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ABSTRACT: The relationship between polymer topology and bulk
rheology remains a key question in soft matter physics. Architecture-
specific constraints (or threadings) are thought to control the
dynamics of ring polymers in ring−linear blends, which thus affects
the viscosity to range between that of the pure rings and a value
larger, but still comparable to, that of the pure linear melt. Here we
consider qualitatively different systems of linear and ring polymers,
fused together in “chimeric” architectures. The simplest example of
this family is a “tadpole”-shaped polymer, a single ring fused to the
end of a single linear chain. We show that polymers with this
architecture display a threading-induced dynamical transition that
substantially slows chain relaxation. Our findings shed light on how
threadings control dynamics and may inform design principles for
chimeric polymers with topologically tunable bulk rheological properties.

The tube and reptation theories underpin our understanding
of complex fluids.1,2 However, the seemingly innocuous

joining of the polymers’ ends to form rings poses a problem that
has been puzzling the polymer physics community for over three
decades.3−22 How do topology-specific constraints affect the
static and dynamic properties of a dense solution of such
polymers?
Entangled solutions of pure unlinked ring polymers can now

be synthesized.11,23 However, the presence of even a small
fraction of linear contaminants dramatically slows their
dynamics through ring−linear interpenetration.11,24−27 This
slowing down shares some similarities with the one computa-
tionally discovered in systems of pure rings,28−31 where inter-
ring threadings drive a “topological glass” state due to a
hierarchical network of threadings: ring-specific topological
constraints.32−36 In ring−linear blends, the linear chains cannot
set up a hierarchical network of constraints and the rings are thus
bound to relax on time scales comparable to the reptative
disengagement of the linear chains4,37−39 which performmost of
the threadings: this limits severely any opportunities for further
tuning of bulk rheology by using pure mixtures of ring and linear
chains.
To overcome this limitation, and inspired by quickly

progressing technical advances in topological polymer syn-
thesis,40−42 here we investigate the behavior of polymer
architectures that simultaneously display linear and unknotted
and unlinked circular topologies. We dub these architectures
“chimeric,” the name given to any mythical animal formed from
parts of various other animals (Figure 1A). The simplest
example of a chimeric architecture is that of a tadpole-shaped

polymer, “tadpole” for brevity (see Figure 1B,C), which has
recently been realized experimentally43,44 and has attracted
considerable attention in the field of protein folding.45,46

While a broader class of polymers (dubbed “topological”) has
been studied in dilute conditions,47,48 in this Letter, we focus on
entangled, semidilute concentrations and report the first
molecular dynamics simulation (Figure 1D) of tadpole-shaped
polymers in this regime. Our main finding is that we observe a
dynamical transition in which systems of tadpoles with long
enough tails and heads display a markedly slower dynamics than
a corresponding system of linear chains with equal mass. This
extremely slow dynamics is expected to arise only at asymptoti-
cally large lengths in systems of pure rings,33,36 while it cannot be
achieved in standard blends of ring and linear chains11,26,37,38

where only a ∼2-fold increase in viscosity has been reported;4,39
while in blends there is no strategy to slow down the linear
fraction beyond their natural reptative dynamics, in tadpoles this
is achieved by a system-spanning (percolating) set of topological
constraints that propagate from the ring to the linear part due to
the permanent junction.
To study tadpole microrheology, we model tadpole-shaped

polymers as bead−spring chains made of a “tail” (linear) and a
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“head” (circular) components. The monomers are connected by
finitely extensible (FENE), bonds and we impose a persistence
length lp = 5σ, with σ being the size of a monomer, via a Kratky−
Porod potential (see the Supporting Information (SI)). The
junction between head and tail is fully flexible, and we consider
athermal solvents in which the beads interact via a purely
repulsive Lennard−Jones (WCA) potential.49 The systems are
made of M chains with N beads each at the overall monomer
density ρ = NM/V = 0.1σ−3 (about 10 times the overlap
concentration). With these choices, the corresponding entan-
glement length for a system of linear chains isNe = 40 beads;

