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Abstract

Listeria monocytogenes (Lm) infection induces rapid and robust activation of host natural killer (NK) cells. Here we define a
region of the abundantly secreted Lm endopeptidase, p60, that potently but indirectly stimulates NK cell activation in vitro
and in vivo. Lm expression of p60 resulted in increased IFNc production by naı̈ve NK cells co-cultured with treated dendritic
cells (DCs). Moreover, recombinant p60 protein stimulated activation of naive NK cells when co-cultured with TLR or
cytokine primed DCs in the absence of Lm. Intact p60 protein weakly digested bacterial peptidoglycan (PGN), but neither
muropeptide recognition by RIP2 nor the catalytic activity of p60 was required for NK cell activation. Rather, the immune
stimulating activity mapped to an N-terminal region of p60, termed L1S. Treatment of DCs with a recombinant L1S
polypeptide stimulated them to activate naı̈ve NK cells in a cell culture model. Further, L1S treatment activated NK cells in
vivo and increased host resistance to infection with Francisella tularensis live vaccine strain (LVS). These studies demonstrate
an immune stimulating function for a bacterial LysM domain-containing polypeptide and suggest that recombinant
versions of L1S or other p60 derivatives can be used to promote NK cell activation in therapeutic contexts.
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Introduction

NK cells are lymphocytes that help control infections and

tumors and regulate autoimmune responses through both

cytotoxic and cytokine-secreting effector functions. Through the

use of Fas, TRAIL, and secretion of perforin and granzyme B, NK

cells induce apoptosis or lysis of distressed somatic cells. NK cells

can also activate or suppress other aspects of an immune response

through lysis of antigen-presenting cells or production of immune

regulatory cytokines such as IFNc and IL-10 [1,2,3].

NK cells are activated by secreted cytokines and by proteins on

the surface of target cells or other immune cells. NK cells

recognize ‘‘self’’ class I major histocompatibility complex (MHCI)

cell surface molecules by inhibitory receptors that prevent NK cell

activation [4]. Reduced expression of MHCI by stressed or

infected target cells can thus relieve this inhibition and lead to NK

cell activation. Alternatively, NK cells can be directly activated by

recognition of stress-induced ligands through a variety of

activating NK cell receptors [5]. In addition to direct recognition

of target cells, the activity of NK cells is regulated by cytokines

released from macrophages and dendritic cells, such as TNFa,

IFNc, IL-15, IL-12, and IL-18 [6,7]. IL-18 is a potent stimulus for

IFNc production by (NK) cells [8,9] Full NK cell activation often

requires direct contact of the NK cell with accessory cells, such as

dendritic cells (DCs). In some cases, contact of NK cells and DCs

permits signaling of co-stimulatory molecules [6,10,11,12].

Contact may also promote efficient transmission of IL-18 and/

or IL-12 [13,14], and trans-presentation of IL-15 to ‘‘prime’’ the

NK cell [15,16]. The balance of both inhibitory and activating

signals ultimately determines the extent of NK cell activation and

possibly the nature of NK cell effector functions.

Systemic infection by numerous bacterial pathogens elicits

potent NK cell activation and IFNc production, but the

mechanisms of NK cell activation during bacterial infections are

incompletely understood. Infection by Listeria monocytogenes (Lm)

rapidly activates a large population of NK cells to produce IFNc
[17,18]. Lm is a facultative intracellular pathogen of humans and

animals [19]. A number of secreted Lm virulence factors that

contribute to pathogenicity. One of the two most abundantly

secreted Lm proteins is a bacterial hemolysin (Hly) called

listeriolysin O. Hly is essential for bacterial access to the cytosol

of host cells and thus for intracellular bacterial growth and

virulence during systemic infection of mice [19,20]. The second

most heavily secreted Lm protein is called p60. Expression of p60

also contributes to Lm virulence during systemic infections

[17,21,22]. However, the virulence-promoting function of p60

has been enigmatic. The p60 sequence contains a C-terminal

NLPC/p60 domain, two N-terminal LysM domains, and a single

N-terminal SH3-like domain. Some NLPC/p60 domains have

been associated with endopeptidase activity [23,24], while LysM

and bacterial SH3 domains generally bind glycans or proteins

[25,26,27,28]. Consistent with autolytic endopeptidase activity,
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semi-purified p60 protein digested Micrococcus luteus cells [29,30],

and crude Lm PGN [17]. We previously hypothesized that Lm

expression of p60 might thus contribute to Lm pathogenicity by

altering the production of immune modulating muropeptides [21].

Subsequently, an immune modulatory function was associated

with Lm expression of p60. Namely, systemic infections by wt Lm

promoted significantly increased NK cell activation when

compared to infections by p60-deficient (Dp60) Lm [17].

Here, we confirm that p60 deficiency correlates with impaired

NK cell activation in a recently developed cell culture assay

system. Furthermore, using recombinant p60 protein and p60-

derived polypeptides, we show that p60 protein can indirectly

enhance NK cell activation in the absence of additional Lm

factors. Purified p60 protein binds to DCs and induces IL-18

secretion, which is required for NK cell activation by p60 in co-

culture. The ability of p60 to stimulate DCs for NK cell activation

mapped to the first LysM and SH3 domains (L1S) of the p60

protein. The L1S region was also sufficient to promote activation

of NK cells in vivo when given to naı̈ve mice. In vivo treatment with

p60 increased serum IFNc and reduced susceptibility of recipient

mice to infection by the heterologous NK cell-sensitive bacterial

pathogen, Francisella tularensis. These data demonstrate that p60

protein boosts NK cell activation during Lm infection through

appropriate stimulation of accessory cells and suggest that L1S

may be useful to therapeutically manipulate immune responses.

Results

Lm expression of p60 enhances IFNc production in cell
cultures containing NK cells and infected DCs

Systemic infections with Dp60 Lm strains elicit weak IFNc
production by NK cells [17]. Likewise, bone marrow dendritic

cells (BMDCs) infected with Dp60 Lm elicited significantly less

IFNc from co-cultured naı̈ve splenic lymphocytes (Figure 1A).

Intracellular staining revealed that NK1.1+ cells were responsible

for nearly all IFNc production in these cultures (Figure 1B-E).

Multiple independently generated p60 deletion mutants showed a

similarly poor ability to induce IFNc production in these co-

cultures (Figure 1F). This weak IFNc production was restored to

wt levels when expression of p60 was restored in the Lm Dp60

mutant using an integrated vector coding for His tagged p60

protein (Figure 1G). The complemented Dp60+p60 strain secreted

p60 at levels similar to wild-type Lm based on immunoblotting of

culture supernatants (not shown). Reduced NK cell activation in

response to Dp60 Lm infection might conceivably reflect reduced

bacterial burdens within the infected BMDCs. However, micros-

copy and cfu plating revealed that the growth rate was identical for

wt and Dp60 Lm, as was the percent of infected BMDCs over the

course of infection (not shown). Finally, the ratio of cytosolic (actin-

associated) versus phagosome localized Lm was also similar for the

two strains (not shown). Thus, expression of p60 was not required

for the invasion or cytosolic replication of Lm in BMDCs, but

nonetheless increased the activation of neighboring NK cells.

Purified p60 protein stimulates IFNc production by NK
cells in culture with primed DCs

We expressed and purified recombinant His-tagged p60 protein

from E. coli using nickel affinity and cation exchange columns.

