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Ambient air pollution associated with lower 
academic achievement among US children
A nationwide panel study of school districts
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Introduction
Ambient air pollution has been associated with various adverse 
health effects, including impaired cognitive function.1 Studies 
have associated air pollution exposure with neuroinflammation 
and neurodegeneration,2–6 leading to increased risk of neurolog-
ical disorders,7–11 and accelerated cognitive decline.10 Children 
are particularly vulnerable to neurotoxins because of on-go-
ing neurodevelopment processes such as myelination and syn-
apse pruning.12 Early childhood exposure to air pollution has 

been linked with impaired performances in cognitive tests,13–17 
inattentiveness,18–20 slower development of working mem-
ory,13,14,15,19–21 deficits in gross and fine motor functions,20,22 and 
worse academic performance.23,24 Compromised learning abil-
ity and academic performance in childhood may have life-long 
impacts on socioeconomic status (SES), influencing higher edu-
cation and expected income.25,26

Existing studies on air pollution and children’s cognitive func-
tions or academic performance mostly involved relatively small 
cohorts. Spanish studies found that exposure to traffic-related 
PM2.5 (inhalable particles with diameters ≤ 2.5 µm) and NO2 were 
associated with slower development of working memory among 
children.14,15 A Chinese study compared the neurobehavioral test-
ing results between two schools with different levels of traffic and 
NO2 and found that children from the school with higher NO2 
levels performed worse on all nine tests.27 In addition, an associa-
tion between ozone exposure and cognitive decline has been found 
among older adults,28,29 but has not been studied among children.

What this study adds

Ambient air pollution has been linked with various adverse 
health effects including impaired cognitive functions. Previous 
studies that investigated the associations between air pollution 
and children’s cognitive development or academic performance 
mostly studied relatively small cohorts. We conducted a nation-
wide panel study in the United States that aggregated more than 
250 million academic achievement tests from 10,921 school dis-
tricts over 7 years. We found that ambient air pollution (PM2.5, 
NO2, and ozone) was associated with lower academic perfor-
mance among children. These findings can have implications for 
air quality interventions, which may benefit children’s educa-
tional and occupational attainment across the life course.
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Background: Ambient air pollution is an important environmental exposure and has been linked with impaired cognitive func-
tion. Few studies have investigated its impact on children’s academic performance on a nationwide level. We hypothesize that 
higher ambient air pollution concentrations will be associated with lower average academic test scores.
Methods: We investigated three prevalent ambient air pollutants: PM2.5, NO2 and ozone, and their associations with the average 
academic test scores, at the Geographic School District (GSD) level, of the third to eighth grade students in the United States from 
2010 to 2016. We applied multivariate linear regression and controlled for urbanicity, socioeconomic status, student racial/ethnic 
compositions, and individual intercepts for each district-grade level and each year.
Results: We found that an interquartile range increase in PM2.5 concentrations was associated with a 0.007 (95% confidence inter-
val: 0.005, 0.009) SD lower average math test scores, and a 0.004 (95% confidence interval: 0.002, 0.005) SD lower average English 
language/arts test scores. Similar associations were observed for NO2 and ozone on math, and for NO2 on English language/arts. 
The magnitudes of these associations are equivalent to the effects of short-term reductions of thousands of dollars in district median 
household income. The reductions in test scores were larger for GSDs with higher socioeconomic status, though most associations 
remained negative at all socioeconomic levels.
Conclusions: Our results show that ambient air pollution within a GSD is associated with lower academic performance among 
children. Further improving air quality may benefit children’s overall academic achievement and socioeconomic attainment across 
the lifespan.
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Moreover, there is limited evidence regarding the factors 
that may increase vulnerability to the effect of air pollution on 
achievement. SES and neighborhood factors, robust predictors 
of achievement,30–32 have been shown to moderate the effect 
of lead exposure and air pollution on cognitive functions.33–35 
Effect measure modifications (EMMs) of the health impacts 
of air pollution by age and race/ethnicity have been found for 
respiratory outcomes and mortality,36,37 but have not been stud-
ied for cognitive and academic outcomes.

