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1. Summary
Following thymic output, abþCD4þ T cells become activated in the periphery

when they encounter peptide–major histocompatibility complex. A combination

of cytokine and co-stimulatory signals instructs the differentiation of T cells into

various lineages and subsequent expansion and contraction during an appropriate

and protective immune response. Our understanding of the events leading to T-

cell lineage commitment has been dominated by a single fate model describing

the commitment of T cells to one of several helper (TH), follicular helper (TFH)

or regulatory (TREG) phenotypes. Although a single lineage-committed and dedi-

cated T cell may best execute a single function, the view of a single fate for T cells

has recently been challenged. A relatively new paradigm in abþCD4þ T-cell

biology indicates that T cells are much more flexible than previously appreciated,

with the ability to change between helper phenotypes, between helper and follicular

helper, or, most extremely, between helper and regulatory functions. In this review,

we comprehensively summarize the recent literature identifying when TH or TREG

cell plasticity occurs, provide potential mechanisms of plasticity and ask if T-cell

plasticity is beneficial or detrimental to immunity.
2. Introduction: T-cell differentiation programmes
The differentiation of abþCD4þ T cells is the result of combined T-cell receptor

(TCR) engagement, co-stimulation and distinct cytokine receptor ligation.

These three signals, sequential or concurrent, activate and phosphorylate a suite

of transcription factors (TFs) that translocate into the nucleus. TFs binding to

cis-regulatory elements (promoters, enhancers, insulators and silencers) within

gene promoter regions translate extracellular signals to downstream transcriptional

programmes. Epigenetic changes to cis-regulatory elements can influence TF bind-

ing and the subsequent fate of the cell, adding a level of regulation at this early

stage of cell differentiation. Target gene transcription and translation convert

naive T cells into mature T cells with distinguishable features, including the

expression of specific adhesion molecules and surface receptors, chemokine-produ-

cing capacity and activation of often distinguishable metabolic pathways [1].

Differentiated T helper (TH) cells can be defined and distinguished from one another

by their primary cytokine-producing capacity, including, but not limited to, inter-

feron (IFN)g-producing TH1 cells, interleukin (IL)-4-producing TH2 cells, IL-17A-

producing TH17 cells and IL-9-secreting TH9 cells. Mature TH cells function to

mobilize and activate innate cells, re-enforce TH cell commitment and orchestrate

local tissue responses through various lymphokine secretions [2]. In addition to a

helper fate for T cells, naive abþCD4þ T cells can differentiate into follicular

helper T cells (TFH) specialized for B-cell help within marginal zones and germinal

centres. In contrast, naive abþCD4þ T cells can adopt a regulatory (TREG) function

with potent suppressive capacities. Several TREG populations have been described,
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Figure 1. T-cell differentiation pathways. Following TCR ligation with appro-
priate co-stimulation, cytokines activate specific TFs and transcriptional
regulators resulting in the differentiation of T cells into various identifiable
states. For example IL-4 activates STAT-6 and GATA-3, initiating and repressing
a suite of genes characteristic of TH2 cells.
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including Foxp3þ natural TREG (nTREG), which develop in the

thymus in response to self-antigen [3], and inducible Foxp3þ

(iTREG) cells, which develop in the periphery in response to

exogenous antigen and transforming growth factor (TGF)-b [4].

Non-Foxp3-expressing TREG cells have also been identified,

including TGF-b-secreting (TH3) [5], IL-10-secreting (TR1) [6] or

IL-35-secreting (TR35) TREG [7] cells; however, in this review,

we will focus on Foxp3þ TREG cells.

