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Abstract

Drug resistant Mycobacterium tuberculosis, which mostly results from single nucleo-

tide polymorphisms in antibiotic target genes, poses a major threat to tuberculosis

treatment outcomes. Relative binding free energy (RBFE) calculations can rapidly pre-

dict the effects of mutations, but this approach has not been tested on large, complex

proteins. We use RBFE calculations to predict the effects of M. tuberculosis RNA

polymerase and DNA gyrase mutations on rifampicin and moxifloxacin susceptibility

respectively. These mutations encompass a range of amino acid substitutions with

known effects and include large steric perturbations and charged moieties. We find

that moderate numbers (n = 3–15) of short RBFE calculations can predict resistance

in cases where the mutation results in a large change in the binding free energy. We

show that the method lacks discrimination in cases with either a small change in

energy or that involve charged amino acids, and we investigate how these calculation

errors may be decreased.
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1 | INTRODUCTION

Tuberculosis is a difficult disease to treat; the standard regimen is four

antibiotics, rifampicin, isoniazid, pyrazinamide, and ethambutol, for

6 months. An infection that is resistant to both rifampicin and isonia-

zid is called multi-drug resistant tuberculosis (MDR-TB) and the treat-

ment regimen recommended by the World Health Organization

(WHO) is complex but always includes levofloxacin or moxifloxacin,

which are fluoroquinolones.1

Rifampicin (RIF) acts by binding to the β-subunit of the RNA poly-

merase (RNAP, encoded by the rpoB gene), preventing the extension

of the RNA (Figure 1A). The most common resistance-conferring

mutation is rpoB S450L, however a wide range of mutations have

been observed clinically.2–5 The majority of these are found in amino

acids 428 to 452 which pack against the drug (usually known as the

“rifampicin resistance determining region” or RRDR), enabling the

development of nucleic acid amplification tests, such as the Cepheid

GeneXpert MTB/RIF system which is endorsed by the WHO for diag-

nosis of MDR-TB.6,7 Not all non-synonymous mutations in the RRDR,

however, confer resistance, for example rpoB L443F.5 Nor does resis-

tance arise purely within the RRDR: rpoB I491F and V170F are proxi-

mal to S450L and the former was suspected to be behind an outbreak

of MDR-TB in Eswatini since it is not detected by GeneXpert.8

The fluoroquinolones target the DNA gyrase (DNAG), a tetra-

meric enzyme which unwinds DNA by forming and re-ligating double

stranded DNA breaks prior to transcription and replication

(Figure 1B). Specifically, two fluoroquinolone molecules intercalate

into DNA breaks and bind specific gyrA residues via a coordinated
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Mg2+ ion. This stabilizes DNA–DNA gyrase covalent linkages and pre-

vents re-ligation of DNA double stranded breaks.

The most common DNA gyrase mutations found in MDR-TB sam-

ples are gyrA D94G and gyrA A90V and these mutations are strongly

associated with fluoroquinolone resistance.2,3,9–12 These residues are

part of the gyrA “quinolone resistance determining region” (QRDR),

defined as gyrA codons 74–113.13 However, again, not all mutations

in this region confer resistance, leading to false positive resistance

results in genotypic assays.14 Rarely seen DNA gyrase mutations in

gyrB are also associated with fluoroquinolone resistance, and a gyrB

QRDR from residues 461 to 501 has also been proposed.15 The resi-

dues of the two QRDR regions make up the fluoroquinolone binding

pocket, and gyrB A642P is the only mutation significantly associated

with an increase in minimum inhibitory concentration (MIC) to fluoro-

quinolones that was found outside this region.9

We assume that mutations cause resistance by reducing the affin-

ity of an antibiotic ligand for its target. Since we are only interested in

whether a mutation increases or decreases the antibiotic's affinity for

the target, the difference in binding free energy (ΔΔG) between the

wild type and mutant systems is calculated. This can be achieved by

employing relative binding free energy (RBFE) methods, whereby a

wild type amino acid is transmuted into the mutant along a non-

physical pathway defined by a progress coordinate, 0 ≤ λ ≤ 1. For

equilibrium-based methods, a series of short molecular dynamics

(MD) simulations are performed at fixed values of λ and the resulting

ΔG values are related to the difference in binding free energy via a

thermodynamic cycle (Figure 2).