We investigated the associations between ambient PM2.5, NO2 
and ozone concentrations and the academic test scores of third 
to eighth grade students in the United States at the Geographic 
School District (GSD) level. We examined the potential EMM 
by age, racial/ethnic compositions, and SES.

Methods

Test score and covariates

Each US state is required by the No Child Left Behind Act 
(NCLB) of 2001 to conduct annual state-wide assessments of 
academic progress in math and ELA for all students of grades 3 
through 8.38 We retrieved these standardized state testing results 
from the Stanford Education Data Archive (SEDA) version 3.0, 
which included test data from 13,160 US GSDs.39 We restricted 
to 10,921 GSDs with complete geographic information, covered 
at least one ZIP code centroid, and had standardized test score 
information for at least one grade-year-subject. Standardized 
test scores and covariates for grades 3 to 8 were available 
from 2010 to 2016. The final dataset was aggregated from 
256,192,733 tests administered to 135,061,844 student-years 
(a student enrolled from grade 3 to 8 in the study period con-
tributed to six student-years).

The SEDA dataset adjusted for differences in proficiency 
standards across states based on the National Assessment of 
Educational Progress (NAEP). The NAEP was administered 
annually at the same time on the same academic content to a 
representative sample of students across US states,40 allowing 
for cross-state comparisons. The standardized test scores can be 
interpreted as the number of standard deviations (SDs) different 
from the average student performance, compared to a reference 
cohort (students in the fourth grade in 2009). For instance, the 
fifth grade students in a GSD with a 1.0 average standardized 
test score indicates that these students performed on average 
one SD higher than students in the reference cohort who were 
also in grade 5. The use of a reference cohort allows for compar-
ison of student performances across school years.

The SEDA dataset included time-varying covariates derived 
from the 5-year estimates of the American Community Survey 
and the Common Core of Data.39 We divided the covariates into 
four classes: (1) student racial/ethnic composition: proportion 
of native American, Asian, Hispanic/Latino, Black, and White 
students; (2) student-level SES: proportion of free lunch eligi-
ble students, reduced-price lunch eligible students, economi-
cally disadvantaged students and English language learners; (3) 
Urbanicity: urban, suburban, town or rural; and (4) GSD-level 
SES: log of median income, bachelor’s degree rate, poverty rate, 
Supplemental Nutrition Assistance Program (SNAP) recipient 
rate, and single-mother household rate. Urbanicity and GSD-
level SES vary by GSD and year. Student racial/ethnic composi-
tion and student-level SES vary by GSD, year, and grade.

Ambient air pollution

The monthly ambient PM2.5, NO2, and O3 levels at ZIP codes 
across the continental US were estimated using previously pub-
lished hybrid models.41–43 Briefly, these models combined sat-
ellite data, meteorological conditions, land-use variables, and 
chemical transport model simulations trained to measurements 
from ground-level monitors, with performance checked on held 

out monitors. These estimates incorporated predictions from 
random forest, gradient boosting, and neural network to esti-
mate daily ambient air pollution concentrations for 1 × 1 km 
grid cells. Grid cells whose centroids were inside of ZIP codes 
were averaged, and monthly means computed. The GSD-level 
monthly concentrations were calculated by averaging pollut-
ant concentrations of ZIP codes whose centroids fall within the 
GSD, weighted by ZIP code populations in 2015.

We defined exposure in each school year as the average ambi-
ent pollutant concentrations during the 12-month period on 
and before the first month of the state testing window. The first 
months of the testing windows for each state-year were retrieved 
from state department of education websites, school district 
websites, public school websites and news articles, summarized 
in Table A1 of the Appendix; http://links.lww.com/EE/A163.

Statistical analysis

We applied a generalized difference-in-difference (DID) analysis 
with two-way fixed effects models.44–46 A cohort is defined as 
students in a specific grade in a specific GSD. The model takes 
the following form:

where i indexes GSD, t indexes school year, and g indexes 
grade. Scoreitg is the average standardized test score of grade g 
students in GSD i in year t. Pollutionit is the air pollution con-
centrations in GSD i in the 12-month before testing in year t. 
Covariatesitg  are covariates for grade g students in GSD i in year 
t. Cohortig and Yeart are cohort and year fixed effects, represent-
ing a binary indicator for each cohort and school year, respec-
tively. εitg is the random errors. We conducted statistical analysis 
in R version 4.0.3 (package “plm”).