15,50

our longest tadpoles have tails 10Ne long, thus putting them well
into the entangled regime. The simulations are performed in
implicit solvent at fixed volume and temperature by weakly
coupling the dynamics of the monomers with a heat bath via
LAMMPS.51 The Langevin equations are evolved using a
velocity-Verlet algorithm with integration step Δt = 0.012τLJ,
where τLJ = σ(m/ϵ)1/2 is the Lennard−Jones time (see SI).
To characterize the dynamics of the tadpoles, we measure the

averaged mean-square displacement (MSD) of their center of
mass (CM) as g3(t) = ⟨(ri⃗(t0 + t) − ri⃗(t0))

2⟩, where ri⃗(t) is the
position of the CM of the ith tadpole at time t and ⟨...⟩ indicates
time and ensemble average (see Figure 2A). The trajectories
display a subdiffusive regime at short-intermediate times which
appears to scale as g3(t) ∼ t0.4 for our largest tadpoles (we
compute the dynamical exponent α(t) = d log g3/d log t in the
SI). We note that this scaling exponent is distinct from, and
smaller than, that of pure entangled linear chains (t0.5) and also
pure rings (t0.75),13 suggesting that tadpole dynamics appears to
follow new physical mechanisms that are distinct from those of
polymers with simpler topologies.
To quantify how the dynamics varies with tadpole design, we

compute the large-time diffusion coefficient of the center of
mass as D = limt→∞g3(t)/6t (i.e., we constrain the dynamical
exponent α = 1 and choose a time range for which this is
accurate; see the SI) and plot it as a function of tail length in
Figure 2B. From this, one should notice that the different
designs display qualitatively different behaviors: for a small head
C = 100, the slowing down with tail length (L) is well fitted by a
power law D ∼ L−2.53(1) similar to that of pure reptating linear
chains.13,49 This suggests that the interactions between tails
dominates the dynamics in this case; on the other hand, the two

sets of simulations with C = 250 and C = 400 display a
qualitatively different scaling behavior wherebyD∼ L−awith a >
3 and increases with L, yielding a dynamics slower than
reptation. Interestingly, comparing the square sum of residuals
reveals that these two data sets are better fitted by an
exponential, rather than a power law, decay. This change, or
transition, in behavior can also be qualitatively visualized in a
heat map of D as a function of tadpole design (C, L): D decays

Figure 1. (A) Chimeric polymers from ring and linear chains fused together. (B) Tadpole-shaped polymers are the simplest such chimeric structure,
shown as a schematic with orange “head” and gray “tail.” (C) Typical simulated conformation of a tadpole and (D) an equilibrated system of 80
tadpoles. Here the circular and linear sections both have 250 monomers, written (C, L) = (250, 250).

Figure 2. (A)Mean-square displacement of the center of mass, g3(t), of
the tadpoles. (B) Log−linear plot of long-time diffusion coefficient D
against tail length L. The data set with C = 100 is well fitted by a power
law ∼L−a with a = 2.53(1), while tadpoles with larger heads display a
qualitatively different slowing down with a = a(L) increasing with tail
size and compatible with an exponential (shown as a dashed line as a
guide for the eye). (C) Interpolated heat map ofD in the 2D parameter
space (C, L). (D) Plot of D against total contour length and compared
with the dynamics of pure linear and ring polymers. The solid, dashed,
and dashed-dotted lines are guides for the eye. The dashed line
indicates the known scaling for asymptotic ring and linear chains.13

Note that D(L = 400, C = 400) is an upper bound value as the system
has not reached free diffusion within our longest simulation runtime.
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smoothly for C < 250 and more abruptly for C > 250 (Figure
2C).
Importantly, as shown in Figure 2D, while the dynamics

displayed by the system of tadpoles with C = 100 interpolates in
between the pure-ring and pure-linear dynamics, the two sets
with C≥ 250 are markedly slower and they follow a qualitatively
different trend also as a function of total lengthN = C + L. Thus,
our findings strongly suggest that, via targeted design of tadpole
structure, and in principle other chimeric architectures, it is
possible to achieve a fine control over the bulk rheology and over
a range that is orders of magnitude broader than the one that can
be achieved using simpler architectures within the same window
of polymer length. It should also be highlighted that while
adding linear contaminants to solutions of rings only generates
systems that interpolate between the pure-ring and pure-linear
behaviors,11,26 with chimeric polymers, due their fused
architecture, we can produce emergent collective behaviors
which have no counterpart in ring−linear blends. We now show
that these observed collective phenomena are due to intertad-
pole “threadings,” i.e., piercing of a tadpole’s tail through the
head of another.
Motivated by previous work,28,43,52 we hypothesize that

