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Abstract: Modelling of the effects of materials’ microstructure on thermal transport is an essential
tool for materials design, and is particularly relevant for thermoelectric (TE) materials converting heat
into electrical energy. Precipitates dispersed in a TE matrix act as phonon-scattering centers, thereby
reducing thermal conductivity. We introduce a practical approach to tailor a definite precipitate size
distribution for a given TE matrix, and implement it for PbTe. We evaluate vibrational properties
from first principles, and develop an expression for phonon relaxation time that considers both
matrix vibrational properties and precipitate size distribution. This provides us with guidelines for
optimizing thermal conductivity.

Keywords: thermal conductivity; thermoelectric materials; first principles calculations; vibrational
properties; lead−telluride-based compounds

1. Introduction

Heat transport phenomena play significant roles in many technological applications [1]. Modelling
of the effects of microstructure on thermal transport in multiphase materials is of utmost importance,
since it provides us with practical knowledge concerning materials selection and materials design
issues, which are involved in specific engineering demands. Two extreme examples for this are
materials design for heat removal, such as for heat sinks and radiators, in which high thermal
conductivity is demanded; alternatively, design of materials for thermal insulation requires materials
with low thermal conductivity [1]. Either way, heat transport phenomena play critical roles,
and are sensitive to the finest features in the materials’ microstructure, such as the presence of
particles/second-phase precipitates, internal interfaces, dislocations, alloying elements, or any other
point defects [2–6].

Development of thermoelectric (TE) materials is one of the most prominent examples of the
correlation between microstructure and thermal properties. TE materials are able to convert heat flux
into electrical current via the Seebeck effect, or vice versa, via the Peltier effect [7–10]. Such materials
are, therefore, essential for electrical power generation from waste heat or for refrigeration by heat
pumping [11]. Besides having an intrinsically large Seebeck coefficient (S is defined as the open-circuit
voltage, ∆V, produced as a result of a temperature difference, ∆T, between the two poles: S = ∆V

∆T ),
a good TE material should possess high electrical conductivity, σ, and low thermal conductivity, κ;
all are embodied in the dimensionless TE figure of merit:

ZT = S2T
σ

κ
(1)
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where T is temperature. Reducing thermal conductivity is essential to maintain adequately large
temperature difference, ∆T, between the hot and cold poles. Typical engineering TE materials exhibit
ZT values that approach or slightly exceed 1. This relatively low value leads to device performance
of about 10% of the Carnot limit, that is, about one-fourth the efficiency of conventional engines and
refrigerators [12,13]. Furthermore, this implies that today’s TE devices can be employed for only
limited applications in the low power regime (<500 W). To be applicable for greater power levels up to
several kW, and to compete with their gas or vapor-based counterparts, increasing ZT values to the
range of 2–3 is essential [14]. If this goal is achieved, then one promising application will be harnessing
waste heat from automotive exhaust (500–800 K) to produce electricity and reduce CO2 emissions [15].
This poses the development of new TE materials as a grand challenge in materials science, with major
implications for energy [16].

In view of the above, increasing ZT can be accomplished in two main directions: reducing thermal
conductivity, κ, as well as increasing the electrical conductivity, σ. There are two contributions for the
thermal conductivity in a lattice related to phonon vibrations, κp, and to conduction electrons, κe, so
that κ = κp + κe. Herein, we will focus on increasing ZT by reducing the lattice thermal conductivity.

For several decades, the search for high-ZT materials has been conducted for single-phase
materials [17], where the basic selection rules for good candidate materials are low melting temperature,
large atomic masses, and large lattice parameters; however, a meager improvement from ZT = 0.6 to 1
has been achieved [16]. In recent years, dramatic increases in ZT have been achieved employing
nanostructuring approaches [17–24]. The latter includes precipitation of second phases, grain
refinement, mechanical alloying, and spinodal decomposition [25–28]. The underlying concept behind
these methods is scattering of phonons to reduce their mean free paths, thereby reducing the lattice
thermal conductivity.

The approach of embedding nanometer-size precipitates in a TE matrix has recorded successes in
reducing the lattice thermal conductivity, which was computationally predicted and experimentally
proven [26,29–33]. For example, Kim et al. investigated the role of ErAs precipitates in an In0.53Ga0.47As
matrix, and predicted decrease of κp with increasing volume fraction of ErAs [29,30]. This trend was
shown experimentally for a wide temperature range up to 800 K, where the ErAs particle diameter
ranges between 1 and 5 nm.

In this contribution, we will first provide a brief review of the most common approach to model
the effects of a material’s microstructure on its lattice thermal conductivity, which is regularly employed
for design of TE materials, Section 2. Then, we will introduce a revised and practical approach in which
physical properties evaluated from first principles serve as input in a phenomenological expression for
the lattice thermal conductivity, Section 3. In this revised approach we avoid the necessity of making
some critical assumptions, which are demanded in the classical approach. In Section 4, we introduce
implementation of the revised approach for a PbTe-matrix containing homogeneously dispersed
precipitates of different size distributions, and predict the temperature-dependent lattice thermal
conductivity values for different conditions. Section 5 provides a comparative analysis of the data
calculated in this study.