This two-way fixed effect (fixed effects for both cohorts 
and years) model is generalized from a traditional DID model 
by analyzing more than two time periods and investigating a 
continuous treatment variable instead of a binary one.44,45,47–50 
Similar methods have been applied in economics and policy 
analysis,51,52 and for examining air pollution and mortality.46,53 
Consider two cohorts A and B over two consecutive time peri-
ods t and t + 1. Assume that the exposure level of cohort A 
remained constant, and the exposure level of cohort B increased 
by 1 unit from t to t + 1. In this scenario, cohort A is a negative 
control for cohort B: changes in the outcomes in cohort A can 
only be explained by variations in the same set of covariates as 
cohort B, not by variations of exposure levels. Table 1 presents 
the expected outcome levels, the estimated changes in outcome 
levels over the 2 years for both cohorts, and the DID estimate. 
Under the assumptions that Covariatesitg captured all other 
time-varying factors affecting the changing trends of the out-
come, and the time fixed effects and cohort fixed effects do not 
have interactions,48 β1 is a causal estimate of a 1-unit increase in 
the pollutant concentrations on the outcome.

Since the number of student enrollments in each cohort-
year varied substantially, variations in average test scores and 
the amount of information contributed were also different. We 
accounted for these differences using weighted least squares, 
where the weights were the numbers of student enrollments 
in each cohort-year. We truncated the weights at the 5th (25 
for Math and ELA) and 95th percentiles (1,177 for Math, 
1,243 for ELA) to stabilize the weighting and avoid influential 
observations.

We explored potential EMM by grade, GSD racial/ethnic 
compositions, and GSD-level SES by adding an interaction term 
between the exposure and the modifier. For EMM by grade, 
the modifier is integer grade (3–8). For EMM by racial/ethnic 
compositions, we created binary variables flagging cohorts with 
Hispanic/Latino and Black students above the median levels. 

Score = Pollution + Covariates +Cohort + Year +1itg it itg ig t itgβ β∑ ε
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For EMM by GSD-level SES, we used a binary indicator of pos-
itive SES composite. The SES composite is a variable created in 
the SEDA dataset that follows an approximately normal distri-
bution.39,54 Potential lag effects were explored by replacing the 
exposure in the base model with the exposure from the previous 
school year.

Results

Summary statistics

Table 2 presents the GSD-level summary statistics of exposure 
and covariates. Student-level covariates were averaged across 
grades and years; ambient air pollution and GSD-level covari-
ates were averaged across years. The unpooled interquartile 
ranges (IQR) of the variables are also presented, and the regres-
sion results will be presented for each IQR increase in pollutant 
concentrations.

Table 3 presents the distributions of GSD-level ambient air 
pollution concentrations from 2010 to 2016. The average PM2.5 
concentrations had a decreasing trend. The average NO2 con-
centrations first increased then decreased, while the 12-month 
maximum NO2 concentrations decreased. The ozone concentra-
tions fluctuated with no clear trend.

Regression results

The coefficients and 95% confidence intervals (CIs) of the asso-
ciations between standardized test scores and the 12-month 
ambient air pollution levels are presented in Table 4. The results 
of the full model (column 3, later referred to as model 3) indi-
cates that an IQR increase in PM2.5 concentration was associ-
ated with a 0.007 (95% CI: 0.005, 0.009) SD lower average 
Math test score and a 0.004 (95% CI: 0.002, 0.005) SD lower 
average ELA test score; an IQR increase in NO2 levels was asso-
ciated with a 0.004 (95% CI: 0.002, 0.006) SD lower average 
Math test score and a 0.012 (95% CI: 0.010, 0.014) SD lower 
average ELA test score; an IQR increase in ozone concentrations 
was associated with a 0.005 (95% CI: 0.004, 0.006) SD lower 
average Math test scores, but a 0.002 (95% CI: 0.001, 0.003) 
SD higher average ELA test score. To put this in better context, 
the magnitude of the change in the Math test score associated 
with an IQR increase in ambient PM2.5 (NO2/ozone) concentra-
tions is the same as with a $10,438 ($6,422/$8,289) decrease in 
GSD median income, a conservative estimate after adjusting for 
other SES covariates. The full regression results are summarized 
in Table A2 of the Appendix; http://links.lww.com/EE/A163.