RBFE approaches have so far been successfully applied in small

molecule drug design where the effect of perturbations to a lead com-

pound on the binding affinity to its target can be predicted to within

1 kcal mol�1 error.16–18 The regular nature of amino-acids compared

to small molecules means that forcefields are well parameterized for

amino acids19 but potentially less so for small drug-like molecules20

and therefore applying RBFE to predict the effects of amino acid

mutations may be more accurate. Indeed, RBFE methods have been

shown to yield accurate resistance predictions for genetic mutations

associated with disease.21–24 However, these studies have focused on

small, monomeric protein targets, for example, we previously used

RBFE methods to successfully predict trimethoprim resistance associ-

ated with mutations in the Staphylococcus aureus dihydrofolate reduc-

tase protein, which comprises 157 residues.21,25

In this paper, to assess how well the method can be applied to

much larger systems, we shall apply the same approach to two large

protein complexes, the RNA polymerase (4671 residues) and the DNA

gyrase cleavage complex (1473 residues), to assess how well we can

predict the effect of seven and five mutations on the action of rifam-

picin and moxifloxacin, respectively. We emphasize that we define

success as the ability of the method to rapidly predict whether each

mutation confers resistance or not to the relevant drug. This qualita-

tive approach is different to most RBFE studies which instead assess

F IGURE 1 Structures of Mycobacterium tuberculosis (A) RNA polymerase (RNAP)28 and (B) DNA gyrase (DNAG)27 cleavage complex, showing
the selected clinical mutations associated with antibiotic resistance and susceptibility relative to the antibiotic binding sites. For clarity, RNAP
subunits (excluding rpoB) are shown in surface view and nucleic acids are hidden in close-up visualizations. Resistance-conferring mutations are
drawn in red, those associated with susceptibility blue and those residues where different mutations confer different resistance phenotypes
purple. An asterisk (*) indicates a gyrB mutation.
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how well the method can calculate the quantitative change in binding

free energy (which are unknown for these proteins in any case). To

retain the ability for the method to rapidly return results in any future

implementation, we have used standard parameters (e.g., for ions),

even if this potentially reduces our accuracy or precision.

1.1 | Selecting the mutations studied

To test the ability of RBFE to predict antibiotic resistance we selected

a small number of mutations in the RNAP and DNAG that confer

resistance; to act as negative controls we added several more

F IGURE 2 Free energy cycles for (A) rifampicin binding RNAP and (B) moxifloxacin binding DNAG gyrase cleavage complex. The subscripts

qoff, vdW, and qon describe the process of first removing the electrical charge from atoms being perturbed, followed by transforming their van der
Waals parameter, before finally recharging the atoms being perturbed. Double headed arrows represent the restraint used to prevent rifampicin
from leaving the binding pocket. In all cases we are making use of the fact that free energy is a state function and therefore we can write the
difference binding free energy (ΔΔGbinding) as a sum of so-called alchemical free energies (e.g., ΔG4–ΔG3)

TABLE 1 Summary of distances of
RNAP and DNAG mutations from the
drug binding site.

Protein Mutation Expected result Distance from drug (Å)

RNAP S388L Susceptible to rifampicin 9.0

S428C Susceptible 4.0

L443F Susceptible 10.4

T585A Susceptible 12.3

V170F Resistant 4.5

S450L Resistant 2.6

I491F Resistant 3.4

DNAG S95T Susceptible to moxifloxacin 9.0

A90S Hyper-susceptible 2.7

A90V Resistant 2.7

E501Da Resistant 2.6

D94G Resistant 5.1

Note: Measurements are taken as the minimum distance between the wild-type amino acid and the drug.

For DNAG, where there are two gyrA and gyrB proteins and two moxifloxacin molecules bound,

measurements are taken for the wild-type amino acid in the A or B chain (for gyrA and gyrB, respectively)

to the nearest bound moxifloxacin molecule.
aIndicates a gyrB mutation.
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mutations known to have no clinical effect. We chose to test the most

common resistance-conferring mutations for each drug. For RNAP

this is S450L in the RRDR of rpoB and for the DNA gyrase these are

A90V and D94G in the QRDR of gyrA (Figure 1A,B). gyrA D94G is a

robust test of RBFE methods as the mutation involves a significant

change in amino acid properties and electrical charge. For rifampicin

we also selected V170F and I491F in rpoB which both confer resis-

tance, are proximal to both S450L and the antibiotic binding site, but

are not in the RRDR (Table 1, Figure 1A). rpoB I491F is one of the so-

called “disputed” mutations which either have variable or borderline

rifampicin minimum inhibitory concentrations (MICs).12,26 For moxi-

floxacin we also tested E501D in gyrB12 which is close to the antibi-

otic binding site but not in the gyrA QRDR (Table 1, Figure 1B).

When choosing negative controls, we prioritized mutations that

were observed multiple times in clinical samples, are close to the drug

binding site and do not involve a charge change or a proline residue.