2. Effects of Microstructure on Lattice Thermal Conductivity: Common Approaches

The lattice thermal conductivity is explicitly given by a simple expression derived from the kinetic
theory of gases [34]:

κp =
1
3

Cvvsλ (2)

where Cv is the bulk constant-volume heat capacity, vs is the average velocity of sound in the material,
and λ is the phonon mean free path. The latter is commonly expressed as λ = vsτ, where τ is the
phonon relaxation time, denoting the average time between two successive phonon-scattering events.

Phonon-scattering mechanisms usually originate from lattice defects and scattering by other
phonons. The first class refers to collision of phonons with internal boundaries, impurity atoms,



Materials 2017, 10, 386 3 of 17

amorphous structures, strain fields, precipitates, or any other lattice imperfections. The second
class is related to anharmonic lattice interactions, and is divided into normal (N-) processes, which
are momentum-conserving, and umklapp (U-) processes, in which the phonon momentum is not
conserved [34]. Each of the above scattering mechanisms is characterized by its own relaxation time, τi,
where i denotes the process index. Since the rate of phonon scattering in any i-process is proportional to
the inverse of the relaxation time, τi

−1, the overall effect of all processes is expressed by Matthiessen’s
rule [34]:

τ−1
t = ∑

i
τ−1

i (3)

The major contributions for τ−1
t that are usually taken into account are the N and U processes,

and scattering due to internal boundaries, dislocations, strains, and precipitates; these processes are
denoted by i = N, U, B, D, S, and P, respectively. Analytical and semi-empirical expressions for the
τi-values have been developed for the different i-processes [30]. An approximate expression for the
lattice thermal conductivity, κp, as a function of τt (depending on the relevant i-processes) is given
by Callaway [35,36], and is commonly employed, especially for TE materials, to correlate between
the material micro/nano-structure and the lattice thermal conductivity [6,26,29,30,32,33]. A useful
approximation for Callaway’s expression, equivalent to expression (2), for the case where N-processes
are not dominant, is the following:

κp =
kB

2π2vs

(
kBT
}

)3 ∫ TD/T

0
τt(x)

x4ex

(ex − 1)2 dx (4)

where TD is the Debye temperature, ω is the phonon angular frequency, kB is the Boltzmann constant,
} is the reduced Planck constant, and ≡ }ω

kBT . For the case of T & TD, which is usually fulfilled for
semiconductors close to room temperature [34], expression (4) can be reduced to a simpler form [37]:

κp ≈
kB

2π2vs}3

∫ kBTD

0
τt(ω)·(}ω)2d(}ω) (5)

Implementation of the Callaway model for temperatures adequately higher than TD is usually
performed considering the combination of U-processes and one or more of the expressions describing
phonon scattering from point defects. The simple case of our interest in this contribution is a two-phase
matrix/precipitates material, where the matrix is a perfect crystal with no internal boundaries or
dislocations, and where no elastic strain is induced from the precipitates, so that scattering of phonons
is dominated by precipitates. Additionally, for T & TD, the dominant phonon self-scattering mechanism
is the U-process [34]. We can, therefore, express κp by employing Equation (5) once the terms τP and τU
are explicitly determined [37]. For precipitate-driven scattering, τ−1

P depends on the phonon frequency
and the precipitate radius, R. The near-geometrical scattering regime for acoustic waves in solids, in
analogy with electromagnetic wave scattering, applies for low frequencies and/or large precipitate
radii where kR & 1 [37,38]; k is the phonon wavenumber. For this regime, τ−1

P,G is given by [38]:

τ−1
P,G = Nvvs

(
2πR2

)[
1− sin(2ξ)

ξ
+

sin2ξ

ξ2

]
(6)

Here, Nv is the precipitate number density (particles per unit volume) and ξ ≡ kR
(

vs
v′s
− 1
)

, where vs

and v′s are the velocities of sound in the matrix and precipitate, respectively. Note that for the particular
case where the difference between e vs and v′s is adequately large ( v′s−vs

v′s
> 20%), expression (6) attains

a simpler form:

τ−1
P,G ≈ Nvvs

(
2πR2

)
=

3v f

2R
vs (7)
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where v f is the precipitates’ volume fraction. The opposite extreme is the Rayleigh scattering regime,
which applies for kR� 1. For this regime, τ−1

P,R is given by [31,38]:

τ−1
P,R =

4
9

NvvsπR2
(

∆ρ

ρ

)2(ωR
vs

)4
(8)

where ρ is the matrix density and ∆ρ is the difference of densities between the matrix and precipitate.
Subsequently, it was suggested that the overall relaxation time for precipitate-driven phonon scattering
can be expressed in a Matthiesen-type interpolation of the scattering cross-sections associated with
both mechanisms, Equations (7) and (8), which yields [31,38]:

τP = τP,G + τP,R (9)

It should be remarked that the scattering cross-section for the near-geometrical regime depends
on the precipitate radius only, where for the Rayleigh regime it depends also on the phonon frequency,
in addition to its strong R6-dependence (typical for Rayleigh scattering).