The transcriptional programmes, mediated by a suite of

TFs and signal transducer and activator of transcription

(STAT) molecules, for the differentiation of TH, TFH or TREG

cells are mostly well defined. For example, Tbet, STAT-1 and

STAT-4 are required for TH1 differentiation, GATA-3 and

STAT-5 for TH2, RORgt and STAT-3 for TH17, PU-1 for TH9

[8], BCL6 for TFH [9] and Foxp3 and STAT-5 for nTREG and

iTREG cells. Although Bcl6 and PU-1 are necessary for TFH

[9] and TH9 [8] cell differentiation, respectively, they are not

sufficient to coordinate the full transcriptional programme,

suggesting that other, or additional transcriptional regulators

are required. The TF Foxp3 appears to be restricted to TREG

cells [10] and is essential for the development, maintenance

and function of TREG cells [11–13]. Deficiency in Foxp3 can

lead to severe immunopathology with multi-organ lympho-

proliferative autoimmune disease identified in spontaneous

mutant scurfy mice and in rare cases in humans, known as

IPEX syndrome (immune dysregulation, polyendocrinopathy,

enteropathy, X-linked). For these reasons, Foxp3 has been con-

sidered as a master regulator of TREG cell development and

function, and is often used as a marker of TREG cells. However,

evidence is emerging that Foxp3 alone is not sufficient to regu-

late the TREG cell phenotype. A combination of computational

network inference and proteomics has characterized the highly

regulated transcriptional network of co-factors interacting with

Foxp3 that are required for TREG cell differentiation [14,15].

Additionally, analysis of genome-wide binding sites and

DNAse I sites revealed Foxp3 functions through pre-existing

enhancers already bound by co-factors [16], and requires the

establishment of a CPG hypomethylation pattern at the Foxp3

binding site [17]. As discussed by others [18], these studies high-

light the complexity of signals required for T-cell differentiation,

perpetuating the question of adaptation of TREG cells.

Until recently, the doctrine that abþCD4þ T cells were

restricted to a particular fate (including TH1, TH2, TH9,

TH17, TFH or TREG; figure 1) was widely, but not completely,

accepted. While the single-fate model is useful, it is often

based on in vitro studies, often using supra-physiological

stimulation, mitogens, phorbol esters and calcium ionophores

or high levels of antigen. Recent studies challenging the

single-fate model have highlighted a significant degree of

flexibility and plasticity between T-cell destinies in vitro and

to a lesser extent in vivo. In this review, we summarize the

recent literature reporting T-cell plasticity within and

between TH, TFH and TREG cells, describe the current pro-

posed mechanisms, and finally ask whether plasticity within

abþCD4þ T cells is beneficial or detrimental to immunity.
3. The changing profile of helper T cells
3.1. TH17/TH1 conversion
Since the identification of IL-17A-secreting TH17 cells almost

a decade ago [19] and the later discovery of the signals
required for their development [20,21], TH17 cells have

been found to be relatively unstable [22,23], with IL-4 [24],

IFNg [25,26], high-dose TGF-b [21], IL-2 [27] and IL-27 [28]

all capable of inhibiting or suppressing TH17 cell differen-

tiation (figure 2). In vitro and ex vivo from mice [29,30] and

humans [31], IFNg and IL-17A co-producing cells were evi-

dent, but largely ignored. Addressing this phenomenon in

more detail, Lee et al. [32], and later Mukasa et al. [33],

reported that cells polarized under TH17 conditions in vitro
were capable of producing IFNg upon secondary culture in

TH1 conditions, including IL-12 and blocking antibodies

against IL-4. This was not simply an in vitro phenomenon,

as in vivo adoptively transferred TH17 cells were able to up-

regulate and produce IFNg during colitis [32,34] or in

nucleotide oligomerization domain/severe combined immu-

nodeficiency (NOD/SCID) mice [22]. Whether TH1, TH17 or

an independent pathway gave rise to IFNgþIL-17Aþ cells

was unclear. Given that IFNg can suppress TH17 cells

[25,26], it stood to reason that IFNgþ IL-17Aþ cells originated

from TH17 cells. Recently, Hirota et al. [35] generated an IL-

17A fate reporter mouse allowing the accurate fate-mapping

of cells that had transcribed Il17a and thus been through a

TH17 programme. Using these fate-mapping mice in a

model of multiple sclerosis, experimental autoimmune ence-

phalomyelitis (EAE), the authors demonstrated that the

majority of pathogenic IFNg-secreting cells had, at some

point, derived from TH17 cells [35], supporting previous

studies [22,32,36,37]. In contrast to the EAE model, Hirota

et al. [35] further demonstrated that IFNg-secreting TH1

cells developed independently from TH17 cells following

acute cutaneous infection with Candida albicans. It remains

unclear whether the difference in conversion reflects a dis-

tinction between chronic inflammation (in the EAE model)