For the RNAP, L443F was selected since it lies within the RRDR and

is close to the rifampicin binding site yet does not confer resistance11

and therefore is a good negative control (Table 1, Figure 1A). We also

selected S388L and T585A which are further from the binding site

and are seen in clinical samples. Finally, we chose an amino acid

(Ser428) at which non-synonymous mutations are expected to confer

resistance, since it lies in the RRDR, but for which no firm statistical

association has yet been made, and chose a mutation (S428C) which

minimally chemically perturbs the sidechain. We expect this to not

confer resistance, since it has not been observed clinically and the

sidechain points away from the drug and S428C is therefore a good, if

somewhat artificial, negative control.

For the DNA gyrase negative controls, we chose gyrA S95T

(Figure 1B) since it is very common—it is found in almost all samples

except the H37Rv reference genome—and is within the QRDR. Test-

ing different mutations at the same position which have different

effects is a particularly stringent test of the ability of RBFE methods

to predict antibiotic resistance. We therefore also tested the gyrA

A90S mutation (Figure 1B) – this is not seen clinically but a serine is

present at the equivalent position in the DNA gyrase of other bacte-

rial species and is suggested to help stabilize the gyrase-

fluoroquinolone complex via participation in water-ion bridging inter-

actions with the drug coordinated Mg2+. Mycobacterium tuberculosis

has some innate immunity to fluoroquinolones which has been sug-

gested is due to the alanine at this position.27 The gyrA A90S mutation

is therefore expected to strengthen the binding of moxifloxacin,

thereby conferring hyper-susceptibility.

2 | METHODS

2.1 | RNA polymerase and DNA gyrase system
setup

The structure of the M. tuberculosis RNA polymerase (PDB: 5UH6),28

including a 14-base stretch of DNA, 2 RNA nucleotides, two zinc ions,

a magnesium ion and a bound rifampicin molecule, was solvated with

114,838 waters and 127 sodium ions—the latter to ensure electrical

neutrality—creating a cubic simulation unit cell of initial dimensions

20.1 � 15.2 � 13.1 nm3. The flexible loop region of each gyrB protein

that were not resolved in the structure of the M. tuberculosis DNA

gyrase cleavage complex (PDB:5BS8)27 were modeled in using the

ModLoop server.29 This structure, including the 19-base stretch of

DNA, four Mg2+ ions, two bound moxifloxacin molecules and

403 crystal waters was placed in a rhombic dodecahedron unit cell

with dimensions 13.8 � 13.8 � 9.8 � 0.0 � 0.0 � 0.0 � 0.0 �
6.9 � 6.9 nm9. The unit cell was solvated with 59,895 waters,

175 Na+ and 112 Cl� ions providing electrical neutrality and a

100 mM salt concentration. The generalized AMBER and AMBER

ff99SB-idln forcefields were used to parameterize all protein chains,

nucleic acids, ligands and ions.30 To facilitate the covalent bond

between gyrA Tyr129 and the phosphate backbone of DNA by GRO-

MACS, two modified amino acids (TYX and TYY) were created. These

“hybrid residues” contained the parameters for Tyr, excluding the

hydroxyl hydrogen, all nucleotides in the covalently bound DNA chain

and the covalent bond between the Tyr hydroxyl oxygen and the cor-

responding DNA backbone phosphorus atom. The PDB file order and

residue naming was adjusted to reflect the modified amino acids. Due

to the size of the hybrid residues (403 atoms) it was not possible to

redistribute the partial charges in a principled way using QM/MM and

we instead choose to simply retain the partial charges of DNA and

Tyr as found in the forcefield. Due to the “loss” of the hydrogen atom

from the tyrosine the system was left with a non-integer charge, so a

solvent chloride ion was modified to provide a balancing charge. This

is clearly not optimal, however we felt it preferable to manually redis-

tributing charge.

The energies of the resulting RNA polymerase and DNA gyrase

unit cells of 396,776 atoms and 205,883 atoms, respectively, were

then minimized by GROMACS31 2016.3 and 2018.2 respectively,

using a steepest descent algorithm for 1000 steps before being gradu-

ally warmed from 100 to 310 K over 500 ps. For comparison, the

DHFR unit cell only contained 27,115 atoms.21,25 The drug was

removed from the DNAG structure creating a presumed apo state;