When added to co-cultures of BMDCs and nylon wool non-

adherent cells (NWNA) prepared from naı̈ve mouse spleens, the

purified protein induced IFNc production (Figure 2A). The

recombinant p60 protein was associated with ,1 ng of E. coli

LPS per 1 mg of protein. However, this amount of LPS was

insufficient to stimulate IFNc production when added to the co-

cultures without p60 protein (Figure 2A). Moreover, production of

IFNc was not seen in response to treatments with BSA or a His-

tagged phage autolysin (HPL511) that was purified from E. coli

using a similar procedure and also contained ,1 ng LPS per mg

protein (Figure 2A). To further exclude possible artifacts due to

LPS, polymyxin B columns were used to remove LPS from the

purified p60 protein. The detoxified p60 was initially insufficient to

activate IFNc production (Figure 2B), suggesting that activation by

p60 required priming or maturation of the BMDCs. To test this,

BMDCs were pretreated with TLR agonists for three hours before

addition of p60. Pre-stimulation of co-cultures with LPS, the non-

toxic LPS analog monophosphoryl LipidA (MPA), or poly I:C

(PIC) each sufficed to elicit IFNc production following p60

stimulation (Figure 2B). None of the priming agents tested

stimulated IFNc production on their own.

Based on flow cytometry using intracellular IFNc staining, NK

cells were the major source of IFNc produced in the co-cultures

with primed and p60-stimulated BMDCs (Figure 2C-E). To test

whether these NK cells responded directly to the stimulated

BMDC, NWNA splenocytes were stained and flow sorted to

obtain 97–98% pure populations of NK1.1+CD3- NK cells,

CD3+NK1.1- T cells, and ‘‘other’’ cells (negative for both NK1.1

and CD3). Each sorted population was added to BMDCs (.90%

CD11c+) that had previously been treated with LPS and a p60-

derived peptide (peptide described further below). As previously

shown for Lm-infected co-cultures [8], the purified NK cells

produce IFNc when cultured alone with stimulated BMDCs

(Figure S1). The amount of IFNc was not significantly affected by

adding back either or both other cell populations present in

NWNA splenocyte preparations (Figure S1). Although T cells did

not impact IFNc production by the NK cells, we observed small

amounts of IFNc production when purified splenic T cells were

cultured alone with the stimulated BMDCs (Figure S1). This likely

reflects the ability of memory CD8+ T cells to respond to IL-12

and IL-18 in the cultures [31] (see below for further discussion of

cytokines present in the cultures). We conclude that the LPS and

p60-stimulated BMDCs were sufficient to activate NK cells in

these in co-cultures, and that the other cells present in the NWNA

population did not significantly modulate this activation.

Author Summary

Pathogens have evolved diverse strategies to influence
host immune responses. By studying these strategies, we
may learn how to therapeutically intervene to manipulate
immune responses during infectious and other diseases. In
this study, we investigated how the bacterial pathogen
Listeria monocytogenes (Lm) stimulates activation of an
innate immune cell type called the natural killer (NK) cell.
NK cells protect against certain infections, tumors, and
autoimmune diseases, but appear to play a deleterious
role in the context of Lm infection. We found that putative
carbohydrate and protein interaction domains of a heavily
secreted Lm protein and virulence factor, p60, indirectly
stimulate NK cells both during infection and in the
absence of other bacterial factors. Treatment of mice with
this region of p60 stimulated NK cell activity and was
protective in a mouse model of systemic infection by an
NK cell sensitive bacterial pathogen, Francisella tularensis.
These studies suggest that derivatives of p60 protein may
prove to be useful tools for activation of NK cells and
demonstrate therapeutic use of this bacterial immune
modulating factor.

Indirect NK Cell Activation by a Bacterial Polypeptide
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Stimulation of BMDC with LPS and other TLR stimuli elicits

production of cytokines that stimulate DC and NK cells.

Detoxified p60, failed to stimulate IFNc production by the co-

cultures in the absence of priming agents and also failed to induce

significant levels of IL-12p70 secretion by BMDC. However, the

priming agents PIC and MPA both elicited strong IL-12

production in the co-cultures containing NK cells and BMDC

(Figure 2F). In some cases, but not universally, this IL-12p70

secretion was further enhanced by p60 stimulation. Recombinant

IL-12p70, IFNb, and TNFa each sufficed to prime the production

IFNc by detoxified p60 protein in the absence of TLR agonists

(Figure 2G). IL-12 was by far the most potent priming agent, most

likely due both to BMDC priming and the enhancement of IFNc
transcription in NK cells [32]. These findings suggested that

cytokines produced in response to TLR agonists mediate priming

or maturation of the BMDCs, which can then respond to

Figure 1. A secreted bacterial protein enhances activation of naı̈ve mouse NK cells by L. monocytogenes-infected DCs. (A) BMDCs were
infected in triplicate with wildtype Lm (10403s) or a mutant Dp60 Lm strain. NK-enriched NWNA splenocytes were added 2 h post-infection, and
supernatants were harvested 21 h post-infection. The average 6 SEM concentrations of IFNc produced are plotted. (B-E) BMDC were infected with
10403s or Dp60 Lm, and NWNA cells were added 2 h post-infection. At 10 h post-infection, the NWNA cells were stained for CD3, NK1.1, and
intracellular IFNc. The average percentage (B) and Number (C,D) of IFNc positive cells in gated NK1.1+CD3- (NK), NK1.1-CD3+ (T), CD3+NK1.1+ (NKT),
or CD3-NK1.1- (other) cells are graphed 6 SEM. (E) Representative dot plots are shown. (F) BMDC were infected in triplicate with wt Lm (10403s) or
one of two independent Dp60 deletion mutants, and co-culture IFNc was measured as in (A). (G) BMDCs were infected with wt or Dp60 Lm, or a Dp60
Lm strain complemented with His-tagged p60. Average 6 SEM concentrations of IFNc produced are shown. Data are representative of at least three
(A-E,G) or two (F) experiments.
doi:10.1371/journal.ppat.1002368.g001

Indirect NK Cell Activation by a Bacterial Polypeptide

PLoS Pathogens | www.plospathogens.org 3 November 2011 | Volume 7 | Issue 11 | e1002368



recombinant p60 protein or mediate activation of naı̈ve NK cells

in NWNA splenocytes in response to this protein.