and acute inflammation (following C. albicans infection), as

suggested by the authors, or between autoreactivity and

immunity to infection. Feng et al. [34] also identified the con-

version of TH17 to TH1 cells in vivo. Mechanistically, the

authors identified that IL-17A induced IL-12 secretion from

innate cells, facilitating the conversion of TH17 cells to TH1

during experimental colitis. To date, it appears that under

appropriate conditions TH17 cells can upregulate TH1 fea-

tures, including Tbet expression and IFNg secretion. There
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Figure 2. T helper cell plasticity. Several studies have demonstrated the ability of cytokine-producing cells to change their cytokine-producing profile, under various
conditions. In vitro generated (a) IL-17A-producing cells can upregulate IFNg following re-polarization with IL-12, or following adoptive transfer into mice, as
indicated. Similarly, cells that have previously activated an Il-17a programme in vivo (b) can upregulate IFNg during EAE, as indicated. Whether other
cytokine-producing cells display similar plasticity in vivo has not been conclusively demonstrated.
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is limited evidence to suggest the contrary, that TH1 cells can

adopt a TH17 phenotype whether in vitro or in vivo. For

example, in vitro studies found that polarized TH1 cells do

not readily upregulate RORgt or produce IL-17A when re-

cultured in TH17-polarizing cocktails [36]. This may be due

to downregulation of the IL-6 receptor on activated T cells

[38], a critical component of the TH17-polarizing cytokine

cocktail. In vivo, however, this could be overcome through

IL-6 presented in trans, bound to IL-6Rþ cells, or in complex

with soluble IL-6R [39]. Nevertheless, TH1 conversion to a

TH17 phenotype does not appear to occur in C57BL/6 mice.

3.2. TH17/TH2 conversion
Similar to TH1 and TH17 cells, there is evidence of cross-regu-

lation between TH2 and TH17 subsets, with TH2-derived IL-4

capable of inhibiting initial TH17 differentiation [25] and sub-

sequent IL-17A secretion from committed TH17 cells [24]

(figure 2).

Interestingly, cells undergoing repeated rounds of stimu-

lation in TH17-polarizing conditions in vitro become resistant

to the suppressive effects of IL-4, indicating that mature TH17

cells become more rigid or stable.

In vitro- or ex vivo-derived TH17 cells, sorted by fluorescence

activated cell sorting using an IL-17A cytokine secretion assay,

could produce IL-4 upon secondary culture in TH2 conditions,

or upon transfer into helminth-infected mice [40], suggesting

that IL-4-sensitive TH17 cells can actively convert into IL-4-

secreting TH2 cells. A separate study suggested that TH17 cells

were more rigid, with IL-17A-producing T cells isolated ex
vivo refractory to TH2 conversion when re-stimulated with IL-

4 [36]. Whether the stage or maturity of TH17 differentiation,

as suggested above [41], antigen exposure and specificity or

receptor expression distinguishes these studies was unclear

from the reports. The hypothesis that TH17 cells can convert

to TH2 cells is further supported by in vivo observations,

mainly in the context of lung inflammation [42,43]. IL-13þIL-

17Aþ CD4þ T cells were observed in the lungs and draining

lymph nodes of mice following repeated administration of

ovalbumin (OVA)-pulsed dendritic cells. Co-culture of OVA-

pulsed dendritic cells with in vitro-polarized TH17, but not

TH2, cells led to the development of an IL-17AþIL-13þ TH

population, indirectly suggesting that at least in this model

TH17 cells could take on a TH2-like phenotype, but that TH2

cells could not adopt a TH17-like phenotype [42].