the resulting apo and complexed systems were each equilibrated for

5 � 50 ns. By contrast only three drug bound RNAP 50 ns simulations

were run, from which the drug was subsequently removed as required

to create presumed apo structures. The DNAG apo structures used to

seed the alchemical simulations are therefore much more likely to be

equilibrated than the apo RNAP structures. The temperature was

maintained at 310 K using a Langevin thermostat with a time constant

of 2 ps. An isotropic Parrinello-Rahman barostat with a 1 ps time con-

stant and a compressibility of 4.46 � 10�5 bar�1 was applied to keep

the pressure at 1 bar. Electrostatic forces were calculated using the

particle mesh Ewald algorithm with a real space cutoff of 1.2 nm

whilst van der Waals forces were only calculated between atoms less

than 1.2 nm apart with a switching function applied from 0.9 nm. The

lengths of all bonds involving a hydrogen were constrained using

LINCS,32 permitting a timestep of 2 fs. For DNA gyrase, to prevent

the moxifloxacin coordinated Mg2+ from dissociating from moxifloxa-

cin, we used a harmonic distance restraint of sufficient strength
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(100,000 kJ mol�1 nm�2) to maintain the distance observed in the

crystal structure (0.209 nm) throughout all simulations, lower values

were not sufficient. A series of assumed independent structures were

obtained by saving the coordinates of the system every 10 ns from

each of three RNAP equilibration simulations and from each of the

five DNAG equilibration simulations.

Mutations were then introduced into each of these structures

using pmx.33 To reduce the likelihood of clashes between the “new”
sidechain and the remainder of the protein (i.e., in simulations with

λ � 1) we then applied a short Alchembed procedure34 to each struc-

ture – this involved a 1000 step simulation where λ was increased

from 0 to 1 using a soft-core van der Waals potential. For the RNAP

simulations, we found it necessary to then apply a very short 0.5 ps

simulation during which the temperature was increased to 310 K, pre-

sumably because this system had not been subjected to same degree

of equilibration as DNAG. This created a pool of presumed indepen-

dent mutated structures that could be used to seed alchemical ther-

modynamic integration simulations.

Following best practice,35 the free energies (Figure 2) required

to remove the electrical charge on the perturbing atoms (ΔGqoff),

transmute the van der Waals parameters (ΔGvdW) and recharge the

remaining atoms (ΔGqon) were separately calculated using GRO-

MACS 2016.3 for RNAP and 2019.1 for DNAG. Each calculation

required eight simulations at equally spaced values of the progress

parameter, λ. To accelerate convergence, 10,000 replica exchanges

were attempted between neighboring λ-simulations every 1000

timesteps. To assess convergence, the percentage overlap between

neighboring λ windows was calculated using the numpy.histogram

tool from NumPy. The process was repeated for both apo and com-

plexed forms of either the RNAP or DNAG, thereby resulting in six

independent free energies (Figure 2). The timestep was reduced from

2 to 1 fs and LINCS constraints were removed for all vdW transitions

and the qon transition of gyrA D94G to prevent crashing. To ensure

rifampicin remained bound, a harmonic distance-based potential with

spring constant 1000 kJ mol�1 nm�2 was applied between the cen-

ters of mass of the drug and the RNAP beta subunit. Two additional

free energies describing the cost of removing this restraint (Figure 2)

were then also calculated. In hindsight, rifampicin would likely have

remained bound without a restraint – since the restraint was not

necessary to keep the drug bound the free energies calculated for

removal of the restraint were minimal (supplementary file “rpob_-
summary.csv”), however, to ensure consistency between repeats we

kept the restraint throughout.

Files and scripts necessary to reproduce the above steps, starting

with the alchembed step, for the gyrA A90V DNAG and rpoB S450L

RNAP mutations can be found here: https://github.com/fowler-lab/

tb-rbfe-setup.

2.2 | Calculation of errors

In previous studies of S. aureus DHFR21,25 all alchemical free energy

calculations were repeated the same number of times which, since

n values of the final difference in binding free energy (ΔΔG) were then

obtained, simplified the calculation of errors. Both simulation unit cells

studied here were over an order of magnitude larger and we therefore

instead calculated the SEM at the level of each individual alchemical

free energy (e.g., ΔGvdW), with the final error in ΔΔG estimated by

adding these in quadrature. Throughout a 95% confidence limit was

estimated by multiplying the SE by the appropriate t-statistic. We

arbitrarily decided that at least three independent values of each

alchemical free energy would be calculated, and then additional

repeats would be run with the aim of reducing the magnitude of the

overall 95% confidence limit to less than 1 kcal mol�1. Achieving the

latter was not always possible even when large numbers of repeats

were run (n ≥ 10, see Supplementary Information S1).

2.3 | Simulations run

Overall, 241 alchemical free energies, each requiring 8� λ simulations

0.5 ns long, were calculated for the RNA polymerase allowing the six

mutations to be studied. When the equilibration simulations are

included, this is a total of 1.11 μs of MD simulations. To study the five

DNA gyrase mutations, a total of 231 alchemical free energies were

calculated (8� λ simulations 0.5 ns long) and including equilibration

simulations, a total of 1.17 μs of MD simulations were initially per-

formed. As described later, for DNA gyrase, nine calculations were

extended to 5 ns which increased the total MD performed to 1.49 μs.