Stimulation of IFNc production from NWNA splenocytes
by purified p60 protein requires co-culture with BMDCs
and correlates with binding of the p60 protein to BMDCs

We next asked how p60 might mediate NK cell activation in co-

culture by examining the role of accessory DCs. Addition of p60

protein did not stimulate IFNc production in the absence of NK

cells or when added to NWNA cells in the absence of BMDCs

([17] and Figure 3A). This result suggested two possibilities. Either

p60 protein might act on DCs to induce the ability of DCs to

activate NK cells, or the protein might be presented to NK cells by

DCs for NK cell activation. To investigate whether p60 protein

bound to BMDCs, the cells were treated or not with p60 protein,

fluorescent beads, or p60 plus beads. After washing, the treated

Figure 2. Primed DCs activate naı̈ve NK cells when treated with purified p60 protein. (A) NWNA splenocytes were co-cultured in triplicate
with BMDC infected with wt Lm or treated with 10 mg of recombinant His-tagged p60 purified from E.coli, 10 ng LPS, 10 mg BSA, or 10 mg of a His-
tagged control protein, the phage autolysin HPL511. Average 6 SEM concentrations of IFNc produced are shown. (B) Purified p60 was detoxified of
LPS using a polymyxin B column. BMDC in triplicate were primed for 3 h with 20 mg/ml poly I:C, 10 ng/ml LPS, or 10 ng/ml MPA, and then treated
with 10 mg of detoxified protein. NWNA splenocytes were co-cultured 2 h post-infection, and IFNc was measured by ELISA 21 h post-infection/
treatment. Average 6 SEM concentrations of IFNc produced are shown. (C-E) BMDC were pretreated 3 h with 20 mg/ml PIC, then stimulated with
10 mg detoxified p60. Two hours after p60 treatment, NWNA cells were added to the BMDC. Eight hours later, the NWNA cells were collected and
stained for CD3, NK1.1, and IFNc. NK cells are NK1.1 positive, CD3 negative, while T cells are CD positive, NK1.1 negative. The average percent (C) and
number (D,E) of positive IFNc cells are shown 6 SEM. (F) Supernatants from BMDC and NWNA co-culture as in (B) were analyzed for IL-12 secretion by
ELISA. Average 6 SEM concentrations of IL-12 produced are shown. (G) BMDC were treated with 2 ng IL-12, 100 units IFNb, or 2 ng TNFa with or
without 10 mg detoxified p60. NWNA cells were added 2 h post-treatment, and IFNc levels were measured by ELISA 21 h post-treatment. Average 6
SEM concentrations of IFNc produced are shown. (A-G) Data are representative of at least three experiments.
doi:10.1371/journal.ppat.1002368.g002

Indirect NK Cell Activation by a Bacterial Polypeptide
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and untreated BMDCs were stained using anti-p60 rabbit

polyclonal antisera and a secondary Cy3-labeled anti-rabbit Fab

(Figure 3B-E). A punctuate staining pattern was seen on the

stained p60-treated BMDCs (Figure 3C and E). Identical results

were obtained using two independent anti-p60 polyclonal

antibodies (data not shown). This punctuate staining was not

observed on stained untreated cells or cells treated with beads

alone (Figure 3B and D), nor on sorted NK cells, T cells, or other

Figure 3. Purified p60 binds to BMDCs to active NK cells. (A) NWNA splenocytes were treated in triplicate with 2 ng IL-12 and 10 mg detoxified
p60, in the presence or absence of BMDC. IFNc in the supernatant was measured by ELISA 21 hours post-treatment. Average 6 SEM concentrations
of IFNc produced are shown. (B-E) Scale bars represent 10 mm. BMDCs were untreated (B) or stimulated with 30 mg/ml p60 (C) for 4 h at 37uC and
stained with polyclonal p60 antibody (red). Actin stained with Alexa-488 is shown in green, and nuclei (DAPI) are shown in blue. (D,E) BMDCs were
treated with FITC-latex beads (green) alone (D) or with 30 mg/ml p60 protein (E) for 4 h at 37uC and stained with polyclonal p60 antibody (red).
Arrows indicate p60 puncta. (F) BMDC were infected with WT Lm or primed with 20 mg/ml poly I:C or 2 ng/ml IL-12 and treated with 10 mg detoxified
p60. NWNA cells were added to the co-culture either in contact with the BMDC or separated by a 0.4 mm transwell support. Average 6 SEM
concentrations of IFNc produced are shown. (G) NWNA splenocytes were cultured with BMDC alone or treated with 10 ng soluble LPS + 10 mg
soluble p60, or with Ni beads and an equal amount of p60 and LPS (Beads). IFNc in the supernatant was measured by ELISA 21 hours post-treatment.
Data shown are representative of two (G) or at least three experiments (A-F).
doi:10.1371/journal.ppat.1002368.g003

Indirect NK Cell Activation by a Bacterial Polypeptide
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NWNA splenocytes (not shown). The punctuate staining for p60

did not require detergent permeation of the BMDC membrane

(not shown), nor did p60 puncta co-localize with phagocytosed

FITC-labeled latex beads (Figure 3E). These data suggest that p60

protein binds to an unknown receptor/s present at or near the

surface of BMDCs.

We previously reported that contact between DCs and NK cells

was required for NK cell activation during Lm-infection [8].

Similarly, contact between the DC and NWNA splenoctyes was

required for p60-induced NK cell activation (Figure 3F). It was

conceivable that binding of p60 to the DC surface might permit

presentation of this protein to NK cells. However, nickel beads

coated with a His-tagged p60 were not able to stimulate NWNA

cells in the absence of BMDC (Figure 3G). Together, these data

suggested that p60 primarily stimulates NK cell activation

indirectly, due to its effect on DCs.

NK cells might respond to altered MHC I expression and/or

upregulation of stress ligands by BMDCs treated with p60 protein

[5,33]. Thus, we stained BMDCs that had been primed with LPS

plus or minus an active p60-derived peptide (described further

below) and assessed their expression of activation markers

(MHCII) and several known ligands for NK cell surface receptors

(Figure S2). MHCII expression increased after protein treatment,

consistent activation of the BMDC. No down regulation of MHC I

was observed and the expression of NKG2D ligands RAE1c,

RAE1d, and MULT1 were unchanged. There was no change in

staining levels for the SLAM family members 1, 2, 3, and 6.

SLAMF 5 staining was slightly reduced after protein treatment,

which is likely due to DC activation. These data suggested that

NK cell activation by p60 was due to effects of p60 on DCs that

were independent of altering expression of these known ligands for

NK cell activating and inhibitory receptors.

Treatment with p60 causes BMDCs to secrete IL-18,
which is required for IFNc production by co-cultures
containing NK cells

Both cell contact and inflammatory cytokines such as IL-12 and IL-

18 modulate NK cell activation and IFNc production [34]. IL-12

production by BMDC infected with wildtype versus Dp60 Lm was not

significantly different (data not shown). Since IL-18 production is

essential for NK cell activation by Lm infected BMDCs [8], we asked

whether bacterial expression of p60 effected IL-18 production in

infected BMDCs. We found that secretion of IL-18 was significantly

reduced in the supernatants of C57BL/6 BMDCs infected with Dp60

Lm (Figure 4A). Consistent with this observation, detoxified p60

protein in combination with PIC strongly simulated IL-18 secretion

from BMDCs (Figure 4B). We next evaluated the effects of IL-18

production on IFNc production in cultures of infected BMDC and

NWNA splenocytes. In response to Lm infection, IL-18-/- BMDCs

stimulated very little IFNc production (Figure 4C). Moreover, the

amount of residual IFNc produced in these co-cultures was no longer

affected by bacterial expression of p60. Further, IL-18 expression in

BMDCs was additionally required to elicit IFNc production in co-

cultures primed with PIC or MPA and stimulated with detoxified p60

protein (Figure 4D). Together, these data suggest that binding of p60

to BMDC elicits IL-18 secretion, which is required for activation of

NWNA splenocytes.