In vitro observations also support the notion that TH17

cells can be re-programmed into TH2 cells, but not vice

versa [36]. The transcriptional repressor growth factor inde-

pendent 1 (Gfi-1) can partially explain the lack of TH2 to

TH17 conversion. Gfi-1 is induced by IL-4, stabilizing TH2

cells. However, Gfi-1-deficient TH2 cells were able to produce

IL-17A in secondary TH17 culture conditions [44]. The

authors elucidated, through chromatin immunoprecipitation

(CHIP) analysis, that Gfi-1 modifies TH17-associated genes,

Rorc and Il23r, preventing their transcription. Thus, activation

and IL-4-induced Gfi-1 in TH2 cells serves to promote TH2 cell

differentiation and prevent TH17-associated gene transcrip-

tion. IL-17AþIL-4þ double-producing cells have also been

observed within the CCR6þCD161þCD4þ population in

humans. Notably, IL-17AþIL-4þ cells were increased among
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patients with chronic asthma. Culturing human memory

TH17 cells with IL-4 led to the induction of IL-17AþIL-4þ

cells, while culturing TH2 clones with IL-23 and IL-1b did

not [43], similar to the murine studies mentioned above. In

contrast, one study identified that IL-17AþIL-4þ memory

CRTH2þCCR6þCD4þ cells could be generated from ‘TH2’

(CCR6–CRTH2þCD4þ) cells in the presence of IL-1b, IL-6

or IL-21 (or most potently, a combination of all three cyto-

kines and not IL-23). If CCR6–CRTH2þCD4þ cells are bona

fide TH2 cells, then this study indicates that TH2 cells are

capable of adopting a TH17 profile [45]. The overwhelming

evidence from both human and murine studies indicates

that TH17 cells, either generated in vitro or in vivo, can

adopt a TH2 phenotype whether re-cultured in vitro or adop-

tively transferred in vivo, with less evidence to support TH2

conversion into TH17 cells.

3.3. TH1/TH2 conversion
The relationship between TH1 and TH2 cells has been the sub-

ject of a vast amount of research. Notably, there is much

evidence to suggest that TH1 and TH2 cells cross-regulate

one another (figure 2). For example, in vitro studies show

that TH2-associated GATA-3 inhibits TH1-related IFNg [46]

and TH1-associated Tbet inhibits TH2-related GATA-3 [47].

It has also been demonstrated that after repeated rounds of

stimulation in vitro, TH1 and TH2 cells lose their ability to

interconvert [41]; that is, TH1 and TH2 cells are less plastic fol-

lowing more rounds of cell division [48]. One simple

explanation for this is the downregulation of IL-12Rb

expression on TH2 cells that was shown in vitro [49], render-

ing TH2 cells un-responsive to lL-12; however, this has been

later challenged [50].

Furthermore, in vitro cells may be substantially different

from in vivo cells, as IFNgþIL-4þ cells can be readily observed

in vivo in mice [51]. As a proof-of-principle using murine trans-

genic TCR-restricted T cells, in vitro-polarized, lymphocytic

choriomeningitis virus (LCMV)-specific TH1 or TH2 cells

could give rise to comparable frequencies of IFNg-producing

cells following LCMV infection. Interestingly, the TH2-polar-

ized cells gave rise to a substantial population of cells co-

expressing IL-4 and IFNg [52]. The conversion of LCMV-

specific TH2 cells required TCR stimulation as well as the pres-

ence of type I and type II interferons [53]. The authors also

report a substantial population of IFNg-producing cells devel-

oping from in vitro-derived TH2 cells when cultured in

secondary conditions containing IL-12, IFNg and IFNa/b

[53]. In these studies, it is possible that not all adoptively trans-

ferred in vitro TH2 cells were fully committed TH2 cells and that

TCR-restricted T cells do not reflect natural polyclonal T-cell

populations. Nevertheless, these data not only highlight the

ability of TH2 cells to become IFNg-secreting cells, but also

highlight that factors present in vivo, which are not common

constituents of in vitro culture systems, such as type 1 interfer-

ons, can clearly contribute to TH plasticity.