For U-processes, the inverse relaxation time is given by [39]:

τ−1
U ≈ }γ2

Mvs2TD
ω2T·e−

TD
3T (10)

where γ is the Grüneisen parameter, reflecting the degree of anharmonicity of lattice vibrations [34],
and M is an average atomic mass of the PbTe matrix. Finally, the lattice thermal conductivity, κp, is
expressed using Equation (5), employing:

τt =
(

τ−1
P + τ−1

U

)−1
(11)

It should be noted that the result, κp, is now a function of the average radius and volume fraction
of the precipitate.

3. Microstructure-Dependent Lattice Thermal Conductivity: A Revised Approach

The major advantage of the Callaway model is its elegant method allowing us to handle the
summation of both momentum-conserving processes (namely, N-processes) with non-conserving
ones (U-processes and scattering by lattice defects), whose relaxation times are not additive in a
straightforward manner. To make this approach simple, the Callaway model (i) applies to elastically
isotropic materials; and (ii) neglects the dispersive nature of vibrational spectrum. Also, it (iii) makes
no distinction between longitudinal and transverse phonon branches, and (iv) utilizes the Planck
distribution as implemented in the framework of the Boltzmann transport theory. The above
assumptions pose, however, a major limitation to application of the Callaway model. Assumption
(ii), based on the Debye model, means that the term dk

dω of the phonon dispersion is considered to be
constant for each polarization type [34]. As a result, the vibrational (phonon) density of states (v-DOS),
gp(ω), is a parabolic function of ω. This is, however, incorrect for most lattices. Ignoring the dispersive
nature of gp(ω) leads to inaccuracy in determination of Cv(T) as well as of the effects of lattice defects
on thermal conductivity, since the latter strongly depends on phonon frequency. It is noteworthy that
today we have the means to calculate the full gp(ω) and Cv(T) functions accurately for a given crystal
structure and symmetry, as well as evaluate vs for a given crystallographic orientation and a phonon
branch. Assumptions (i) through (iii) become, essentially, unnecessary.

Herein, we modify the approach given in detail in Section 2 for the case of a two-phase system
that includes a matrix comprising homogeneously dispersed precipitates. We first incorporate the full
gp(ω) and Cv(T) functions, which are evaluated from first principles. Second, expressions (4) or (5)
resulting from the Callaway model yield the lattice thermal conductivity for a specific precipitate size
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of an essentially δ-function size distribution. This is, however, not the case for a typical two-phase
material [40], and it was shown that the precipitate size distribution has a major effect on thermal
conductivity [30]. We, therefore, modify Callaway’s expression to incorporate the precipitate size
distribution given by a generic ϕ(R)-form.

An applicable expression for the lattice thermal conductivity can be obtained directly from
expression (2), noting that λ = vsτint. The magnitude τint stands for the integral relaxation time.
Whereas τt(ω, R) is expressed as a function of ω and R, Equation (11), τint is an integral form that
considers the entire spectra of ω and R. Also, since the number of excited phonon modes having
the same ω-value is not uniform over the entire vibrational modes, then gp(ω) should be taken into
account in the expression for τ−1

int as a weighting function, as follows:

τ−1
int =

∫ ωD
0 gp(ω)τ−1

t (ω)dω∫ ∞
0 gp(ω)dω

(12)

A new expression for τt(ω) that takes into account the collective effect of the precipitates
population and their size distribution will be obtained analogously to Kim et al.’s approach [29]:

τ−1
t (ω) =

∫ ∞
0 ϕ(R)τ−1

P (ω, R)dR∫ ∞
0 ϕ(R)dR

+ τ−1
U (ω) (13)

where τ−1
P (ω, R) is given by Equation (9). For simplicity, we will further assume that ϕ(R) and gp(ω)

are normalized to unity, that is:

1
ωD

∫ ωD

0
gp
′(ω)dω = 1; lim

Ro→∞

1
Ro

∫ Ro

0
ϕ′(R)dR = 1 (14)

So that: gp(ω) ≡ gp
′(ω)/ωD and ϕ(R) ≡ ϕ′(R)/Ro. Here, ωD is the Debye frequency.

Substitution of expression (13) into (12) yields an expression for the integral inverse phonon
relaxation time:

τ−1
int =

∫ ωD

0
gp(ω)

[
τ−1

U (ω) +
∫ ∞

0
ϕ(R)τ−1

P (ω, R)dR
]

dω (15)

An expression for the thermal conductivity is, finally, obtained based on Equation (2):

κp(T) =
1
3

Cv(T)vs
2
(∫ ωD

0
gp(ω)

[
τ−1

U (ω) +
∫ ∞

0
ϕ(R)τ−1

P (ω, R)dR
]

dω

)−1
(16)

For simplicity, we keep some of the terms in expression (16) in their implicit forms.
Most importantly, expression (16) is very practical since it enables us minimizing κp by controlling

ϕ(R), where the other parameters in expression (16) can be calculated. As mentioned above,
the terms gp(ω), Cv(T), and vs can be evaluated from first principles or by other experimental means.
The ϕ(R)-function, in turn, can be practically determined by controlling aging heat treatments [41],
and quantitatively assessed applying scanning or transmission electron microscopy (SEM/TEM),
as well as atom probe tomography (APT) [42–44]; the latter is capable of quantifying ϕ(R) up to a
number density level of 1021 through 1025 particles/m3.

