excretion of Aβ (Iwaisako et al., 2012;
Patterson et al., 2012; Figure 4).

Similarly, several authors have reported the protective activity
of PPARs at the renal level. Renal fibrosis or necrosis after ischemic
insults are two of the events that could influence renal func-
tionality, thereby altering the clearance rate of Aβ in the kidneys
(Fedorova et al., 2013; Li et al., 2013). Regrettably, there is little

information regarding PPARs and kidneys and PPAR implication
in AD or in other neurodegenerative disorders. However, it is
possible that even when the Aβ clearance rate is not a determinant
for a systemic Aβ balance, the role that kidneys play in blood
pressure and/or the filtration of excretion products should have
a great impact not only at the blood vessel level but also in the
brain (Figure 4).

MOLECULAR BASIS OF PPARs ACTIVITY
The complexity of the response to PPAR stimulation arises
from several cellular signaling pathways that have been described
to be related to it. Interactions with several antioxidant and
anti-inflammatory regulatory pathways, such as nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-κB), nuclear
factor erythroid 2-related factor (NRF2), brain-derived neu-
rotrophic factor (BDNF), and the Wnt/β-catenin pathway have
been described (Zhang et al., 2011; Benito et al., 2012; Martín
et al., 2012; Haskew-Layton et al., 2013; Benedetti et al., 2014).
Additionally, it has been proposed that PPARγ can upregulate
Bcl-2, which is an antiapoptotic protein and a Wnt target gene
(Fuentealba et al., 2004; Fuenzalida et al., 2007). Over the last
few years, it has been further proposed that the administration
of PPAR agonists induces additional effects regarding neuronal
functionality, including neurite outgrowth, and has a direct effect
on mitochondrial fusion-fission dynamics (Feinstein et al., 2005;
Chiang et al., 2012; Cho et al., 2013; Quintanilla et al., 2013;
Zolezzi and Inestrosa, 2013; Zolezzi et al., 2013a).

Recently, we found that PPAR agonists are also able to induce
mitochondrial dynamic events through PGC-1α. This process
will prevent the mitochondrial dysfunction caused by oxidative
insults, suggesting that cell metabolism is protected and that
mitochondrial biogenesis should increase (Feinstein et al., 2005;
Chiang et al., 2012; Pipatpiboon et al., 2012; Popa-Wagner et al.,
2013; Zolezzi and Inestrosa, 2013; Zolezzi et al., 2013a). This latter
finding is highly relevant considering that mitochondrial dynam-
ics have recently been described as a critical mechanism associated
with mitochondrial and cellular fate after critical insults (Manji
et al., 2012). Such dynamics help sustain cell metabolism, and
successive fusion-fission cycles enable the elimination of dys-
functional organelles and the repair of mitochondrial DNA that
could be damaged after a toxic challenge (Haemmerle et al., 2011;
Hondares et al., 2011; Silva et al., 2013; Zolezzi et al., 2013a).
Moreover, as noted for antioxidant activity, the mitochondrial
effects derived from PPAR activation could also be related to
several cell signaling pathways such as Wnt (Silva-Alvarez et al.,
2013). Recently, the activity of PPARs has also been proposed to
be related to sirtuins (SIRT; Wang et al., 2013; Yang et al., 2013;
Godoy et al., 2014), thus opening a new area for research and
increasing the complexity of the molecular mechanisms involved
with cellular PPAR response.

FINAL CONSIDERATIONS
Although published several years ago, the work of Cramer et al.
(2012) clearly positioned Aβ clearance-related mechanisms as
very promising candidates for future AD therapies. Moreover,
their work prompted several authors to replicate or test old
and new NR agonists to assess their effectiveness against Aβ
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accumulation. However, integrated studies that include systemic
Aβ clearance and the effectiveness of systemic AD therapies are
scarce. Our recommendation is that AD should be approached
not only as a CNS issue but also from a multi-systemic per-
spective to accurately establish and define directed therapeutic
interventions.

Indeed, the effects described by Cramer et al. (2012) and
others partly involve the PPARs and suggest that PPARs should
be considered as putative AD drugs. However, several questions
have emerged regarding Cramer’s work which have highlighted
the poor correlation of the benefits observed from bexarotene
administration and the pathological markers evaluated by these
researchers. Considering our experience on the subject, we believe
that part of the controversy generated by Cramer’s work is due to
a poor consideration of the mechanism behind PPAR stimulation.
Thus, we propose a wider view of the Aβ clearance problem
and the main key elements related to efficient Aβ elimination.
Moreover, it is possible that different intervention points at which
PPARs could influence the health of the systemic Aβ clearance
machinery might be defined in the near future. As pointed pre-
viously, several clinical trials have attempted to transfer the in
vivo results to real patients without success, but we think that
there are still too many questions regarding NRs function (and
particularly PPARs) to accurately estimate the effects of NR and
PPAR stimulation.
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