3.4. IL-9-secreting T cells (TH9)
In addition to the ability of TH2 cells to co-express IFNg, two

reports independently identified the secretion of IL-9 from

TH2 cells and suggested that TH2 cells could be re-programmed

to produce IL-9. These reports led to the classification of TH9

cells. These initial studies used IL-4gfp reporter mice to generate
TH2 cells in vitro and subsequently identified that TGF-b

provided an essential conversion signal to IL-4gfpþ cells. ‘Ex-

TH2’ cells downregulated classical TH2 genes (Gata3 and Il4)

and upregulated IL-9 [54,55]. The TH2 heritage of IL-9-secret-

ing cells is supported by their requirement for STAT-6 [56,57]

and the observation of IL-9-producing T cells in TH2-associated

allergic inflammation [58–60]. However, TH9 cells have also

been identified in autoimmunity [61] and more recently in

Mycobacterium tuberculosis infection [62], more commonly

associated with TH1/TH17 responses. Whether IL-9-secreting

cells are indeed a distinct lineage [63], warranting a ‘TH’

prefix, or simply recently activated TH, as suggested by

others [64], or TREG cells [65] remains to be clarified. Candi-

dates for a TH9 ‘master regulator’ have been suggested,

however, including PU-1 [8]. Thus, whether IL-9 secretion by

TH1, TH2, TH17 or TREG cells constitutes T-cell plasticity or

not is unclear at present.

In summary, the ability of TH1, TH2 or TH17 cells to co-

express IFNg, IL-4, IL-17A or IL-9 can be demonstrated

in vitro and in more restricted and occasionally contrived

situations in vivo. Interestingly, these phenomena have most

frequently been observed during hyper-inflammatory dis-

orders, such as autoimmune or allergic pathologies, with the

exception of the LCMV studies [52,53]. There is little evidence

that TH plasticity is beneficial during immunity to infection,

and it could be hypothesized that the occurrence of plasticity

contributes to the development of inflammatory disorders.
4. The changing profile and nature of
regulatory T cells

The stability of Foxp3þ TREG cells has been, and continues to

be, enthusiastically debated, especially as TREG-based thera-

pies move closer to the clinic [66–68]. Two novel areas of

TREG cell biology, TREG specialization and TREG instability,

are fuelling the debate on TREG plasticity. In an attempt to

reconcile the debate, Miyao et al. [69] developed an innova-

tive Foxp3GFPCreROSA26RFP reporter mouse, which allowed

the authors to fate-map cells that had previously expressed

Foxp3 (RFPþ) in addition to identifying those cells currently

transcribing Foxp3 (GFPþ). Through a series of adoptive

transfer experiments, the authors propose a heterogeneity

model identifying populations of both unstable ‘exFoxp3þ’

cells which transiently upregulate Foxp3 following activation

without adopting suppressor function (Foxp3þ non-TREG

cells) and populations of stable Foxp3þ TREG cells. The

authors also identify that in the periphery, unstable Foxp3þ

cells were CD25– or CD25lo, whereas more stable Foxp3þ

TREG cells were CD25hi. Nevertheless, there is substantial evi-

dence that Foxp3þ T cells, whether CD25hi or CD25int, that

have lost Foxp3 expression adopt important biological func-

tions, which we summarize below [70]. It is important to

note that some of the studies described may be compromised

by the use of the Foxp3gfp(Foxp3tm2Ayr) reporter knockin

mice. In two separate observations, the EGFP–Foxp3 fusion

was shown to disrupt the transcriptional landscape of the

TREG cell and therefore affect both the frequency of TREGs

and their suppressive properties [71,72]. We indicate, where

possible, in the studies mentioned below whether inducible

or natural TREG cells were studied; however, in many cases

it was not always clear.
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4.1. TREG specialization: co-expression of multiple
transcription factors