4. Implementation of the Revised Approach: The Case of Lead−Telluride (PbTe)

Herein, we will focus on PbTe-based materials. PbTe and other lead chalcogenide-based
compounds, such as PbSe and PbS, are common TE materials for the mid-temperature range
(600–800 K). These are narrow-gap semiconductors offering the unique combination of high Seebeck
coefficient with relatively high electrical conductivity and low thermal conductivity. Owing to this
combination, single-phase PbTe exhibits a maximum ZT value of ~0.8 [18], which can normally reach
~1.3 or surpass the limit of 2.0 under certain conditions, owing to doping and nanostructuring [22,44,45].
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The lattice thermal conductivity of PbTe is ca. 2.2 W·m−1·K−1 at room temperature, and decreases
with temperature in a typical 1

T -dependence [46]. An example of enhancing TE properties of the
PbTe-compound by introduction of a second phase is by silver additions to form Ag2Te precipitates
dispersed in the PbTe-based solid solution [47–51]. Pei et al. have investigated the effects of
Ag2Te precipitates volume fraction and average size on the thermal conductivity of PbTe for three
compositions [47]. Furthermore, Lensch-Falk et al. have thoroughly investigated the morphological
evolution of Ag2Te precipitates in PbTe matrix [51], although the effects of precipitate size distribution
and their number density on thermal conductivity are yet to be researched. Additionally, vibrational
properties and thermal conductivity of PbTe have been evaluated from first principles [52–56], as well
as using molecular dynamics calculations [57]; however, incorporation of second-phase precipitates
or any lattice defects other than point defects is not straightforward when applying these methods.
A method combining direct calculations and analytical expressions for the effects of precipitates is,
therefore, required.

4.1. Evaluation of Vibrational Properties from First Principles

We evaluate the terms gp(ω), Cv(T), and vs from total energy calculations employing the density
functional theory (DFT) [58–61], as implemented by the Vienna ab initio simulation package (VASP)
code [62–64], using the MedeA® software environment [65]. A model PbTe lattice of the Fm3m space
group symmetry is constructed and relaxed at 0 K. We utilize the general gradient approximation
(GGA) to express the exchange-correlation energy, and the projector augmented wave (PAW) potentials
to represent the core electrons density. The Kohn-Sham wave functions are represented using a
plane-wave basis set with a 400 eV energy cutoff, and the Brillouin zone is sampled using a uniform

Monkhorst–Pack k-point mesh with densities ranging between 0.10 and 0.15 Å
−1

. Thresholds of

10−6 eV and 10−5 eV·Å−1
are set for energy convergence and Hellman–Feynman forces, respectively.

The lattice parameter of PbTe obtained using these parameters is a = 6.56788 Å, in good agreement with
other experimental and calculated data [54]. Vibrational calculations are performed for the relaxed
structure using the direct method [66–68], in which inter-atomic forces are calculated by displacements
of atoms within the range of ±0.02 Å with respect to their equilibrium positions, considering an
interaction range of 10 Å. This provides us with the phonon-dispersion curves, v-DOS function, and
temperature-dependent heat capacity. Figure 1 displays the phonon-dispersion curves for the W, L, Γ,
X, and K-points.
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Figure 1. The phonon-dispersion curves of PbTe calculated from first principles for the W, L, Γ, X, and
K-points of the reciprocal lattice.

It is indicated that both transverse modes of the acoustic phonons coincide close to the
Γ-point, with sound velocity values that are significantly lower than that of the longitudinal mode.
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Quantitatively, the sound velocity of a given component, vi, is determined from the pertinent acoustic
mode of the dispersion curves at the Γ-point [34]:

vi =
dω

dki

∣∣∣∣
k→0

(17)

The average sound velocity, vs, is evaluated as a harmonic average of the one longitudinal and
the two transverse components of sound velocity, vL, vT1, and vT2, respectively [67,69]:

vs =

[
1
3

(
v−3

L + v−3
T1 + v−3

T2

)]− 1
3

(18)

The sound velocity components derived from the data in Figure 1 are vL = 3570.5 m·s−1 and
vT1 = vT2 = 1210.5 m·s−1. Accordingly, the average sound velocity is evaluated to be vs = 1376.8 m·s−1.
The v-DOS, gp(ω), is calculated based on the data shown in Figure 1, and is plotted in Figure 2
(black curve), together with the partial v-DOS associated to the Te-sites (red) and Pb-sites (blue).Materials 2017, 10, 386  7 of 17 
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Finally, the temperature-dependent heat capacity, Cv(T), is calculated based on the gp(ω) function
applying the Debye approximation, and is plotted in Figure 3 for the temperature range of 0 through
600 K.
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Additional parameters required to evaluate κp(T) based on Equation (16) are the Debye
temperature and Grüneisen parameter of the PbTe-matrix. They are evaluated as TD = 136 K and
γ = 1.96, respectively, based on the thorough study by Zhang et al. [56], which were implemented for
PbTe [26,32,70].