To investigate whether the positive association between ozone 
and ELA was due to its negative correlation with the other two 
pollutants or an actual protective association, we fitted six 

Table 1.

linear DID estimation with two-way fixed-effects model, illustrated with two cohorts over two consecutive time periods

 Cohort A (pollution remained constant) Cohort B (pollution increased by 1 unit)

T β β1Pollution Covariates Cohort YearAt At A t+ ∑ + + β β1Pollution Covariates Cohort YearBt Bt B t+ ∑ + +
t + 1 β β1 1 1Pollution Covariates Cohort YearAt A t A t+ ∑ + ++ +, β β1 1 11( ) ,Pollution Covariates Cohort YearBt B t B ts+ + ∑ + ++ +
E (Difference) ∑ −( ) + −+ +β Covariates Covariates Year YearA t At t t, ( )1 1 β β1 1 1+ ∑ −( ) + −+ +Covariates Covariates Year YearBt t tB t, ( )
DID β β1 1 1+ ∑ −( ) − −+ +[ (, ,Covariates Covariates Covariates CovaB t Bt A t rriatesAt )]

PollutionAt is the air pollution concentrations for cohort A in the 12-month before testing in year t.  CovariatesAt are covariates for students in cohort A in year t. CohortA and Yeart are cohort and year fixed 
effects, respectively.

Table 2.

Geographic school district level summary statistics in United States, averaged across grades 3–8 and school years 2010–2016

 Variable Min 25th percentile Median Mean 75th percentile Max SD Unpooled IQR n

Test score Standardized Math test score −3.1 −0.2 0.0 0.0 0.2 1.3 0.4 0.5 10,908
Standardized ELA test score −2.0 −0.2 0.0 0.0 0.2 1.6 0.3 0.5 10,918
No. enrolled students 10 46 109 328 271 72243 1231 230 10,908

Ambient air pollution PM
2.5

 (µg/m3) 0.8 7.0 8.7 8.3 9.8 15.8 2.1 2.8 10,898
NO

2
 (ppb) 1.9 8.9 11.5 13.2 15.8 42.8 6.3 7.3 10,898

Ozone (ppm) 16.4 37.5 38.8 39.1 40.3 56.4 3.3 3.3 10,898
Student racial/ethnic composition Native American (%) 0.0 0.1 0.3 2.6 0.7 100.0 10.4 0.7 10,908

Asian (%) 0.0 0.2 0.7 2.1 1.7 74.7 4.9 2.0 10,908
Hispanic/Latino (%) 0.0 1.8 4.7 13.3 14.4 99.9 20.1 11.6 10,908
Black (%) 0.0 0.6 1.4 7.7 5.4 99.8 16.2 6.1 10,908
White (%) 0.0 61.0 86.3 74.3 95.0 100.0 27.1 33.5 10,908

Student SES characteristics Free lunch eligible (%) 0.6 25.2 38.8 40.0 53.4 97.7 20.2 29.9 10,908
Reduced-price lunch eligible (%) 0.4 6.3 8.5 8.7 10.7 88.7 4.4 5.0 10,908
Economically disadvantaged (%) 0.0 34.0 49.4 48.9 64.0 100.0 21.8 32.0 10,908
English language learner (%) 0.0 0.2 1.0 4.4 4.3 81.4 8.6 4.0 10,886

Urbanicity Urban (%) 6.0 10,878
Suburb (%) 22.4 10,907
Town (%) 20.2 10,907
Rural (%) 51.4 10,907