To avoid equilibration effects, the first 0.25 ns of each λ simulation was

discarded before measuring the ΔG using thermodynamic integration

calculated with the trapezoidal rule. Specifically, we used the numpy.

trapz tool from NumPy for the integration calculation. Since the deci-

sion to discard 250 ps from the start of each simulation was arbitrary,

we investigated whether discarding different amounts of data altered

the results for one of the simple susceptible mutations, gyrA S95T, and

the most complex mutation, gyrA D94G. Discarding either 125 or

375 ps, compared to 250 ps, led to no significant difference in the final

calculated ΔΔG measurement for gyrA S95T or gyrA D94G (Figure S1).

3 | RESULTS

3.1 | Predictions

The simplest approach is to assume that a positive value of the

change in binding free energy of the antibiotic (ΔΔG > 0) indicates

that the antibiotic binds less well to the target following the muta-

tion and therefore would be predicted to confer resistance to that

drug. Clinically, however, a sample is categorized as “resistant” if its

minimum inhibitory concentration (MIC) is greater than a critical con-

centration, often the epidemiological cut off value (ECOFF/ECV),

which is defined as the MIC of the 99th percentile of a collection of

phenotypically-wildtype samples. Such thresholds for both drugs

were derived using published ECOFF/ECV values36 as described

previously.21
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Three independent values of ΔΔG were first calculated. Each

value of ΔΔG required the calculation of 6–8 alchemical free energies

(Figure 1, Methods). Repeats of the alchemical free energy compo-

nents exhibiting the greatest variation were then run to efficiently

reduce the confidence limits of the prediction as described in the

Methods. First let us consider the overall values of ΔΔG and whether

successful predictions can be made.

For rifampicin, only one of the four negative controls (S388L) was

correctly predicted to have no effect on the action of rifampicin

(Figure 3A); since the confidence limits of S428C, L443F, and T585A all

bracket the ECOFF threshold no definite prediction could be made for

these mutations. Clinically the method as implemented would therefore

return an “Unknown” phenotype for these mutations. All three

rifampicin-resistance conferring mutations, including the disputed muta-

tion I491F, not only have positive values of ΔΔG but also lie above the

clinical threshold derived from the ECOFF/ECV. These mutations are

therefore correctly predicted to confer resistance to rifampicin.

Both moxifloxacin negative controls (gyrA S95T and A90S) were

correctly predicted to not affect the binding of moxifloxacin to the

DNA gyrase (Figure 3B). Although hyper-susceptibility is expected for

A90S, the magnitude of the confidence limits prevents us drawing any

conclusions. No definite prediction could be made for any of the three

mutations associated with moxifloxacin resistance since the confi-

dence limits of all three mutations straddled the clinical threshold.

Unlike the RNA polymerase, two of the mutations to the DNA gyrase

involved charged residues (gyrB E501D and gyrA D94G) and not sur-

prisingly these had the largest estimated errors.

To see how our ΔΔG values compared with clinical resistance

measurements, we calculated an estimated “expected ΔΔG” from the

geometric mean of MICs associated with each of the resistance con-

ferring mutations, using previously described methods.21 However,

the errors in both the “expected ΔΔG” and the ΔΔG values calculated

by RBFE were too large to enable us to draw any conclusions about

how well the values compare with one another (Figure S2). We also

note that the expected free energy for the resistance conferring rpoB

I491F mutation does not cross the clinical threshold we applied for

resistance. Although the mutation is accepted as conferring

resistance,37 we had few clinical examples of this mutation, several of

which had low MICs leading to a low expected ΔΔG value.

3.2 | Investigation of sources of error

The magnitudes of the estimated errors prevented us from making a

definite classification in 6 of the 12 mutations studied. To further

examine what is driving the magnitudes and confidence limits of the

individual ΔΔG values in Figure 3, we analyzed the alchemical free

energy components from the de-charging (ΔGqoff), van der Waals

(ΔGvdW) and re-charging (ΔGqon) transitions (Figure 2) for both apo

and drug-bound legs of the free energy calculations (Figure 4). As

expected, for both the RNA polymerase and the DNA gyrase, there

were no significant differences for the negative control mutations

between the mean apo and drug-bound values of ΔGqoff, ΔGvdW, and

ΔGqon and the estimated error is generally small.