The enzymatic activity of p60 is not required for its ability
to stimulate IFNc production in co-cultures of BMDCs
and NWNA cells

The p60 protein has been shown to weakly digest peptidoglycan

(PGN) [21,29], hence, we previously hypothesized that PGN

cleavage by p60 might release muramyl di-peptide (MDP) or other

bioactive muropeptides [21,29]. MDP is detected by NOD2,

which signals through the RIP2 kinase [35,36,37,38]. To test

whether MDP generation by p60 might stimulate NK cell

activation, we compared the ability of Lm infected B6 and

B6.RIP2-/- BMDC to activate NK cells from B6 mice. Bacterial

expression of p60 enhanced IFNc production in NWNA

splenocytes co-cultured with RIP2-/- BMDCs to the same extent

as C57B6 BMDCs (Figure S3A). Additionally, purified recombi-

nant p60 stimulated BMDC and NK cell enriched splenocytes co-

cultures in the absence of added Listeria PGN. Therefore,

generation and detection of the MDP PGN fragment was not

required for NK cell activation nor for the ability of p60 to

enhance such activation.

Like the Bacillius subtilis LytF protein, p60 contains a C-terminal

NLPC/p60 domain with a putative catalytic triad of two histidines

and a single cysteine residue (Figure 5A). In LytF, the cysteine is

essential for endopeptidase activity and permits cleavage of the

cross-linking peptide chains in peptidoglycan (PGN) [24].

However, NLPC/p60 domains have also been associated with

other catalytic functions. To formally test whether the enzymatic

activity of p60 was required for stimulation of NK cell activation,

we engineered and purified a p60 derivative in which the catalytic

cysteine residue was mutated to alanine. The resulting p60C389A

mutant protein was purified as for wt p60 and tested for digestion

of heat-killed Lm and crude Lm PGN substrates using zymo-

graphy (Figure S3B and not shown). As previously published

[21,29], the wt p60 protein cleaved PGN, although this activity

was much weaker than that seen with a control phage lysin

Figure 4. IL-18 produced by BMDCs is required for p60-elicited
IFNc from NK cells in co-culture. All treatments were performed in
triplicate; average cytokine concentrations 6 SEM are shown. (A)
BMDCs were infected with 10403s or Dp60 Lm, and supernatant levels
of IL-18 were assessed by ELISA 21 hours post-infection. (B) BMDC were
treated with 20 mg/ml PIC and 10 mg detoxified p60 alone or in
combination, and supernatant levels of IL-18 were assessed by ELISA
21 hours post-infection. (C,D) BMDC from C57B6 or IL-18-/- mice were
infected with 10403s or Dp60 Lm (C) or treated with 10 ng/ml MPA or
20 mg/ml PIC alone or in combination with 10 mg detoxified p60 (D).
Two hours post treatment, C57B6 NK-enriched NWNA splenocytes were
co-cultured with the BMDCs. IFNc levels were measured by ELISA 21
hours post-infection. Data shown are representative of at least three
experiments.
doi:10.1371/journal.ppat.1002368.g004

Indirect NK Cell Activation by a Bacterial Polypeptide
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(HPL511). The p60C389A was completely inactive in this assay

(Figure S3B), confirming that the cysteine residue was required for

PGN digestion by p60. Nonetheless, the purified p60C389A was as

efficient as the catalytically active wt protein for stimulating IFNc
production in co-cultures of NWNA splenocytes and BMDCs

(Figure S3C, Figure 5B). These data demonstrate that the

enzymatic activity of p60 is not required for its ability to promote

NK cell activation.

The N-terminal LysM-SH3 region of p60 is sufficient to
stimulate IFNc production by NWNA cells

Given that enzymatic activity was dispensable for NWNA

splenocyte activation by p60, we asked whether this activation was

associated with NLPC/p60 or other domains. The Lm genome

contains a homolog of p60 (Lm0394) with both an SH3 domain

and a C-terminal NLPC/p60 domain but lacking the N-terminal

LysM domains found in p60. A His-tagged recombinant Lm0394

protein was unable to activate NWNA splenocytes in co-culture

(Figure 5B). Thus, the presence of SH3 and NLPC/p60 domains

was not sufficient to confer the ability to activate co-cultures.

Additional p60 derivatives were engineered and purified, including

an N-terminal fragment (Np60) truncated immediately before the

TN repeat region and a C-terminal fragment (Cp60) that

comprised the TN repeats and NLPC/p60 domain (Figure 5A).

These truncated proteins were purified, detoxified, and tested as

for full length p60. Np60 induced IFNc production in co-cultures

pre-stimulated with either PIC or MPA, while Cp60 failed to

induce IFNc (Figure 5C). Further truncation of the N-terminal

region mapped the stimulating activity to a fragment containing

the LysM1 and SH3 domains, termed L1S (Figure 5D). The

results of our experiments with SH3-domain-containing Lm0394

indicate that the LysM1 domain may be responsible for the

activity of L1S. However, efforts to purify the LysM1 or SH3

domains alone have thus far been unsuccessful, suggesting that

both domains may be required for conformation and stability.

Given that the L1S polypeptide was the minimal active

component of p60 identified in our studies, we tested whether

the LysM1 domain was necessary for p60-induced co-culture

activation during Lm infection. We compared Dp60 mutants

complemented with p60 constructs that lacked the LysM1 domain

or the linker domain (LD) between the SH3 and LysM2 domains

(Figure 5A). Both complemented strains expressed and secreted

the p60 mutant proteins at levels comparable to wildtype Lm

based on immunoblotting of precipitated culture supernatants (not

shown). The DLysM1 complementation mutant induced low IFNc
levels in co-culture similar to Dp60 Lm infection, while the DLD

complementation mutant induced IFNc similar to wild type Lm

infection (Figure 5E). Thus, the LysM1 domain appears to be

largely responsible for p60-mediated activation of BMDC/NWNA

splenocyte co-cultures.

L1S activates NK cells in vivo
The regulation of NK cell activation and responses in vivo may

differ from their regulation in our cell culture system. We thus

asked whether purified, LPS-associated L1S was sufficient to

activate NK cells in vivo when administered to mice by

intraperitoneal (i.p.) injection. LPS was administered to a second

group of mice as a negative control. At 24 h after injecting the L1S

or LPS, IFNc production by both splenic and peritoneal

infiltrating NK cells was assessed using intracellular cytokine

staining. The data showed that LPS treatment failed to stimulate

NK cell activation in the absence of L1S polypeptide. However,

there were significant increases in the percentage of NK1.1+CD3-

cells staining positive for IFNc in both peritoneum (Figure 6A, 6C)

and spleen (Figure 6B). The activation of splenic NK cells was

more modest than seen in the peritoneum, suggesting the NK cell

activation largely occurred locally at the site of L1S injection

(Figure 6B). The NK cell activation by LPS-associated L1S was

dose-dependent (Figure S4). We additionally observed that the

percent granzyme B positive NK1.1+CD3- NK cells was increased

in the peritoneal cells in response to L1S treatment (Figure 6D).

Hence, we measured cytotoxicity from NWNA splenocytes after

co-culture with BMDCs stimulated with LPS with or without L1S.

Consistent with the increased granzyme B staining in vivo, L1S

significantly enhanced the cytolytic activity of NWNA splenocytes

against NK cell-sensitive B16F10 melanoma target cells in vitro

(Figure 6E). These data confirmed that the p60-derived polypep-

tide was bioactive in the treated animals and suggested that L1S

might be useful for therapeutic stimulation of both cytokine and

cytoxicity-based immune responses.