threadings may give rise to an emergent slowing down in our
entangled tadpoles. To identify threadings, we use the concept
of minimal surfaces:21,31,53 we first fix a boundary using the
position of the beads forming the heads and generate an initial
triangulated surface; we then evolve this surface via the Surface
Evolver under the action of surface tension until the area is
minimized.54 Once a minimal surface is defined for each tadpole
head, we look for intersections between all possible pairs of tail
and head surface (see Figure 3A). [We choose to exclude self-
intersections as they may be ill-defined in some cases]. This
strategy allows us to define a time-dependent threadingmatrix as
follows: Tij(t) = 1 if tadpole j is threading tadpole i (i ≠ j) and 0
otherwise.
Threadings are stochastic events that last for a certain time,

and we quantify the distribution of these threading lifetimes via
the following quantity

t P T t T T t( ) ( ( ) 0 (0) 1, ..., ( 1) 1)ij ij ijΘ = ⟨ = | = − = ⟩ (1)

where P(X|Y) is the probability of observing X conditioned on Y
being observed and ⟨...⟩ indicates the ensemble and time
average. In practice, eq 1 counts the threadings with lifetime
exactly t and the resulting curves are reported in Figure 3B. To

discuss these curves, we should note that the eq 1 calculation can
be mapped to that of a first return time (or first passage time) of
a BrownianWalk in 1D. In this framework, the walker represents
the intersection of the tail through the head-spanning minimal
surface; the walker moves along the tail as the threading diffuses
in and out the minimal surface (see inset of Figure 3B). The
distribution of return times of a Brownian walk is expected to be
a power law and to scale as ∼tα/2−2, where α is the anomalous
exponent of the walk.55,56 In our case, the tails are expected to
follow a Rouse dynamics, confirmed by direct tracking of the
piercing segment, which yields α = [0.4, 0.6] (see SI), and we
thus predict the distribution of return times to scale with an
exponent α/2−2 = [1.7, 1.8] in very good agreement with our
best fits ofΘ(t) for L≥ 250 (see Figure 3B). [The curves with L
= 100 display a scaling exponent closer to −1.5 as their Rouse
regime is shorter than our sampling time.]
Importantly, we note that the slowest return time displayed by

Θ(t) is still ∼10-fold faster than the longest relaxation of the
tadpoles (106τLJ versus 10

7τLJ, compare the curves Θ with the
crossover time to diffusion of g3 in Figure 3B and Figure 2A,
respectively). This suggests that it is collective multithreading
events that control the long-time dynamics of tadpoles.
In light of this, we study the two time-points correlator χ(t) =

⟨Tij(t) Tij(t + t0))⟩ − pT, where pT = ⟨ϕ⟩/(M − 1) is the
background probability that any two tadpoles are threading at
any given time and ⟨...⟩ is the average over times t0 and pairs of
tadpoles (i, j). We note that the longest relaxation time of χ(t),
i.e., the time at which χ ≃ 0, broadly agrees with the crossover
time to free diffusion of the tadpoles (compare Figure 4C with
Figure 2A). This quantity is akin to a stress relaxation in
polymeric systems and informs us on the relaxation dynamics of
intertadpole threadings. By assuming that threadings are
monodisperse in length, we would expect χ(t) ∼ e−t/T(l),
whereT(l) is the typical relaxation time of a threading of length l.
Instead, we find that χ(t) decreases as a stretched exponential
χ(t) ∼ exp(−Atγ) as expected for a polydisperse solution of
entangled linear polymers.57 In the case of polymer lengths that
follow a Poisson distribution, the exponent γ can be computed
via a saddle point approximation to be γ = 1/(1 + β) (where β =
2 and 3 for Rouse and reptation, respectively).57,58 In our case,
we find that the distribution of threading lengths, i.e., the portion
of tail from the piercing point to the end of the tail, is instead
uniform, i.e., Pt(l) ≃ 1/L (see Figure 3D). Thus, to compute
their relaxation, we must calculate χ(t) = (1/L) ∫ 0