For all three resistance-conferring mutations in rpoB the value of

ΔGvdW when rifampicin is bound is significantly greater than the same

transition for the apo protein and it is this that is mainly driving the

positive value of ΔΔG. The difference between the apo- and

F IGURE 3 The calculated effect of
the listed mutations on the binding free
energy of (A) rifampicin to RNAP and
(B) moxifloxacin to DNA gyrase. Dotted
lines represent the value of ΔΔG
equivalent to the epidemiological cutoff
value for (A) rifampicin and
(B) moxifloxacin; above this value an
Mycobacterium tuberculosis isolate would

be considered clinically resistant. Bars
represent the mean ΔΔG for each
susceptible (blue) and resistant (red)
mutation compared to the wild-type
protein and 95% confidence limits are
shown, calculated using the appropriate
t-statistic. An asterisk (*) indicates a gyrB
mutation.
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F IGURE 4 Apo (light gray) and drug-bound (dark gray) free energy calculations for (A) RNAP and (B) DNA gyrase mutations for de-charging
(qoff), van der Waals (vdW), and re-charging (qon) transitions. All results are normalized to the mean of the calculations for the apo leg for each
transition for each mutation. Mean values are denoted by a cross and the error bars describe the 95% confidence limits, calculated from the SEM
using the appropriate t-statistic. The free energy cost of removing the restraints for rifampicin is not shown since for all mutations it is negligible,
indicating that restraints were likely not required to keep the drug in the binding site. An asterisk (*) indicates a gyrB mutation.

TABLE 2 Summary of free energy
calculations for RNAP and DNAG
mutations.

Protein Mutation Expectation ΔΔG (kcal mol�1) Na Nmin
b Nmax

b

RNAP S388L Susceptible 0.1 + 0.8 18 3 3

S428C Susceptible 1.1 ± 1.7 21 3 5

L443F Susceptible �0.2 ± 2.1 28 3 8

T585A Susceptible 0.2 ± 1.5 20 3 4

V170F Resistant 5.4 ± 1.9 37 3 13

S450L Resistant 4.9 ± 2.3 49 4 13

I491F Resistant 5.1 ± 2.3 22 3 5

DNAG S95T Susceptible �1.6 ± 1.8 50 5 15

A90S Hyper-susceptible �1.1 ± 1.4 33 5 8

A90V Resistant 2.0 ± 1.6 44 4 15

E501Dc Resistant �2.0 ± 3.2 59 9 10

D94G Resistant �2.8 ± 8.9 45 4 10

aN is the total number of free energy calculations used to calculate the ΔΔG, excluding the rpoB

restraints as their contributions were negligible (see Supplementary Information S1).
bNmin and Nmax list the minimum and maximum number of repeat calculations used for apo or drug-bound

de-charging (ΔGqoff), van der Waals (ΔGvdW) or re-charging (ΔGqon) transitions, respectively (Figure 2).
cIndicates a gyrB mutation.
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rifampicin-bound vdW transitions for V170F, S450L, and I491F are

4.6, 5.6, and 5.3 kcal mol�1, respectively. Since all three of these

mutations involve the introduction of a larger sidechain that is ori-

ented towards the bound drug, this is consistent with resistance aris-

ing primarily through steric hindrance of the rifampicin binding site.

For comparison, despite a similar number of atoms being perturbed,

there was no difference in the apo- and drug-bound values of ΔGvdW

for the susceptible mutation rpoB L443F, which is also in the RRDR

(Figure 1A) and, whilst this also involves the introduction of a larger

sidechain, in the crystal structure this is directed away from rifampicin.

Differences in ΔGvdW between apo- and complexed DNA gyrase also

appear mainly responsible for the positive value of ΔΔG for gyrA

A90V, however the net effect is reduced.

Hence the variation in ΔΔG arises mainly from the apo and com-

plexed values of ΔGvdW – the notable exceptions being gyrB E501D

and gyrA D94G. This is despite our efforts to minimize the overall

error by running up to 4� the number of repeats for those transitions

(Table 2) to reduce their individual estimated errors. For gyrB E501D

and gyrA D94G all three transitions contribute significant error, which

since they add in quadrature, leads to a large overall error in ΔΔG.

This is not surprising since both mutations involve turning off (and on)

electrical charge and D94G involves a net charge change that must be

compensated for elsewhere in the system. To investigate how far we

might reduce the errors, let us now consider the individual values of

ΔGqoff, ΔGvdW and ΔGqon (Figure 5).