Recent studies have revealed that multiple TFs are co-

expressed in Foxp3þ TREG cells, and essential for TREG function,

including several TFs associated with TH cell phenotypes. For

example, Koch et al. [73] identified a population of Foxp3þ

TREG cells that co-expressed the TH1-associated TF Tbet and

the chemokine receptor CXCR3 during M. tuberculosis infection

in mice. Functionally, Tbet expression in TREG cells was

required for the proliferation of TREG cells in vitro and in vivo.

Concordant with this, Tbet-deficient TREG cells transferred

into scurfy mice were unable to control TH1 cells. This phenom-

enon of IFNg-secreting Foxp3þ cells is further supported and

extended in a recent study identifying that IFNg secretion by

Foxp3þ cells was necessary for their regulatory function in a

model of graft-versus-host disease [74,75].

Similarly, IRF4, a TF involved in several TH cell subsets,

particularly TH2 and TH9 cells [21,76], has been identified in

Foxp3þ TREG cells. Significantly, mice lacking Irf4 in Foxp3þ

TREG cells failed to control spontaneous TH2-mediated
pathologies [77]. Further work from the Rudensky laboratory

identified that STAT-3, a TF required for TH17 cells [78], was

required for Foxp3þ TREG cells to control TH17 cells in mice

[79], confirming previous in vivo observations identifying the

requirement of STAT-3 for TREG function [80]. Finally, TFH

cells are also regulated by a subset of specialized Foxp3þ

TREG cells that co-expressed Bcl6, the same TF required for

TFH cell development [81,82] (figure 3). Interestingly, Cipol-

letta et al. [83] describe a specialized population of Foxp3þ

TREG cells resident in visceral adipose tissue (VAT) expressing

the nuclear receptor peroxisome proliferator-activated receptor

(PPAR)g. These TREG cells play a unique role in suppressing

obesity-induced VAT inflammation; however, the mechanism

of suppression by these TREG cells is still unclear. Collectively,

these studies indicate that TREG cells become functionally

specialized to control distinct TH and TFH responses, and

perhaps in response to cues from distinct anatomical sites.

Secondly, these studies show that TREG cells co-opt similar

TF-dependent pathways to the TH cells they regulate. Of

note, GATA-3 expression has also been widely reported

in Foxp3-expressing cells [84]; however, unlike the focused
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above, GATA-3 was broadly required for stable Foxp3

expression and general TREG function [85,86].
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5. TREG instability: conversion to T effector
phenotypes