4.2. Effects of Precipitates on Lattice Thermal Conductivity

In this section we apply our revised approach to evaluate the temperature-dependent lattice
thermal conductivity, and how it is affected by the precipitate average radius (R), precipitate size
distribution (characterized by ∆R), and precipitate number density (Nv) or volume fraction (v f ).
Herein, we apply expression (16) as well as input values calculated from first principles, namely gp(ω),
Cv(T), and vs, which are given in Section 4.1. To represent the finite size distribution of the precipitates,
we utilize a Gaussian distribution, given explicitly by:

ϕ(R) =
1√

2π·∆R
e
− (R−Ro)2

2(∆R)2 (19)

Expression (19) fulfills the normalization condition given by (14), where Ro and ∆R represent
the average radius and standard deviation of the R-distribution, respectively. We use the term ∆R
to denote the distribution ‘width’. We note that a log-normal distribution is usually typical for
precipitates formed naturally in aging processes; however, the former one is more simple to handle,
and is adequately accurate for R-values close to the average radius.

Figure 4 displays the temperature-dependent lattice thermal conductivity calculated from
expression (16) for the temperature range of 0 through 300 K and a constant precipitate size distribution
characterized by Ro = 30 nm and ∆R = 5 nm, and for volume fractions of 0%, 1%, 3%, and 5%.
The latter are equivalent to precipitate number density values of 0, 8.84 × 1019, 2.65 × 1020, and
4.42 × 1020 m−3, respectively.
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Figure 4. The temperature-dependent lattice thermal conductivity of PbTe calculated from
expression (16) for the temperature range of 0 through 300 K and a constant precipitate size distribution
characterized by Ro = 30 nm and ∆R = 5 nm, and for volume fractions of 0%, 1%, 3%, and 5% denoted
by the black line, red circles, blue squares, and green diamonds, respectively.

As expected, the lattice thermal conductivity generally decreases with increasing precipitate
volume fraction. We calculate the lattice thermal conductivity for a constant temperature of T = 300 K
and precipitate volume fraction of v f = 5% as a function of the average precipitate radius, which ranges
between 10 and 100 nm. The latter correspond to precipitate number density values of Nv = 1.19 × 1022

through 1.19 × 1019 m−3, respectively. These κp-values are plotted in Figure 5 for precipitate size
distributions of ∆R = 2, 3, 5, and 7 nm.
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Figure 5. The lattice thermal conductivity of PbTe calculated from expression (16) for constant
temperature of T = 300 K and precipitate volume fraction of v f = 5% as a function of the average
precipitate radius. The calculations are for precipitate size distributions of ∆R = 2, 3, 5, and 7 nm,
denoted by black squares, red circles, blue diamonds, and green down-triangles, respectively.

A general trend of κp increasing with increasing Ro is apparent, with deviations for large
∆R-values, pointing on the essence of precipitate size distribution.

To further demonstrate the effects of size distribution, we calculate the lattice thermal conductivity
for a constant temperature of T = 300 K and precipitate volume fraction of v f = 5% as a function of the
∆R-parameter ranging from 1 through 10 nm. Figure 6 plots κp for the average radii of Ro = 10, 20, 30,
50, and 100 nm, which correspond to Nv-values of 1.19 × 1022, 1.49 × 1021, 4.42 × 1020, 9.95 × 1019,
and 1.19 × 1019 m−3, respectively.
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Figure 6. The lattice thermal conductivity of PbTe calculated from expression (16) for constant
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circles, blue upward triangles, green downward triangles, and magenta diamonds, respectively.

The lattice thermal conductivity is, apparently, independent of the precipitate size distribution for
average radii of 50 nm or larger. For smaller precipitate radii, lattice thermal conductivity increases
with the increase of ∆R-parameter.

A different way to consider the effects of precipitates on lattice thermal conductivity is to examine
its dependence on number density. Figure 7 displays the lattice thermal conductivity of PbTe as a
function of the precipitate number density for v f held constant at 5% and ∆R = 1 nm, for T = 100, 200,
and 300 K.
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Figure 7. The lattice thermal conductivity of PbTe calculated from expression (16) as a function of the
precipitate number density for v f held constant at 5% and ∆R = 1 nm, for T = 100 (black squares),
200 (red circles), and 300 K (blue diamonds).

An expected trend is observed, in which κp-values generally decrease with increasing Nv, up to a
value of ca. 1023 m–3, which corresponds to Ro ≈ 5 nm.

Figure 8 summarizes the combined effects of precipitate average radius and size distribution on
lattice thermal conductivity for T = 300 K and v f = 5%.
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Figure 8. The lattice thermal conductivity of PbTe calculated from expression (16) as a function of the
precipitate average radius and size distribution for T = 300 K and v f = 5%.

As expected, for large values of Ro, the influence of ∆R is negligible. For radii smaller than 30 nm,
the trend is more complicated.