By starting each simulation from a different structural seed and

discarding the first half of the alchemical free energy simulations and

then applying statistics to the resulting values of ΔG we are assuming

that they are independent. If true, then one would also expect the

values to be normally distributed which would appear to be the case

for most sets of ΔG values (Figure 5). Applying the Shapiro-Wilks test

of normality to the rpoB data confirms that, despite the small numbers

F IGURE 5 Swarm plots of individual results from apo (light gray) and drug bound (dark gray) alchemical free energy calculations for mutations
in the RNA polymerase (A) and DNA gyrase (B). All results are normalized to the mean of the calculations for the apo leg for each qoff, vdW, or
qon transition for each mutation. P-values from Shapiro Wilks test are displayed for each transition showing evidence of non-normality in the
repeated calculations, transitions where no p-value is shown indicates there was no evidence of non-normality in the data (p > 0.05). An asterisk
(*) indicates a gyrB mutation.
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of samples in some cases, the majority of ΔG values are indeed nor-

mally distributed with the exceptions of ΔGqon for the apo leg of

S428C and ΔGqon for the drug bound leg of S450L. For two DNA gyr-

ase mutations there was also evidence of non-normality in the ΔGvdW

for the apo leg of gyrA S95T and ΔGon for both the apo and drug

bound leg of gyrA D94G.

To test how far our simulations are from normality, we extended

four apo and five drug-bound simulations underlying the most variable

component (qon, Figure 1) of the most complex mutation, gyrA D94G,

by an order of magnitude (from 0.5 to 5 ns). As assessed by the

Shapiro-Wilks, the resulting distributions of apo- and drug-bound free

energies were indeed normal after 5 ns of simulation (p = 0.92 and

p = 0.16) but the distribution of results for the repeated calculations,

and therefore the error, remain large (Figure S3).

As we used thermodynamic integration with the trapezium rule to

calculate free energies, the accuracy and precision is dependent on

the degree of curvature in the component free energy calcula-

tions.35,37 More complex transitions, that is, those with a greater dif-

ference in starting and end states, are likely to have increased

curvature especially at λ values close to the endpoints (0 and 1). We

therefore investigated the curvature in individual qoff, vdW and qon

free energy components for a simple susceptible mutation, gyrA S95T,

which involves the growing in of a methyl-group and no change in

charge, and the most complex mutation, gyrA D94G, which involves a

significant reduction in atom number and removal of a full negative

charge (Figure S4). As expected, for gyrA S95T, there was little curva-

ture observed for either qon and qoff transitions as there is no major

charge change. The vdW transition for both apo and drug-bound sys-

tems, where the key change occurs in growing in a methyl group, does

show some gentle curvature through mid-range values of λ

(Figure S4a), and the error for this transition was larger than for qoff

or qon transitions (Figure 4B). In contrast, for both apo and drug-

bound legs of the D94G mutation, there is a high degree of curvature

towards λ = 1 in the vdW transition where the large side chain of

aspartate is removed (Figure S4b). Unexpectedly there was little cur-

vature observed in the qoff transition, where the main negative

charge of the aspartate side chain is removed, and the transition con-

tributed a large amount of error (Figure S4b). In general, the individual

λ values are much larger in magnitude for the gyrA D94G mutation

than S95T, which is not unexpected due to the magnitude of change,

but may explain why there is larger error associated with the gyrA

D94G prediction (Figure 3B).

The accuracy and precision of the free energy calculations will

also be dependent on the convergence of the individual calculations.

Convergence of the calculations can be judged by the amount of

overlap between energy distributions from neighboring λ windows,

with overlap of >1% being considered reliable.38 For the complex

D94G mutation we found instances of zero overlap between neigh-

boring λ windows for both the ΔGvdW and ΔGqon calculations and

therefore these calculations were not converged (Table S1). This is

not unsurprising given the use of very short calculations but will

affect the accuracy of quantitative results and could affect the accu-

racy and confidence intervals for the overall qualitative prediction.

Conversely, for the less complex DNAG mutations there was no

issues with the overlap (overlap data for S95T and the resistance

conferring mutation A90V are shown in Table S1, data for A90S and

E501D not shown).

4 | DISCUSSION

We have shown how relative binding free energy (RBFE) techniques

can be applied to large protein complexes to predict, with some suc-

cess, the effect of individual protein mutations on the binding of an

antibiotic, and thence whether resistance is conferred. When the size

of the signal is large and the mutations do not involve significant

changes in the electrical charge, as is the case for the rpoB mutations,

one can successfully predict whether a mutation confers resistance to

the antibiotic (in this case rifampicin). If the fold increase in minimum

inhibitory concentration is small and/or there are significant charge

changes, as is the case for most of the resistance conferring mutations

in the DNA gyrase, then the estimated error of ΔΔG will likely be so

large that no definite prediction can be made. In addition, the

observed non-normality and lack of overlap between λ windows for

constituent free energies for gyrA D94G indicates that these values

are also not independent and not converged: to solve this either the λ

simulations would have to be extended or the equilibration simula-

tions would need to be more numerous as well as longer.