GSD SES characteristics SES composite −4.2 −0.3 0.2 0.2 0.7 2.9 0.9 1.1 10,907
Log of median income 9.9 10.6 10.8 10.8 11.0 12.3 0.3 0.4 10,878
Bachelor’s degree rate (%) 0.1 14.2 18.8 22.8 27.1 86.5 12.9 13.3 10,878
Poverty rate (%) 0.1 9.9 15.1 15.7 20.3 54.3 8.0 11.8 10,878
SNAP receipt rate (%) 0.3 6.3 9.9 10.9 14.5 49.0 6.2 8.7 10,878
Single mom household rate (%) 0.3 11.2 14.2 15.2 17.9 55.8 5.9 7.1 10,878

Apart from unpooled IQR, all other measures were averaged across grades and school years.
Student-level covariates were weighted on the number of enrolled students for each grade-year.

http://links.lww.com/EE/A163
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single-pollutant models with the same covariates, fixed effects, 
and weights as model 3, with results illustrated in Figure  1. 
The association between ELA and ozone was slightly positive, 
but not statistically significant. Other associations remained 
negative.

Effect measure modifications

We tested for potential EMM by grades, Black and Hispanic/
Latino student proportions and SES composite with interaction 
terms. Twenty-four models were fitted, all with the same covari-
ates, fixed effects, and weights as model 3. The coefficients and 
95% CIs for the interaction terms are presented in Figure 2.

The EMM by grades for the associations between test scores 
and all three pollutants were positive (less harmful at higher 
grades) except for the association between Math and NO2. The 
EMM by higher proportion of Black students was positive for 
the association between ELA and PM2.5, and negative for the 
association between Math and ozone. The EMM by higher pro-
portion of Hispanic/Latino students were positive for the asso-
ciations between Math and all three pollutants. The EMMs by SES were negative for all six association pairs, suggesting that 

the association between air pollution and test scores were stron-
ger for GSDs with higher SES. The main associations between 
air pollutant and test scores remained in the same directions 
as the results of model 3 for most strata of the modifiers. The 
coefficients for both main association terms for exposures and 
interaction terms are summarized in Table A3 of the Appendix; 
http://links.lww.com/EE/A163.

Sensitivity analysis

We compared model 3 to one-way fixed effects models nested 
in it and found that model 3 had significantly better fit. Detailed 
analysis is in the Appendix; http://links.lww.com/EE/A163. We 
investigated the associations of test scores and lagged air pol-
lution from the previous school year. Compared with results of 
model 3, the coefficients of these lagged models are all in the 
same directions, and of similar magnitudes (ratios of unlagged 
and lagged coefficients ranged from 0.56 to 1.75).

Discussion
After controlling for covariates and two-way fixed effects, 
including GSD, grade, and year, we found that 12-month ambi-
ent PM2.5, NO2, and ozone levels were associated with lower 
average Math test scores; 12-month ambient PM2.5 and NO2 

Table 4.

Regression results of standardized test scores and 12-month 
ambient air pollution

 (1) β (95% CI) (2) β (95% CI) (3) β (95% CI)

 Math

PM
2.5

 (IQR) −0.011 (−0.013, 
−0.009)

−0.008 (−0.010, 
−0.006)

−0.007 (−0.009, 
−0.005)

NO
2
 (IQR) 0.001 (−0.001, 

0.003)
−0.001 (−0.003, 

0.001)
−0.004 (−0.006, 

−0.002)
Ozone (IQR) −0.006 (−0.007, 

−0.005)
−0.006 (−0.007, 

−0.004)
−0.005 (−0.006, 

−0.004)
Observations 361,852 348,119 347,468
 ELA
PM

2.5
 (IQR) −0.003 (−0.005, 

−0.001)
−0.004 (−0.006, 

−0.003)
−0.004 (−0.005, 

−0.002)
NO

2
 (IQR) −0.016 (−0.018, 

−0.014)
−0.011 (−0.013, 

−0.009)
−0.012 (−0.014, 

−0.010)
Ozone (IQR) 0.005 (0.004, 

0.005)
0.002 (0.001, 

0.003)
0.002 (0.001, 

0.003)
Observations 383,121 367,958 367,285

Model (1) is a crude model. Model (2) controlled for student racial/ethnic compositions and 
student-level SES. Model (3) controlled for student racial/ethnic compositions, student-level SES, 
urbanicity, and GSD-level SES.