4.3. Effects of Matrix Composition on Lattice Thermal Conductivity

In this section, we study the effects of matrix composition, as manifested by gp(ω) and vs,
on the lattice thermal conductivity for different Ro- and ∆R-values. To this end, we construct two
model compounds in which Ag- or Bi-atoms substitute for the Pb-sublattice sites of PbTe. The model
compounds simulated are AgPb3Te4 and BiPb3Te4, for which we perform the same DFT calculations
described in Section 4.1. To differentiate the effects of gp(ω) and vs from the other factors, we assume
that the values TD = 136 K and γ = 1.96 are the same as for the PbTe model compound. The average
sound velocities evaluated for these compounds are vs = 1420 and 2039 m·s−1, respectively. Applying
the aforementioned routine, we calculate the lattice thermal conductivity for a constant temperature
of T = 300 K, precipitate volume fraction of v f = 5%, and ∆R = 2 nm as a function of the average
precipitate radius, which ranges between 10 and 100 nm. The latter corresponds to precipitate number



Materials 2017, 10, 386 11 of 17

density values of Nv = 1.19 × 1022 through 1.19 × 1019 m−3, respectively. These κp-values are plotted
in Figure 9 for the PbTe, AgPb3Te4, and BiPb3Te4 compounds.
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Figure 9. The lattice thermal conductivity of PbTe calculated from expression (16) for constant
temperature of T = 300 K, precipitate volume fraction of v f = 5%, and ∆R = 2 nm as a function of the
average precipitate radius. The calculations are for the PbTe, AgPb3Te4, and BiPb3Te4 compounds,
denoted by black squares, red circles, and blue triangles, respectively.

Trends similar to those shown in Figure 5 are apparent. A significant difference between the
κp-values obtained for the three compounds is observed. The effects of precipitate size distribution on
lattice thermal conductivity are different for the three compounds simulated. Figure 10 displays plots
of κp-values calculated for a constant temperature of T = 300 K, Ro = 20 nm, and precipitate volume
fraction of v f = 5% as a function of the ∆R-parameter, ranging from 1 through 10 nm.

Materials 2017, 10, 386  11 of 17 

 

Trends similar to those shown in Figure 5 are apparent. A significant difference between the  ߢ௣-values obtained for the three compounds is observed. The effects of precipitate size distribution 
on lattice thermal conductivity are different for the three compounds simulated. Figure 10 displays 
plots of ߢ௣-values calculated for a constant temperature of T = 300 K, Ro = 20 nm, and precipitate 
volume fraction of ݒ௙= 5% as a function of the ∆R-parameter, ranging from 1 through 10 nm. 

 
Figure 10. The lattice thermal conductivity of PbTe calculated from expression (16) for constant 
temperature T = 300 K, average radius Ro = 20 nm, and precipitate volume fraction of ݒ௙ = 5% as a 
function of the ∆R-parameter. The calculations are for the PbTe, AgPb3Te4, and BiPb3Te4 compounds, 
denoted by black squares, red circles, and blue triangles, respectively. 

It is indicated that the lattice thermal conductivity increases with ∆R-values, and this trend is 
mostly prominent for the BiPb3Te4-model compound. 

5. Discussion 

There are many studies dealing with effects of second-phase precipitation on thermal conductivity 
of TE compounds, in particular for PbTe-based compounds [22,26,32,44–47,70–73]. First, our  
room temperature value of calculated lattice thermal conductivity, ca. 5 W·m-1·K-1, is in good 
agreement with such values reported in literature for similar conditions [22,32]. Other values 
reported in literature for PbTe-based compound at room temperature are lower, ca. 3.0 through  
4.5 W·m−1·K−1 [26,44,45,47,70,72]. This difference can be associated with the variety of impurity  
levels prevailing at the PbTe-matrix for the experimentally investigated materials, whereas our 
calculations are valid for an ideally pure PbTe-matrix. Second, the trends predicted by our 
calculations indicate reduction of lattice thermal conductivity with increasing precipitate number 
density and volume fraction by a few tens of percent (depending on temperature), which is also 
implied by other reports [22,26,32,44,45,47,70,72]. We note, however, that the latter effects are more 
difficult to compare, since they are complicated and strongly depend on experimental conditions. For 
example, effects of precipitates and solute atoms at the matrix are hardly resolvable from each other, 
as is well demonstrated by Zhao et al. [21], Tan et al. [22], and Heinz et al. [74]. 

Notwithstanding the above thorough studies on precipitation in PbTe, effects of precipitate size 
distribution are seldom reported. This can be associated with experimental challenges in synthesis of 
a system comprising controllable precipitate size distribution [75]. A remarkable effort toward 
realization of the effects of particle size distribution on phonon scattering was reported by Kim and 
Majumdar, in which particles of Γ-size distribution were treated in an analytical model, and an 
expression for the scattering cross-section considering both Rayleigh and near-geometrical regimes 
was developed [38]. This approach, however, was not incorporated in an analytic expression for 
lattice thermal conductivity and could not be tailored to a matrix having a given v-DOS pattern. The 
essence of the present study lies in establishment of a coupling factor between the ݃௣ሺ߱ሻ- and ߮ሺܴሻ-
functions, as featured by expression (12). This originates from the intensity of interaction of phonons 

Figure 10. The lattice thermal conductivity of PbTe calculated from expression (16) for constant
temperature T = 300 K, average radius Ro = 20 nm, and precipitate volume fraction of v f = 5% as a
function of the ∆R-parameter. The calculations are for the PbTe, AgPb3Te4, and BiPb3Te4 compounds,
denoted by black squares, red circles, and blue triangles, respectively.

It is indicated that the lattice thermal conductivity increases with ∆R-values, and this trend is
mostly prominent for the BiPb3Te4-model compound.