L e−t/T(l) dl,
where T(l) = τ0l

δ now depends on the threading length l through

Figure 3. (A) Snapshot of two threading tadpoles with their minimal surfaces highlighted in red and green. (Inset) Sketch of the snapshot. (B)
Distribution of return times Θ(t) as defined in eq 1 and representative fit ∼ t−β with β = 1.74 ± 0.02 for C = 250, L = 400. (Inset) Mapping to an
anomalous Brownian walk in 1D along the tail. (C) Two time-point correlator χ(t). Dashed lines are representative stretched exponential fits yielding
exponents γ = 0.359(5) for C = 250, L = 400; γ = 0.416(5) for C = 250, L = 250; and γ = 0.459(4) for C = 250, L = 100. (Inset) Graphical sketch of the
two-point correlation, stressing that χ(t) is insensitive to threading history. (D) Threading lengths are uniformly distributed. The horizontal lines mark
inverse tail length, i.e., 1/L, for the three sets. The distributions Pt are normalized so that Σl = 1

L Pt(l) = 1.
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a generic exponent δ. This function can be computed
numerically as a function of τ0 and δ for different choices of C
and L. As expected, we find that τ0 is overall independent of
either C or L (see SI); on the other hand, we find that δ, which is
also expected to be insensitive of L within the classic reptation
dynamics, increases as a power law of L for small heads and
exponentially in L for large heads (Figure 4A). This implies that
T(l) diverges even more strongly than an exponential in the
asymptotic limit of large tadpoles. We should note that the
distinct behavior of T(l) for small and large heads mirrors the
qualitatively distinct regimes observed in the decay of D (Figure
2B). This strongly suggests that threadings play a key role in the
dynamics.
The results shown up to now suggest that tadpoles with large

heads have a qualitatively different dynamics with respect to the
ones with smaller head; in particular, the tadpoles with larger
heads display a much stronger slowing down and slower
threading relaxation. To explain this finding, we note that the
head-spanningminimal surfaces scale linearly31 with head length
C (see also the SI) and, hence, tadpoles with larger heads are
expected to accommodate more threadings. In particular, we
expect that the number of threadings per head should scale
linearly withC (and hence withN) in the asymptotic limit. From
the time-dependent threading matrix Tij(t), we can extract the
mean number of (passive) threadings per tadpole as ⟨ϕ⟩ ≡
⟨Σj≠iTij(t)⟩, where the average is performed over time and
tadpoles. This quantity is reported in Figure 4B, and indeed it
shows that for small heads the number of threadings is saturated
at modest tail lengths; on the other hand, larger heads can
accommodate up to five threadings, on average, and often each
threading is made by more than one piercing (see SI).
Importantly, they appear to saturate at much larger values of
tail length and arguably will scale extensively with L in the limit

of large headsC. A natural consequence of the fact that ⟨ϕ⟩ > 1 is
that these systems are percolating; i.e., the largest number of
tadpoles connected by threadings is comparable with the system
size. In particular, we find that the critical threading length
required to set up a percolating cluster of tadpoles is lc/L = 1/
⟨ϕ⟩ (see SI).
To correlate the mean number of threadings with a dynamical

quantity, we extract a characteristic time from χ as Tχ =
∫ 0
∞χ(t) dt and find that Tχ ∼ ⟨ϕ⟩ (Figure 4C), suggesting that

the full relaxation of threading constraints depends on the
number of threadings. This can be explained by noting that the
full relaxation appears to need ⟨ϕ⟩ serial release events before
(all) the threading constraints are released.We also note that the
diffusion coefficient strongly depends on the mean threading
number (see SI). An exact quantification of the variation of
tadpole mobility with number of threadings alone is difficult
since D is also a function of total contour length.
To unambiguously detect the role played by threadings in the

dynamics of tadpoles, we thus propose a new strategy: we
investigate a symmetric (i.e., C = 250, L = 250) system of
tadpoles with phantom (no steric) interactions between heads
and tails while maintaining standard self-avoidance between
pairs of monomers belonging to two heads or two tails. This
entails that threadings of heads by tails are no longer topological
constraints for the dynamics of the tadpoles. To fairly compare
with our other results, we compress this system 2-fold (in
volume) to maintain the effective (self-avoiding) monomer
density at ρ = 0.1σ3. We find that the absence of effective
threading results in a much faster transition to free diffusion and
a 14-fold enhancement of diffusion coefficient (Figure 4D). This
finding provides independent and unambiguous evidence that it
is indeed the threadings between chains that are responsible for
their correlated (subdiffusive) dynamics over short-intermediate
times and resulting retarded center-of-mass diffusion. We note
that, in dilute conditions, the dynamics of tadpoles does not
depend on their design; this further confirms that the observed
behavior is due to collective interactions (see SI Figure S11).
Finally, we mention that our results are in fair quantitative