In vivo administration of L1S confers protection against
Francisella infection

Secretion of IFNc by NK cells is thought to promote clearance

of the bacterial pathogen Francisella tularensis [39,40,41]. However,

this cytosolic intracellular bacterial pathogen normally suppresses

innate immune responses [41,42,43]. We thus hypothesized that

boosting of NK cell activation during F. tularensis infection might

reduce host susceptibility to this pathogen. To test this hypothesis,

Figure 5. The p60 L1S fragment is sufficient to activate DC/NK
cell co-cultures. (A) p60 domain map. The p60 protein consists of two
LysM domains on either side of an SH3 domain in the N terminal
portion. The C-terminus consists of an NLPC/p60 domain preceded by a
TN repeat region. C389, H439 and H465 are the predicted catalytic triad.
Recombinant versions of (B) p60C389A, the Lm p60 homolog 0394, and
(C) the p60 fragments Np60, Cp60, and (D) LysM1-SH3 (L1S) were
purified and detoxified of LPS using a polymyxin B column. BMDC were
primed for 3 h with 20 mg/ml poly I:C or (C,D) 10 ng/ml MPA (C) then
treated with 10 mg of detoxified protein. NWNA splenocytes were co-
cultured 2 h post-treatment, and IFNc was measured by ELISA 21 h
post-treatment. (E) BMDC were infected with wt 10403s, Dp60, DLysM1,
or DLD Lm. NWNA splenocytes were added at 2 hr post-treatment. IFNc
levels were assessed 21 hr post-treatment by ELISA. Data are
representative of at least three (B-D) or two (E) experiments. All
treatments were performed in triplicate.
doi:10.1371/journal.ppat.1002368.g005
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we administered purified, LPS-associated L1S or PBS alone by a

single i.p. injection 24 hours prior to an i.p. infection with the

attenuated live vaccine strain of Francisella tularensis holarctica LVS

(Ft). Bacterial burdens in the infected spleens (Figure 7A) and livers

(Figure 7B) were assessed 96 hours post Ft infection. Colony-

forming units (CFU) recovered from spleens and livers of the L1S

treated mice were significantly reduced when compared to the

control mice. Consistent with the increase in IFNc+ NK1.1+CD3-

cells seen after in vivo L1S stimulation (Figure 6A, 6B), we observed

a significant increase in serum IFNc levels in the mice treated with

L1S prior to Ft infection (Figure 7C). To control for the potential

effects of LPS associated with purified L1S, we pre-treated mice

with LPS or LPS-associated L1S 24 hours prior to Ft LVS

infection as above. The CFUs recovered 4 days post-infection were

significantly lower in mice pre-treated with LPS-associated L1S

compared to LPS alone (Figure 7D). Serum levels of IFNc were

also significantly higher in the L1S versus LPS pre-treated mice

(not shown), which correlates with the observed minimal effect of

LPS on IFNc levels in NK cells in vivo (Figure 6A, 6B). These

findings suggest that p60 and its derivatives enhance NK cell

activation in a biologically relevant manner and may be useful for

further development as a therapeutic for immune stimulation.

Discussion

Bacterial pathogens have developed numerous strategies to

interfere with or subvert host immune responses [44,45]. Our

findings here demonstrated an indirect role for the abundantly

secreted L. monocytogenes (Lm) p60 protein in modulation of NK cell

activity. We showed that Lm secretion of the p60 protein during

Figure 6. L1S activates NK cells in vivo to secrete IFNc and increase cytotoxicity. Mice were injected i.p. with 500 mg L1S or 500 ng LPS in
250 ml PBS. After 24 hours (A) peritoneal cells harvested by lavage and (B) splenocytes were stained for CD3, NK1.1, and intracellular IFNc. Shown are
graphical representations of the NK1.1+, CD3- cells that stained positive for IFNc. Symbols represent individual mice. (C) FACS plots showing the IFNc
positive gate used for (A and B). Gated NK cells from peritoneal lavage are depicted. Data are pooled from two independent experiments; n = two to
four treated mice per experimental group. (D) The peritoneal cells from (A) were stained for granzyme B. The average percent granzyme B-positive
NK1.1+/CD3- cells are shown. (E) NK-enriched splenocytes were co-cultured with BMDC that were treated with LPS with or without L1S for 21 hours.
The NWNA splenocytes were added to B16F10 melanoma target cells at the effector:target ratios indicated, based on estimated 5% NK cells in the
splenocytes. Cytotoxicity was assessed after 4 hours incubation. Conditions were assessed in triplicate, and results are representative of two
experiments.
doi:10.1371/journal.ppat.1002368.g006
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infection of cultured BMDCs stimulated enhanced activation of

naı̈ve NK cells in cell co-culture assays. Moreover, endotoxin-free

purified p60 protein was sufficient to stimulate IFNc production

from NK cells in co-cultures containing BMDCs primed with

TLR agonists or inflammatory cytokines such as IL-12. Purified

p60 protein bound to the BMDCs and in the presence of priming

stimuli this binding correlated with BMDC secretion of the NK

cell activating cytokine IL-18. These findings support the model

that p60 indirectly activates NK cells by stimulating a DC surface

receptor in a manner that induces secretion of IL-18. Consistent

with this model, IL-18 production by the BMDCs was essential for

eliciting IFNc production by NK cells and cultures of NWNA

splenocytes. The known endopeptidase enzymatic activity of p60

was not required for this biological response and stimulation of

NK cell activation by p60 or its derivatives was independent of

bacterial PGN and muropeptide detection systems dependent on

the RIP2 kinase. Rather, the ability to stimulate DC-dependent

NK cell responses mapped to an N-terminal fragment of p60 that

contains a LysM domain and a bacterial SH3 domain. A

polypeptide containing just these domains (L1S) was sufficient to

stimulate DC-dependent NK cell activation both in cell culture

assays and when administered to mice in the absence of Lm

infection. These results thus revealed a novel role for a bacterial

LysM domain-containing protein in the modulation of mamma-

lian innate immune responses.

Our studies here demonstrated that extracellular delivery of p60

protein or the L1S polypeptide in cell culture acted in concert with

DCs to stimulate NK cell activation. However, the p60 protein

was not sufficient to activate NK cells in the absence of primed

BMDCs. In addition, soluble L1S polypeptide triggered NK cell

activation when injected into mice without any known mechanism

for uptake into the cytosol of host cells. These data suggest that

p60 and/or L1S act extracellularly to increase the ability of DCs to

promote NK cell activation. Consistent with this interpretation, we

observed that p60 protein bound to the surface of BMDCs but not

NK cells. Staining of p60 on BMDCs that were fed latex beads

suggested that aggregates of p60 are not simply phagocytosed.

Furthermore, delivery of p60 into the cytosol of cultured BMDCs

using transfection protocols did not improve NK cell activation

(not shown). These data suggest that p60 protein acts extracellu-

larly to promote NK cell activation. The fact that infected

individuals develop antibodies against p60 further suggests this

protein may be abundant extracellularly during Lm infection [31].

Potential sources of extracellular p60 include production by

extracellular bacteria, which are known to be present at early and

later times of infection [46], or release of protein upon lysis of

infected cells. However, we cannot exclude the possibility that p60

present in the cytosol after phagosomal escape of Lm also

contributes to NK cell activation. Indeed, p60 protein is abundant

in the cytosol of Lm infected macrophages and stimulates

protective cytotoxic T cell (CTL) responses [47,48]. Since

cytokines and TLR agonists are also present during Lm infections,

soluble extracellular p60 protein that interacts with DCs or other

infected cells during in vivo Lm infection is likely an important

stimulus for NK cell activation during in vivo Lm infection.