5. Discussion

There are many studies dealing with effects of second-phase precipitation on thermal conductivity
of TE compounds, in particular for PbTe-based compounds [22,26,32,44–47,70–73]. First, our
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room temperature value of calculated lattice thermal conductivity, ca. 5 W·m−1·K−1, is in good
agreement with such values reported in literature for similar conditions [22,32]. Other values
reported in literature for PbTe-based compound at room temperature are lower, ca. 3.0 through
4.5 W·m−1·K−1 [26,44,45,47,70,72]. This difference can be associated with the variety of impurity
levels prevailing at the PbTe-matrix for the experimentally investigated materials, whereas our
calculations are valid for an ideally pure PbTe-matrix. Second, the trends predicted by our calculations
indicate reduction of lattice thermal conductivity with increasing precipitate number density and
volume fraction by a few tens of percent (depending on temperature), which is also implied by
other reports [22,26,32,44,45,47,70,72]. We note, however, that the latter effects are more difficult to
compare, since they are complicated and strongly depend on experimental conditions. For example,
effects of precipitates and solute atoms at the matrix are hardly resolvable from each other, as is well
demonstrated by Zhao et al. [21], Tan et al. [22], and Heinz et al. [74].

Notwithstanding the above thorough studies on precipitation in PbTe, effects of precipitate size
distribution are seldom reported. This can be associated with experimental challenges in synthesis
of a system comprising controllable precipitate size distribution [75]. A remarkable effort toward
realization of the effects of particle size distribution on phonon scattering was reported by Kim
and Majumdar, in which particles of Γ-size distribution were treated in an analytical model, and an
expression for the scattering cross-section considering both Rayleigh and near-geometrical regimes
was developed [38]. This approach, however, was not incorporated in an analytic expression for lattice
thermal conductivity and could not be tailored to a matrix having a given v-DOS pattern. The essence
of the present study lies in establishment of a coupling factor between the gp(ω)- and ϕ(R)-functions,
as featured by expression (12). This originates from the intensity of interaction of phonons with
precipitates, which depends on the precipitate size, where large precipitates scatter low-frequency
phonons more efficiently and vice versa.

The data shown in Sections 4.2 and 4.3 indicate that lattice thermal conductivity generally
decreases with increasing precipitate volume fraction, Figure 4. Also, the general trend of κp(T)
decreasing with temperature is apparent for elevated temperatures due to U-processes, which are
expressed in Equation (10). This trend, shown in Figure 4, is balanced by low values of heat capacity
as well as by processes of phonon scattering by precipitates, as featured in Equation (8), which thus
predominate at low temperatures (<50 K). This balancing mechanism is manifested by relaxation
times for U-processes that increase with decreasing temperature, and surpass the relaxation times
for phonon scattering by precipitates. This crossover occurs at characteristic relaxation times of
ca. 10−10–10−9 s. Simultaneously, the decrease of heat capacity with decreasing temperatures is typical
for low temperatures. This is clearly observed in the inset of Figure 3, where Cv(T) is plotted on a
double-logarithmic scale, signifying the well-known linear dependence of Cv(T) on T3 [34,67,68].

For the case in which the precipitate volume fraction is held constant, Figure 5, we observe a
general trend of κp increasing with increasing Ro, which is reasonable. This is because the number
density of precipitates also increases, given that the latter serve as phonon-scattering centers. For low
values of Ro, deviations from this trend are observed, and they become more significant for large
∆R-values. This signifies the importance of precipitate size distribution. The sensitivity of lattice
thermal conductivity to the precipitate size distribution is prominent in Figure 6, particularly for
average radii as small as 30 nm. Figure 7 reveals an expected trend, in which κp-values generally
decrease with increasing Nv, up to a value of ca. 1023 m−3, which corresponds to Ro ≈ 5 nm. Such
observation was reported by us earlier [68]. For precipitate radii smaller than that, the term ∆R becomes
critical. It is also shown that the dependence of κp on Nv is stronger for lower temperatures [76].
Interestingly, trends similar to those shown in Figure 7 are reported by Mingo et al. [31], who applied
an analytic approach based on the Callaway model to simulate the effects of nanoparticles on lattice
thermal conductivity of SiGe alloys. They calculated the lattice thermal conductivity as a function
of particle radius for particles of different materials and with a constant 0.8 vol %, and found that
minimum thermal conductivity values are attained for an optimum radius ranging between 2 and 5 nm,
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depending on the material. For these conditions, increase of particle radius is equivalent to decrease
of number density, so that the optimum values range between Nv = 2.4 × 1023 and 1.5 × 1022 m−3,
respectively. This reasonably agrees with the data shown in Figure 7. Similar trends are introduced in
a theoretical study of SiGe alloys reported by Kundu et al. [77].

Figure 8 shows that the influence of ∆R is negligible for large values of Ro, whereas for radii
smaller than 30 nm, the trend is more complicated. For this regime, the data shown in Figure 8
can serve as guidelines for design of the matrix/precipitate system with optimized κp, by selecting
the appropriate heat treatments [41]. Such optimization rests upon the concept that the desirable
ϕ(R)-function is tailored for a given TE matrix with a given v-DOS. We note that a relatively simple
form of the ϕ(R)-function was chosen in order to use the parameter ∆R to represent the significance of
the precipitate size distribution. We believe that an alternative functional form of ϕ(R) should have
yielded similar qualitative conclusion.