Figure 1.  Regression results and 95% confidence intervals of standardized 
Math/ELA test scores and 12-month ambient single air pollutant concentra-
tions (IQR).

Table 3.

Distribution of GSD-level ambient air pollution concentrations, 2010–2016

  2010 2011 2012 2013 2014 2015 2016

12-month PM
2.5

 (µg/m3) Min 0.0 0.0 0.0 0.2 0.0 0.0 0.0
25th percentile 7.4 7.9 7.4 7.3 7.7 7.0 6.4
Median 9.6 9.5 9.0 8.7 8.9 8.5 7.8
Mean 9.1 9.1 8.6 8.4 8.6 8.2 7.5
75th percentile 10.7 11.0 10.2 9.7 9.9 9.6 8.6
Max 18.3 18.2 18.2 15.5 13.9 18.2 14.9

12-month NO
2
 (ppb) Min 0.0 0.0 0.0 1.2 0.0 0.0 0.0

25th percentile 8.5 8.7 9.5 9.9 9.3 8.7 8.3
Median 11.4 11.4 12.2 12.8 12.8 11.9 10.8
Mean 13.2 13.4 14.1 14.1 14.0 13.0 12.2
75th percentile 15.8 16.1 16.7 16.9 17.0 16.0 15.0
Max 46.1 45.7 43.6 44.4 44.9 43.6 39.1

12-month Ozone (ppb) Min 0.0 0.0 0.0 13.3 0.0 0.0 0.0
25th percentile 35.7 37.8 37.4 38.8 37.7 36.7 37.5
Median 37.3 39.5 38.9 40.1 38.9 37.9 38.8
Mean 37.2 39.4 39.2 40.5 39.0 38.3 39.2
75th percentile 38.8 41.3 40.9 42.2 39.9 39.3 40.1
Max 58.6 55.6 54.9 56.2 55.6 57.7 56.5

http://links.lww.com/EE/A163
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levels were associated with lower ELA test scores. An IQR-
increase in ambient air pollution levels was associated with a 
0.004 to 0.012 SD decrease in GSD average test scores. These 
results are of similar magnitude with a Chinese study that found 
a 0.014 SD decrease in examination scores associated with 
one SD of the difference between air pollution levels upwind 
and downwind of agricultural fires,55 which was quantified as 
“decreases the probability of admission to an elite university by 
0.027%” on the individual level. Also, as noted in the results, 
the magnitudes of these associations are equivalent to the 
impact of thousands of dollars per year decrease in GSD median 
household income, even after accounting for other aspects of 
GSD-level SES. Reductions in academic test scores among chil-
dren can have life-long impacts on educational attainment, 
including dropping out of school, and lower future incomes.25,26  
These associations cannot be confounded by factors that vary 
across GSD because of the use of indicator variables for each 
GSD (and grade), eliminating a major source of potential con-
founding in air pollution studies. Common time trends were 
also controlled by indicator variables for year, and within-GSD 
differences in time trends due to time-varying covariates are also 
controlled. This greatly reduces the potential for confounding.

A positive association was found between ozone levels and 
ELA test scores in the three-pollutant model, but not in the sin-
gle-pollutant model. This positive association appears to be due 
to the negative correlations between ozone and the other two 
pollutants, which could be due to chemical reactions such as the 
transformation of NO2 into ozone,56 and the formation of NO2 
from NO and ozone.57 Overall, we did not find an association 
between ozone levels and ELA test scores.