However, our data here (Figure 1) and in a prior publication [17]

clearly indicate that there are also p60-independent mechanisms

for NK cell activation.

The activation of naı̈ve NK cells by DCs infected with live Lm

bacteria was previously shown by us and others to require both

direct contact between DCs and NK cells and the production of

IL-12 and IL-18 [8,18]. Lm bacteria obviously contain TLR

agonists that can induce IL-12 production to prime NK cell

activation during in vivo infection. However, it has not been clear

whether specific bacterial factors stimulate IL-18 production and/

or cell contact between naı̈ve NK cells and DCs. Our data here

implicate the L1S region of p60 as a bacterial factor that promotes

IL-18 production by DCs. Specifically, we showed that priming of

BMDCs with TLR agonists stimulated IL-12p70 production by

these cells and that IL-12p70 could substitute for TLR agonists. In

some experiments, we also observed a modest p60-induced

enhancement of IL-12 secretion from BMDCs that were already

primed with TLR agonists, which is consistent with the ability of

IL-18 to positively regulate IL-12 production. However, neither

TLR agonists nor IL-12 were sufficient to stimulate NK activation

in the absence of p60 protein and the IL-18 production elicited by

p60. Moreover, despite the presence of IL-12 and IL-18,

stimulation of BMDCs with TLR agonists and p60 was insufficient

to stimulate NK cell activation when there was not direct cell-cell

contact between the BMDCs and the NK cells. The p60 treatment

appeared to induce a more activated phenotype in BMDCs but it

did not alter the expression by BMDCs of several known ligands

for NK cell activating and inhibitory receptors. Thus, there exist at

least three possible explanations for the contact requirement: (1)

The p60 stimulation triggers both IL-18 secretion and expression

of an activating ligand by the BMDCs. This ligand is not one we

have tested and may be novel. (2) Contact merely serves to

increase the local concentration of IL-18 (and perhaps IL-12)

above some threshold that normally prevents activation of the

naı̈ve NK cells. This may be facilitated by immunological synapses

formed between the DC and NK cells, as previously suggested

[13,14]. (3) BMDCs constitutively express (or are induced to

express e.g. by p60 or IL-12) a surface associated ‘‘co-stimulatory’’

factor that is required to ‘‘prime’’ the NK cells for responsiveness

to IL-18. Ongoing and future studies focused on identification of

Figure 7. In vivo administration of L1S is protective for
Francisella infection. (A-C) Mice were pretreated with 300 ml PBS
control or 500 mg purified L1S injected i.p. After 24 hours, the mice
were infected i.p with 104 live F. tularensis LVS. CFUs were counted from
the spleens (A) and livers (B) of the infected mice 4 days post-infection.
(C) IFNc from serum was measured by ELISA. Data are pooled from two
independent experiments; n = three to six mice per experimental
group. (D) Mice were pretreated with 500 ng LPS with or without
500 mg L1S in 300 ml PBS injected i.p. 24 hours before infection with 104

live F. tularensis LVS, administered i.p. CFUs from liver were assessed 4
days post-infection.
doi:10.1371/journal.ppat.1002368.g007
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putative ligands or co-stimulatory factors may resolve which, if

any, of these possible explanations is correct.

NK cells are the major source of IFNc production early after

viral and bacterial infections. IFNc normally plays a protective

role in immunity to Lm and other pathogens, including F.

tularensis (Ft). IFNc induces CD4 Th1 differentiation, stimu-

lates cytotoxic CD8 cells, and activates macrophages to

become more bactericidal [49,50]. During Ft infection,

IFNc-positive NK cells are quickly recruited to sites of

infection, where they promote granuloma formation and limit

bacterial spread [39,41]. We found that injection of L1S

polypeptide into mice was sufficient to activate NK cells to

produce IFNc, particularly at the site of injection. We also

found increased serum levels of IFNc persisting through

infection in mice pre-treated with L1S polypeptide. Presum-

ably, the IFNc produced by these NK cells created a non-

permissive environment for Ft expansion. Thus, when Ft was

inoculated at the same site as the L1S polypeptide, its growth

was significantly reduced compared to inoculations in the

absence of L1S. It will be important to determine whether L1S

polypeptide injection might also protect against other routes of

Ft infection and against other pathogens.

In contrast to Ft infection, the results of in vivo depletion studies

suggest that NK cells are associated with increased susceptibility of

mice to Lm [17,51,52,53,54] and the expression of p60 by Lm

increased host susceptibility to systemic Lm infection [17,21].

Thus, production by Lm of a protein that promotes NK cell

activation correlates with the fact that NK cell activation increases

susceptibility to Lm. It was also previously reported that IFNc
production by NK cells fails to protect mice against systemic Lm

infections [55]. This may be due to suppression of macrophage

responsiveness to IFNc during early stages of Lm infection [56].

Thus, Lm produces a protein that enhances NK cell activation

and also has been shown to be more pathogenic in the presence of

NK cells. It will thus be of interest in future studies to understand

the mechanisms by which activated NK cells promote Lm

pathogenicity.

In contrast to Lm, Ft normally suppresses host inflammatory

responses during the initial stages of infection [42,43]. The Ft

genome contains several LysM-containing proteins, but using

BLAST searches we failed to identify any Ft proteins whose LysM-

domains showed more than 20% identify to the LysM1 region of

p60. Thus, it is possible that the LysM proteins present in Ft have

evolved to lack residues critical for binding to DCs or activation of

IL-18 secretion by DCs. Consistent with this model, we found that

no IFNc was produced by NWNA splenocytes cultured with Ft-

infected BMDCs (data not shown). However, this issue will need to

be further investigated, since it is also possible that Ft LysM

proteins are not secreted and thus accessible to bind DCs in the

same manner as the Lm p60 L1S region.

NK cells are attractive targets for therapy in cancer and

infectious diseases as they can directly kill target cells. NK cells also

regulate immune and autoimmune B cell and T cell responses

through production of IFNc or inhibitory cytokines such as TGFb
and IL-10 [57,58]. NK cells have additionally been shown to

impact Type I diabetes, multiple sclerosis, and other diseases

associated with inflammation [59,60]. Our findings demonstrated

use of the p60 protein to stimulate activation of cultured NK cells.

L1S also demonstrated effective NK cell activation when

administered in vivo. With refinement, p60 or L1S may be adapted

to therapeutic use to harness anti-cancer or immune regulatory

effector mechanisms of NK cells. Further experimentation on the

clinical and biological effects of p60 protein may thus provide

novel approaches to manipulate host immune responses. Addi-

tionally, it will be of interest to determine whether and how LysM-

containing proteins from other pathogens modulate innate

immune responses. Such studies should improve our understand-

ing of bacterial pathogenesis and the role of NK cells in immune

responses.

Methods

Ethics statement
This study was carried out in strict accordance with the

recommendations of the Public Health Service Policy on the

Humane Care and Use of Laboratory Animals, the Guide for the

Care and Use of Laboratory Animals, and the Association for

Assessment and Accreditation of Laboratory Animal Care. The

protocols used were approved by the Institutional Animal Care

and Use Committee at National Jewish Health (Protocol Permit

AS2682-9-13). All efforts were made to minimize suffering.