agreement with experiments43 (see SI) and that the zero-shear
viscosity obtained from both, experimental and simulated
tadpoles, is best fitted by a power law with exponent close to
η0 ∼ L4.5. Nonetheless, the data also suggest that both
experiments and simulations are performed in a crossover
regime, and our analysis strongly supports the argument that in
the asymptotic regime the tadpoles’ mobility should slow down
exponentially in tail length (Figures 2B and 4).
In conclusion, we have investigated the dynamics of entangled

systems of tadpole-shaped polymers, as the simplest example of a
broader family of “chimeric” polymers formed by the
combination of unknotted and unlinked loops and branches
(Figure 1A).While similar architectures had been investigated in
the dilute regime,47,48 here we design entangled systems with the
aim of understanding how to achieve a fine control over
threading topological constraints and, in turn, over the rheology
of the bulk.
Here we have discovered that it is possible to design polymer

architectures that can span a much larger dynamical range than
that achievable with simpler architectures at fixed polymer mass.
For instance, using tadpole-shaped polymers, we can explore a
dynamical range that is about 2 orders of magnitude broader
than the one for linear chains with modest lengths N/Ne = 25
(Figure 2D). Importantly, this phenomenon cannot be
reproduced using ring−linear blends as their slowing down

Figure 4. (A) Threading relaxation exponent δ increases with tail length
as a power law δ ∼ L0.40(1) for small heads and exponentially δ ∼ eL/L1

with L1 for large heads. (B) Average number of threading tails per
tadpole ⟨ϕ⟩ as a function of tail length. (C) Threading correlation time
Tχ scales linearly with ⟨ϕ⟩ (with a prefactor proprtional to L3),
suggesting that a serial release of ⟨ϕ⟩ threadings is needed before all
constraints are released. (D) Comparison of g3(t) in presence and
absence of threading constraints (see the text).
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due to threading was observed to be of order unity compared
with that of linear chains only4,11,26,38 and expected to scale only
linearly with rings mass.39

We argue that this marked difference is due to the lack of a
strategy to slow down linear chains more than reptation in ring−
linear blends. On the contrary, the fused architecture of tadpoles
(and of higher order chimeric polymers) together with the
emergence of a hierarchical, percolating set of threading
topological constraints entails that the process of constraint
release imposed by linear tails on circular heads propagates back
to tails too, causing a dramatic and system-wide slowing down.
We feel it would be very interesting to directly compare the
dynamics of tadpoles and that of ring−linear blends with same
values of C and L in simulations and experiments.
By using minimal surfaces (Figure 3) and semiphantom

interactions (Figure 4D), we unambiguously demonstrated that
intertadpole threadings play a major role in the dynamics and
that this effect is not due to single threadings (Figure 3B) but to
correlated (Figure 3C) and collective (Figure 4C) ones.
Interestingly, the more the threadings per tadpole, the slower
is their full relaxation (Figure 4C), thus entailing further
nonlinear slowing down in the large N limit (Figure 4B).
We have also showed that the relaxation of threadings can be

mapped to that of a polydisperse system of polymers, with the
caveat that here the distribution of threading lengths is uniform
(Figure 3D) and that the exponent of the longest relaxation time
increases with L (Figure 4A). This finding is in stark contrast
with simpler architectures, e.g., linear, for which the relaxation
exponent is insensitive on polymer length, e.g., δ = 3 for
reptation of polymers with any L.
We argue that the phenomenology observed here might be

generically expected across the broader family of chimeric
polymers and that further fine-tuning can likely be achieved by
varying the number of looped structures as well as their relative
lengths. Ultimately, we envisage using these chimeric
architectures to tune the dynamics of specific polymers that
are expensive to synthesize in large scales. Our results suggest
that even a modest polymer mass can display a broad dynamical
range and this property can be harnessed to keep the costs low
while achieving the desired rheology through informed polymer
design. Our work might therefore serve to motivate future
theoretical and experimental characterizations of entangled
solutions of higher-order chimeric structures which may be now
feasibly realized via synthetic chemistry23,40,44 or DNA origami.
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