The effects of matrix composition are apparent in Figures 9,10, considering the different results
obtained for the three PbTe, AgPb3Te4, and BiPb3Te4 model compounds. First, Figure 9 indicates trends
similar to those shown in Figure 5. The distinct difference between the κp-values obtained for the three
compounds is probably associated with the difference in sound velocity as well as v-DOS. Second,
similar to the results shown in Figure 6, the lattice thermal conductivity is sensitive to the precipitate
size distribution, particularly for large ∆R-values. The BiPb3Te4-compound exhibits such sensitivity
more prominently compared to its two counterparts, which are associated with higher sound velocity
values and different v-DOS. To distinguish between the roles of sound velocity and v-DOS, we calculate
the ratio of squared sound velocities and compare it to the ratio of lattice thermal conductivities for
identical Ro-values and at 300 K, which is adequately larger than TD. Based on Equation (16), identical
v-DOS values should yield identical ratios. Any difference between both ratios will be associated
with difference in the v-DOS functions. We evaluate a ratio of v2

s (BiPb3Te4) v2
s (AgPb3Te4):v2

s (PbTe) ≈
2.20:1.06:1; and κp(BiPb3Te4):κp(AgPb3Te4):κp(PbTe) ≈ 36.32:7.1:5.09 (based on Figure 10). This means
that the major contribution to the increased κp-values observed for the BiPb3Te4 model compound
with respect to that of PbTe is due to different v-DOS functions, whereas the difference between the
κp-values of AgPb3Te4 and PbTe is more likely due to the difference in sound velocities.

The effects of Ag- and Bi-substitutions for the Pb-sublattice sites of PbTe on its lattice thermal
conductivity can be understood in view of the v-DOS spectrum shown in Figure 2. The low-frequency
part of the v-DOS spectrum (<ca. 1.7 THz) is associated with Pb-sublattice vibrations, whereas the
higher-frequency part belongs to Te vibrations. This was also reported by Pereira et al., based on
neutron-inelastic scattering [78], as well as by Qui et al., based on molecular dynamics calculations [57].
Since this regime is dominated by acoustic phonons, we expect that variations of the v-DOS for
frequencies lower than ca. 1.7 THz should affect κp more significantly. This well corresponds with
the explanations provided by He at al. [32]. In this context, we note that the v-DOS calculated by
us, Figure 2, exhibits similar behavior to those reported by these authors in terms of the distinction
between two main branches, namely the low- and high-frequency regimes, as well as the entire
frequency range of v-DOS, that is, up to 3.6–4.2 THz; for comparison, our v-DOS spectrum extends up
to ca. 3 THz. The phonon-dispersion curves and temperature-dependent heat capacity calculated by
us (Figure 1,Figure 3 , respectively) correspond with those reported by Zhang et al. [56], Tian et al. [79],
and Romero et al. [52,53]. We note that the value of vs = 1376.8 m·s–1 calculated by us for PbTe
based on Equations (17) and (18) are relatively low with respect to other computational [54,55] and
experimental [26,32,70,78] results reported in thee literature. This can be correlated to the method
applied in this study, in which sound velocity components are derived from phonon-dispersion curves,
as explained by us elsewhere [68].

6. Summary and Conclusions

We establish a practical approach to evaluate the temperature dependence of lattice thermal
conductivity, κp(T), in a system of matrix containing homogeneously dispersed precipitates.
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This approach applies vibrational properties that are evaluated from first principles, namely the
average sound velocity, vibrational density of states, and heat capacity, as well as a modified expression
for the phonon relaxation time. The latter term rests upon the concept that phonon-scattering efficiency
depends on both phonon frequency and precipitate radius, in a way that high-frequency phonons
are scattered more effectively from small precipitates, and vice versa. This yields an expression that
utilizes the vibrational density of states as a weighting function for a certain precipitate population
having any size distribution function.

In this study, we implement our approach for a lead−telluride (PbTe) thermoelectric (TE) matrix
comprising precipitates with Gaussian size distribution, characterized by an average radius of Ro and a
standard deviation ∆R. For simplicity, these precipitates have no chemical identity. We find that κp(T)
generally decreases with the increase of precipitate volume fraction. The expected trend, in which κp

decreases with temperature, is apparent for elevated temperatures due to U-processes. It is balanced
at low temperatures by low values of heat capacity as well as by processes of phonon scattering by
precipitates, which predominate at low temperatures (<50 K). We also observe a general trend of κp

increasing with increasing Ro for constant precipitate volume fractions. For low values of Ro, deviations
from this trend are observed, and they become more significant for increasing ∆R-values; this highlights
the essence of precipitate size distribution. The sensitivity of lattice thermal conductivity to the
precipitate size distribution is prominent for average radii as small as 30 nm. Quantitatively, κp-values
generally decrease with increasing precipitate number density, Nv, up to a value of ca. 1023 m−3, which
corresponds to Ro ≈ 5 nm. It is also shown that the dependence of κp on Nv is stronger for lower
temperatures, and the effects of lattice defects diminish with increasing temperatures.

The data reported in this study can serve as guidelines for the design of TE matrix/precipitate
systems with optimized κp, e.g., by selecting the appropriate heat treatments, in a way that the
precipitate size distribution can be tailored for a matrix with given vibrational properties.
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