Mice
C57BL/6 and B6.IL-18-/- mice were obtained from Jackson

labs. Breeders of B6.Rip2-/- mice were generously provided by K.

Kobayashi (Dana-Farber/Harvard, Boston, MA). Mice were bred

and housed in the Biological Research Center of National Jewish

Health. Studies were performed with the approval of the National

Jewish Health Institutional Animal Care and Use Committee.

Bacterial strains
Wild type Listeria monocytogenes 10403s was used in these studies.

In-frame deletion of p60 in 10403s was done by allelic exchange,

as described [21]. The full p60 complementation mutant expresses

a secreted His-tagged p60 protein expressed from the pPL2-

derived vector pIMK2, a generous gift from C.G.M. Gahan

described in [61]. The DLysM1-p60 complementation mutant

lacks the first LysM1 domain, residues 26-69, and is also expressed

from the pIMK2 vector. SOE PCR primer sequences are

provided in Table S1. 10403s Dp60 was transformed with the

His-p60 construct or DLysM1and p60 protein secretion was

assayed by immunoblot of TCA precipitated of supernatants from

overnight Lm cultures. Plasmid DNA encoding the DLD-p60,

lacking residues 138-179, was provided by E. Pamer (Sloan-

Kettering, NY) and described in [62]. The mutated gene was

amplified with primers described in Table S1 and subcloned into

the pPL-2 vector for transformation into 10403s Dp60 Lm. The

Francisella tularensis live vaccine strain (LVS) holarctica type b was

obtained from ATCC BEI Resources (Manassas, VA). Escherichia

coli TOP10 cells were obtained from Invitrogen (Carlsbad, CA)

and were used to clone and express all His-tagged purified proteins

in this study.

BMDC culture and infection
Femoral bone marrow was flushed and cultured in RPMI 1640

(high glucose) (Gibco, Invitrogen) with 10% FBS, .1% betamer-

capto-ethanol, 1%L-glutamine, 1% sodium pyruvate, 1% penicil-

lin/streptomycin, and 2 ng/ml GM-CSF. BMDC were washed on

days 2 and 4, and harvested on day 7. 36105 cells were plated per

well of a 24-well plate in triplicate for .12 hours in antibiotic-free

media, then infected with log phase 10403s wt or Dp60 at MOI of

1 for 1 hour. Cells were then washed and treated with 10 mg/ml

gentamycin. For protein stimulation, 36105 BMDC were treated

with 10 mg purified protein plus or minus pre-treatment with

10 ng/ml ultra-pure LPS, 10 ng/ml mono-phosporo-Lipid A

(MPA) (Sigma-Alderich, St. Louis, MO), or 20 mg/ml Polyinosine-

polycytidylic acid (PIC) (Invivogen, San Diego, CA) for 3 hours.
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Co-Cultures for NK cell activation
Splenocytes were prepared and enriched for lymphoctyes by

nylon wool non-adherence (NWNA) as described [8]. Lym-

phocytes were 5-6% CD3- NK cells based on staining with

NK1.1 (PK136) and CD3 (145-2C11) (BD Biosciences Franklin

Lakes, NJ and eBioscience San Diego, CA). The splenocytes

were added to the BMDC at a 0.1:1 NK cell:BMDC ratio at

2 hours post-infection. To obtain purified NK and T cells from

NWNA splenocytes, cells were stained with NK1.1 and CD3

and sorted by flow cytometry on the Synergy (Icyt, Champaign,

IL). Purified NK1.1+/CD3- NK cells (36104), CD3+/NK1.1-

T cells (56104) and NK1.1-/CD3- cells (36104) were added to

36105 BMDC per well. To test NWNA splenocytes activation

in the absence of BMDC, a 50% bead slurry of Ni-NTA

agarose beads (Invitrogen) was washed 5 times with PBS,

associated with 50 mg L1S/well, washed 2 times with PBS, and

then was added to NWNA splenocytes in the presence or

absence of BMDC.

Protein purification
DNA coding for the mature p60, p60C389A , Lm 0394, Np60,

Cp60, and L1S were cloned into the pTrcHis-TOPO TA cloning

vector (Invitrogen, Carlsbad, CA) for IPTG-induced expression in

TOP 10 E.coli. Primers are listed in Table S1. The phage autolysin

HPL511 was purified from a construct supplied by M. Loessner

(Zurich). E.coli were lysed with BugBuster (Novagen, Gibbstown,

NJ) in 20 mM Na phosphate, 0.5 M NaCl, and 20 mM imidazole,

pH 7.4, containing protease inhibitor and 2 mg/ml lysozyme.

Proteins were purified using HisTrap FF 5 ml affinity columns

(GE, Piscataway, NJ) on an Akta FPLC (GE). Further purification

was achieved with Hi-Trap FF or HP (GE) cationic exchange in

50 mM HEPES buffer. LPS was removed from the proteins using

polymyxin B columns as indicated by the manufacturer (Thermo

Scientific, Waltham, MA).

ELISA
Supernatant levels of murine IFNc, IL-12p70, and IL-18 were

measured at 21 hours post-infection using commercial ELISA kits

(BD Biosciences, MBL International, Woburn, MA).

Microscopy
BMDCs (36105 per coverslip) were treated with 30 mg/ml

purified p60 with or without 16108 FITC-labeled 0.5 um latex

beads (Polysciences, Inc, Warrington, PA). p60 was probed with

PFII rabbit anti-p60 (supplied by E. Pamer, New York) and Fab

(ab9)2 goat-anti-rabbit Cy3 (Invitrogen). Actin was visualized with

Alexa-488 or Alexa-680 phalloidin and nuclei were stained with

DAPI (Invtrogen). Slides were viewed with the Leica DMRXA

(Leica Microsystems Inc., Bannockburn, IL). Data were collected

at 100x and 40x magnification in oil at room temperature. Lenses

were 100x oil, numerical aperture 1.4- 0.7, and 40x oil numerical

aperture 1.25-0.75. Images were taken using the Coolsnap XQ

camera (Photometrics, Tucson, AZ) and processed with Slidebook

5 (Intelligent Imaging Innovations, Inc., Denver, CO). Minimal

contrast adjustment was applied equally to experimental and

control merged images. Images were sized and annotated using

Photoshop (Adobe Systems, Inc., San Jose, CA).

BMDC phenotype staining
BMDCs were plated in triplicate and primed for 3 hours with

30 ng/ml LPS and then treated with 30 mg/ml purified L1S p60

protein-derived peptide for 4 hours. The cells were then lifted and

surface stained for Kb (AF6-88.5.5.3), Db (28-14-8), MHC-II (M5/

114.15.2), RAE1c (CX1), RAE1d (RD-41), MULT-1 (5D10),

CD229/Ly9/SLAMF3 (Ly9ab3), Ly-108/SLAMF6 (eBio13G3-

19D), CD150/SLAMF1 (9D1), CD84/SLAMF5 (mCD84.7), and

CD48/SLAMF2 (HM48-1). All antibodies were from eBioscience

(San Diego, CA). Cells were run on a LSRII (BD Biosciences) and

50,000 events were collected. FlowJo software (Tree Star Inc,

Ashland, OR) was used to analyze samples.

Zymography
10 mg each of p60, p60C389A, and 0.25 mg of phage autolysin

HPL511 were loaded into native 7.5% PAGE gels with .02% heat-

killed Lm as PGN substrate. The gels were re-natured in 25 mM

Tris ph 7 with 1 mM DTT and 10 mM CaCl2, shaking overnight

at 37uC. Zymography activity was visualized by staining with

0.01% methylene blue in 0.1%KOH.