The structure of the two-way fixed effects model resembles the 
DID analysis, as described in Table 1. Although the two-way fixed 
effects model has been proven to be equivalent to the DID esti-
mator in the two groups and two time periods setting,58 a recent 
study showed that in the two-group and multiple-period setting, 

the DID estimator is equivalent to a weighted two-way fixed 
effects model and relies on an additional assumption of no inter-
actions between the time and unit fixed effects.48 In our model, 
since the treatment is continuous instead of two binary groups, 
the weights proposed by Imai and Kim48 to adjust for mismatches 
of binary treatments do not apply, but the no interaction assump-
tion should hold. The causal interpretations of the results rely 
on the no interaction assumption of the two-way fixed effects 
and the parallel trend assumption, which we were not able to test 
because we cannot observe the GSD-level test scores over a few 
years where the air pollution concentrations remained constant. 
Unable to test for these critical assumptions undercuts the validity 
of the causal interpretations. But even if causal interpretations 
are not warranted, the two-way fixed effects contribute to con-
trolling for unmeasured confounders that are constant within a 
GSD-grade or common trends for all GSDs.

We found that the magnitudes of the associations vary by 
grades, racial/ethnic compositions, and SES. The decreases in 
test scores associated with higher air pollution concentrations 
were larger for younger children, except for the association 
between Math test scores and NO2 concentrations. This is gener-
ally consistent with the common belief that younger children are 
more vulnerable to neurotoxins.59 The modification by racial/
ethnic compositions may be due to complex social factors such 
as residential segregation. The associations of both Math and 
ELA test scores with all three air pollutants are stronger among 
GSDs with higher SES, which are in the opposite directions with 
other modifications found in studies on air pollution and other 
outcomes such as mortality, respiratory outcomes, and cardio-
vascular diseases.60,61 One possible explanation is that compared 
with air pollution, SES factors are much stronger predictors of 
test scores. This is true in our study, as shown in Table A2 of the 
Appendix; http://links.lww.com/EE/A163, where several covari-
ates have coefficients of much larger magnitudes compared with 
the coefficients of air pollutant concentrations. An additional 

Figure 2.  Effect measure modifications of the associations between standardized Math/ELA test scores and 12-month ambient air pollution, tested with inter-
action terms between effect modifier and pollutant levels.

http://links.lww.com/EE/A163
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possibility is that lower-SES GSD’s also may be associated with 
systematic and cumulative exposures to other environmental 
pollutants or additional stressors that render the difference in 
any one exposure less influential.62,63 Thus, improving ambient 
air quality by 1 unit in a low-SES GSD may not be as benefi-
cial as in a high-SES GSD. This is especially plausible when our 
results are interpreted causally. Another possibility is that the 
pollution concentrations mean different things. SES tends to be 
higher in suburban areas, where PM2.5 has a larger component 
of secondary particles than inside of cities. These components 
may have different toxicities. Similarly, a higher fraction of NO2 
in suburbs may be transported, which may affect the concen-
trations and aging of other, unmeasured traffic exhaust compo-
nents that NO2 can serve as a surrogate for.

In the analyses for lagged associations, the results persisted 
in the same directions and of similar magnitudes. This suggests 
that the impact of air pollution on cognitive functions can be 
observed over several years, which were also found in other stud-
ies.5,14,19 Another possibility is that the lagged associations were 
due to the positive correlation between the exposure variations 
across different years. This possible contamination of lag effects 
in two-way fixed effects model was described in a recent study.64

Our study has several limitations. First, we restricted to 
10,921 of 13,160 GSDs. The results can only be generalized to 
GSDs with similar characteristics to the included GSDs, though 
study-specific interpretations cover the large majority of GSDs 
in the United States. Compared with the excluded GSDs, the 
included GSDs are less likely to be urban and have slightly 
lower bachelor’s degree rate and median household income. 
Second, we cannot exclude residual confounding by time-vary-
ing covariates, such as the constructions of green spaces that 
may affect both air pollution levels and children’s academic 
performances. Finally, this is an ecological study where expo-
sures are matched to students on population-level based solely 
on geographic information of their residing school districts. 
Individual-level variations in air pollution exposures such as 
temporary migration and commuting across districts were not 
measured. These misclassifications of exposures are expected to 
be nondifferential and may shift the estimates toward the null.

In conclusion, we found negative associations between ambi-
ent air pollution levels and children’s academic performance. 
Such associations were stronger among GSDs with higher SES. 
The lowering of both Math and ELA test scores may have life-
long impacts on children. Further improving ambient air quality 
may benefit children’s academic achievements and career in the 
long run.
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