Despite the focus on resistance, it is more useful to be able to

accurately and reproducibly predict susceptibility since clinically that

will lead to immediate action, that is, starting the patient on the

appropriate treatment regimen. A prediction of resistance will likely

result in the sample being sent for further testing, at which point any

incorrect predictions (false positives) will be detected. Due to the

magnitudes of the errors and the fact that we are constrained to start

from the wild-type structure, it may be more difficult, unfortunately,

to predict susceptibility than resistance using RBFE. For rpoB only one

susceptible mutation could be confidently predicted. If we assume

that most susceptible mutations will not affect the binding affinity for

the antibiotic, then they would have a ΔΔG of zero. The predicted

ΔΔG of such mutations would hence require the estimated error to

be at least less than the value of the ECOFF (for rpoB and DNA gyrase

1.2 and 0.9 kcal mol�1, respectively) to make a confident susceptible

prediction. The magnitude of error for the mutations in this study was

greater than the relevant ECOFF in all but one case (rpoB S388L,

Table 1), and previous studies have found the typical error associated

with RBFE calculations to be in the range of 1 kcal mol�1.16–18 It is

likely that the error could be reduced by running a greater number of

repeats, however some mutations can result in a small increase in MIC

but not enough to confer resistance (as susceptibility can be defined

as any MIC up to the ECOFF), and in such cases even a lower level of

error (±0.5 kcal mol�1) may still prove insufficient for prediction.

Whilst alchemical binding free energy calculations therefore can

play a role in predicting antibiotic resistance, the method may be most

applicable when the target protein is small, non-complex, and the

magnitude of the change in the binding free energy large, as is the
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case for S. aureus DHFR and trimethoprim.21 For this system it has

also been shown that it is possible to reduce the length of the simula-

tions yet further but still maintain an accurate qualitative prediction.25

Taking all this together, we appear to have probed the limits (for now

at least) of using RBFE methods to predict antibiotic resistance de

novo. Interestingly, unlike most other applications of RBFE, one can

tolerate large, estimated errors since we are ultimately only interested

in the final binary classification of resistant or susceptible. A second

and related application for RBFE is reducing the likelihood of a lead

compound developing resistance by providing information during the

development process of the likely mutations that could confer resis-

tance and we hope to explore this in future work.

There are several shortcomings with our approach. We have

assumed that resistance arises by reducing how well the antibiotic

binds; this will not always be true. Secondly, our predictions depend

on the accuracy of the molecular forcefields that describe the intera-

tomic interactions; whilst the forcefield would be expected to be

accurate for amino acids, which are the part of the system changing in

the alchemical simulations, forcefields are not optimized for small mol-

ecules and ions20 and therefore may not be accurate. Indeed, in this

study we needed to use a restraints on drug-coordinated Mg2+ ions.

Finally, we assume that the conformations used to seed each calcula-

tion are independent of one another and/or that the λ simulations are

long enough to allow the initial state to be “forgotten”. Given we

chose to use very short λ simulations the latter is almost certainly not

true and whilst the majority of our calculated ΔG values appear to be

normally distributed, some are not which is concerning. One would

expect to have to run 4� the number of simulations to reduce the

estimated error to half its original value if the simulations are indepen-

dent. This makes simulations of these size prohibitively computation-

ally intensive using the software and compute that we employed.

Significant speed up could however be achieved by use of updated

GROMACS software, where yearly updates have been shown to

increase ns/day performance on a range of computational

resource.39,40

It is not in doubt that how the structure and dynamics of a pro-

tein change upon mutation contains valuable information that can, in

theory, be used to predict whether individual mutations confer anti-

biotic resistance. Although RBFE may not (yet) be an appropriate

tool for resistance prediction in the two complex systems we stud-

ied, several alternative routes exist. For instance, machine learning

algorithms or energy scoring software such as Rosetta can predict

binding free energies and these methods are less computationally

intensive.22,41,42 Ultimately a combination of RBFE/MD and other

approaches may not only complement one another but also form

part of a larger toolkit that helps us to tackle antimicrobial resistance

by improving diagnosis.

5 | CONCLUSIONS

1. RBFE techniques can be applied to large protein complexes to pre-

dict resistance when the fold increase in minimum inhibitory

concentration is large, and the mutations do not involve significant

changes in the electrical charge.

2. RBFE methods may struggle to make predictions for large protein

complexes with complex interactions such as these if the fold

increase in minimum inhibitory concentration is small, due to the

magnitude of the estimated errors.
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