5.1. TREG/TH1 conversion
The relationship between TH1 and TREG was first described

in a study that identified a population of OVA-specific

TH1-related Foxp3þ TREG, which produced IL-10 and IFNg,

co-expressed Tbet and Foxp3 and had the capacity to sup-

press allergen-induced airway hyper-reactivity [87]. The

ontogeny of TbetþFoxp3þ cells in this study, as in others,

was unclear. Evidence of Foxp3þ TREG cells converting into

IFNg-producing TH1 cells has been reported in several sys-

tems. Firstly, Foxp3 deletion in mature TREG cells in vivo led

to the development of pro-inflammatory TH cells secreting

IL-2 and IFNg [88], indicating that Foxp3þ actively represses

Tbet and a TH1 programme. Functionally, transfer of these

Foxp3-deficient ‘TREG’ cells into lymphopenic hosts led to

severe autoimmunity, indicating that these cells acquired

pathogenic potential and retained self-antigen specificity

[88]. In a separate study, 50 per cent of adoptively transferred

natural Foxp3þ TREG cells transferred into lymphopenic mice

lost Foxp3 expression and up to 25 per cent started producing

tumour necrosis factor (TNF)-a, IFNg or IL-4 [89]. Similarly,

Zhou et al. [90] identified a population of unstable Foxp3þ

cells in healthy mice that adopted a TH1-like phenotype

and were partially responsible for islet cell destruction and

the development of diabetes. Collectively, these studies indi-

cate that during lymphopenia [89], Foxp3 deletion [88] or

autoimmunity [90], a fraction of TREG cells could acquire a

pro-inflammatory IFNg-secreting phenotype. Similarly,

during lethal enteric Toxoplasma gondii infection, Foxp3þ

cells lost their TREG phenotype and converted into pathogenic

IFNg-secreting cells [91]. The conversion of TREG cells into

IFNgþ cells, but not IFNgþ cells into Foxp3þ cells, is supported

by a study by Feng et al. [92] who identified that microbiota

antigen-specific inducible Foxp3þ TREG cells could upregulate

IFNg in response to the TH1-polarizing cytokine IL-12 [92]. Fur-

thermore, these IFNgþFoxp3þ cells retained regulatory

properties, before full conversion into pathogenic, non-regulat-

ory, IFNgþ cells. In both of these studies, IL-12 was identified

as a critical component of IFNg production by Foxp3þ cells.

In humans, although Foxp3 is not an exclusive marker of

TREG cells [93], a population of human CD4þCD127loCD25þ

T cells, which expressed Foxp3, were found to produce

IFNg. These putative regulatory cells were present at higher

levels in patients with type 1 diabetes and possessed mild

suppressive properties, although reduced suppressor func-

tion compared with IFNg–TREG cells [94]. Whether Foxp3

expression was only transiently expressed, a feature common

to recently activated human TH cells [93], or stably expressed

in a TREG cell was unclear in this study. Collectively, these

murine and human studies suggest that TREG cells, which

maintain peripheral tolerance, can convert into pathogenic

TH1-associated cells capable of causing autoimmunity and

lethal inflammation. The mechanisms for conversion have

not been completely elucidated in these systems. It is not yet

clear whether plasticity in various systems relies on common
mechanisms or is specific to the local micro-environment.

Potential mechanisms of plasticity are discussed later in

this review.

5.2. TREG/TH17 conversion
The reciprocal relationship between IL-17A-secreting RORgtþ

cells and inducible Foxp3þ TREG cells has been widely repor-

ted. For example, TGF-b promotes the expression of both

Foxp3 and RORgt . However, Foxp3 directly inhibits RORgt

in vitro leading to a regulatory T-cell phenotype [95]. The

initial observation that innate cell-derived IL-6 could block

TGF-b-mediated iTREG induction and iTREG-mediated

suppression [76] raised the possibility that iTREG cell develop-

ment or function could be interrupted by inflammatory

cytokines. Several years later, two independent groups

[20,21] identified that IL-6 and TGF-b induced TH17 differen-

tiation, providing a divergent molecular mechanism of iTREG

and TH17 development. Thus, TGF-b in the presence or

absence of IL-6 [96] can act as a critical tipping point directing

the development of TH17 or TREG cells, respectively. The bal-

ance between iTREG and TH17 cells may be intricately

regulated as Foxp3þ TREG cell-derived TGF-b [97] and TREG-

induced IL-6 from mast cells [58] can promote de novo TH17

differentiation in naive T cells.

Several reports have identified cells in vivo co-expressing

RORgt and Foxp3 [95,98] with the ability to differentiate

into pathogenic RORgtþFoxp3þIL-17Aþ [99] or regulatory

RORgtþFoxp3þIL-10þ [98] cells. The developmental cross-

roads may be regulated by IL-6 or other innate cytokines as

rIL-6-exposed Foxp3þ TREG cells can upregulate IL-17A

in vitro [97]. Whether in vivo Foxp3þ TREG cells are similarly

responsive to IL-6, and IL-12 as described above [57] remains

to be demonstrated. The clearest description of IL-17A-

producing T cells developing from a Foxp3þ source was

identified using fate-mapping Foxp3Cre mice, labelling cells

that had previously transcribed Foxp3. In this study, 22 per

cent of IL-17A-producing cells in the small intestine had

expressed Foxp3 at some point in their development [90].