In vivo L1S treatment
Female mice between ages 8–10 weeks were treated intraper-

itonally with 500 mg purified L1S or 10 ng/ml LPS in 300 ml

0.2 M sodium phosphate buffer. For NK cell IFNc intracellular

staining, peritoneal infiltrates were harvested by injecting the

peritoneum with 10 ml ice cold PBS with 5 mM EDTA. After

light shaking, the fluid was recovered, and cells were stained as

described below. Spleens were harvested at 24 into RPMI 1640

(Gibco, Invitrogen). Spleens were treated with 1 mg/ml collage-

nase in Hank’s Buffered Salt Solution (HBSS) plus cations

(Invitrogen, Carlsbad, CA) for 30 minutes, mashed through a cell

strainer into a single cell suspension and treated with RBC Lysis

Buffer (0.15 M NH4Cl, 10 mM KHCO3, 0.1 mM Na2EDTA,

pH 7.4) and stained as described below.

Splenocyte and peritoneal lavage staining
Splenocytes and Peritoneal infiltrates were counted and 26106

cells were incubated in RP-10 media (RPMI 1640, 10% FBS, 1%

L-glutamine, 1% Sodium Pyruvate, 1% Penicillin, 1% Strepto-

mycin and 0.1% b-mercaptoethanol) plus GolgiPlug (BD

Biosciences, Franklin Lakes, NJ) for 3 hours. Cells were then

incubated in anti-CD16/32 (2.4G2 hybridoma supernatant) to

block Fc receptors. Surface staining was performed first and

included anti-CD3 (clone 145 2C11) and anti-NK1.1 (clone

PK136). Cells were then fixed and permeabilzed in a 4%

paraformaldehyde and saponin solution and stained with anti-

IFNc (clone XMG1.2) and anti-granzyme B (16G6) (eBioscience,

San Diego, CA). Cells were run on a LSRII (BD Biosciences) and

100,000 events were collected. FlowJo software (Tree Star Inc,

Ashland, OR) was used to analyze samples. Splenocytes from co-

culture experiments were collected 10 hours post-infection,

cultured with GolgiPlug (BD Biosciences) for 3 hours, and

stained as above.

Cytotoxicity assays
BMDCs (36104 per well) were treated or not with 10 ng LPS

with or without 10 mg L1S per well for 2 hours. NK-enriched

NWNA splenocytes were added to the BMDCs at 2 hours as

described in NK-activation and Co-culture. After 21 hours of co-

culture, the NWNA splenocytes were collected from co-culture,

counted, and added to 56104 B16F10 mouse melanoma cells

(ATCC, Manassas, VA) at Effector:Target ratios of 1:10, 1:10, and

10:1 based on the estimated number of NK cells in the NWNA

splenocytes (5%). The effector and target cells were incubated for

4 hours and cytotoxicity based on LDH release was measured

using the Cytotox96 cytotoxicity kit as per manufacturer

instructions (Promega, Madison, WI).
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Francisella infection
6–8 week old female mice were pre-treated with 300 ml PBS

alone or with 500 ng LPS with or without 500 mg purified L1S,

injected i.p. After 24 hours, the mice were infected i.p. with ,104

LVS strain of F. tularensis ssp. holarctica LVS (Ft). Livers and spleens

were harvested at 96 hours post Ft infection into 0.02% Nonidet P-

40. Livers and spleens were homogenized in a protected fume hood

for 1 minute and 2 serial dilutions of homogenate were plated on

BHI (Brain and Heart Infusion)(BD Biosciences) agar plates. Plates

were incubated at 37uC, 7.5% CO2 with humidity for 72 hours and

colonies were counted to determine colony forming units per organ.

Serum levels of IFNc were measured by ELISA.

Statistics
Statistical analysis was performed using Graph Pad Prism 5 (La

Jolla, CA). P values were assessed using unpaired, two-tailed

Student’s t tests (a= 0.05). In the figures, * denotes P values

between 0.05 and 0.01, ** denotes P values between 0.01 and

0.001, and *** denotes P values , or = 0.001.

Accession numbers
p60 (NCBI accession ZP_05235088.1), Lm 0394 (NCBI

accession ZP_05235264.1).

Supporting Information

Figure S1 NK cells alone produce IFNc in response to
p60 stimulation in co-culture. NWNA splenocytes were

stained with NK1.1 and CD3, sorted into NK cells (NK1.1+CD3-),

T cells (CD3+NK1.1-), and NK1.1-CD3- populations. Each

population, alone or in combination, was co-cultured in triplicate

with BMDCs treated with 10 ng LPS and 10 mg purified L1S p60

protein-derived peptide (see Figure 5). IFNc was measured by

ELISA 21 h post-infection. Average 6 SEM concentrations of

IFNc produced are shown.

(TIF)

Figure S2 Contact-dependent NK activation by p60-
treated BMDCs can be dissociated from MHC down-
regulation, NKG2D ligands, and SLAM family member
expression. BMDCs were plated in triplicate and primed with

30 ng/ml LPS with or without 30 mg/ml purified L1S p60 protein-

derived peptide (see Figure 5). The BMDC were then stained for

MHC molecules Kb, Db, MHC-II, NKG2D ligands RAE1c,

RAE1d, and MULT1, and SLAM family members SLAMF1,

SLAMF2, SLAMF3, SLAMF5, and SLAMF6. Representative

histograms are shown; results represent 2 independent experiments.

(TIF)

Figure S3 The enzymatic activity of p60 is not required
for activation of NK cells. (A) BMDCs from C57B6 and

RIP2-/- mice were infected in triplicate with LmWT (10403s) or

the Dp60 mutant strain. NK-enriched NWNA splenocytes were

added 2 hours post-infection, and co-culture supernatant was

harvested 21 hours post-infection. Average IFNc concentration is

plotted; error bars represent SEM. (B) 10 mg each of p60,

p60C389A, and 0.25 mg of phage autolysin HPL511 were loaded

into native heat-killed Lm PAGE gels. After renaturation and

overnight incubation, zymography activity was visualized by

staining with methylene blue. The image was inverted using

Photoshop. p60 shows weak PGN hydrolase activity compared to

the phage autolysin. p60C389A is catalytically inactive. In native

zymography gels, p60 activity appears around 150kD. (D) BMDC

were treated with 10 ng LPS, with or without 10 mg detoxified p60

protein, or p60 protein with the C389A catalytic domain

mutation. NWNA were added 2 hours post infection, and IFNc
was measured by ELISA 21 hours post infection. Average IFNc
levels +/- SEM are shown. Data are representative of at least three

experiments. All treatments were performed in triplicate.

(TIF)

Figure S4 L1S induces dose-dependent IFNc production
in NK cells in vivo. Mice were injected i.p. with LPS-associated

purified L1S peptide at the doses indicated in 250 ml PBS. After

24 hours splenocytes were stained for CD3, NK1.1, and

intracellular IFNc. Shown are graphical representations of the

NK1.1+, CD3- cells that stained positive for IFNc. n = 2 per dose.

(TIF)

Table S1 Primer Table. The primers used to clone transgenic

Listeria strain constructs and His-tagged proteins are listed

including name, purpose, and sequence.

(DOC)
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