In addition to IL-6, which can function as a molecular

switch between iTREG and TH17 cell differentiation, as

described above, Sharma et al. [100] identified that indoleamine

2,3-dioxygenase (IDO) [101], a tryptophan-catabolizing

enzyme produced by plasmacytoid dendritic cells (pDCs)

and potentially other cells, maintains the TREG/TH17 balance

in tumour-draining lymph nodes by regulating IL-6 pro-

duction. Inhibition of IDO led to increased IL-6 and the

conversion of Foxp3þ TREG cells into polyfunctional IL-2,

TNF-a, IL-22 and IL-17A-secreting cells. Similar TREG to

TH17 conversions have been observed in human T cells, with

TREG cells cultured in vitro with IL-2 and IL-15 losing Foxp3

expression and secreting IL-17A, IL-22, IFNg and IL-21 [59].

Using TREG cell clones, Beriou et al. [102] were able to further

demonstrate that Foxp3þ IL-17Aþ TREG cells retained the

capacity to suppress or secrete IL-17A, depending upon the

stimulation. Foxp3þ IL-17Aþ clones stimulated with IL-1b

and IL-6 produced IL-17A, whereas Foxp3þIL-17Aþ clones

treated with IL-2 were potent suppressive cells [102],

suggesting a dynamic switch between regulatory and effector

functions in response to environmental cytokines.

Foxp3þCD25þCD45RAþCCR6þ cells that co-express

RORgt, with the capacity to secrete IL-17A following re-

stimulation with phorbol 12-myristate 13-acetate/ionomycin
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or pro-inflammatory cytokines IL-1b, IL-6, IL-2, IL-21 and IL-

23 have also been identified in the peripheral blood [103] and

tonsils [104] of healthy donors. These cells were also able to

suppress CD4þ T cells via cell contact-dependent mechanisms.

Given the close developmental relationship between iTREG and

TH17 cells [95] and the intimate cross-regulation by RORgt and

Foxp3, the conversion between TH17 and TREG cells may not be

too surprising. However, the opposing function of these cell

types would require tightly regulated mechanisms, critical to

preventing regulators of autoimmunity converting into effec-

tors. Whether a breakdown in these regulatory pathways,

such as the IDO/IL-6 pathway described above [100], under-

pins the development of autoreactivity, in addition to

tumour immunosurveillance, is unclear.

5.3. TREG/TH2 conversion
The ability of TREG cells to convert into IL-4-secreting TH2

cells has also been reported. The Foxp3IRES-luciferase-IRES-eGFP

(FILIG) mouse, which has a 5–10% reduction in Foxp3

expression in CD4þ T cells, develops an aggressive auto-

immune disorder and wasting disease. Interestingly, cells

from FILIG mice that had reduced Foxp3 expression lost

their suppressive activity and started producing TH2 cyto-

kines, including IL-4 and IL-13, and to a lesser extent IL-2,

IFNg and IL-17A [105], similar to Foxp3-ablated TREG cells

[88]. More conclusively, adoptive transfer of FILIG TREG

cells, with attenuated levels of Foxp3, into TCRa– / – or

RAG2– / – mice preferentially differentiated into TH2 cells

and produced IL-4 [106]. Mechanistically, TREG to TH2 cell

conversion was dependent on GATA-3 and independent of

STAT-6 signalling. However, for stable IL-4 production by

‘exFoxp3’ cells an IL-4/STAT-6/GATA-3 loop was required

[85,106]. There may be a dynamic relationship between TH2

and TREG cells, as TH2 cells stimulated with TGF-b, retinoic

acid and antibodies to IL-4 and IFNg in vitro downregulated

TH2 signature genes, lost production of IL-4 and IL-13 and

adopted a Foxp3þ regulatory phenotype [107]. Furthermore,

these converted TH2-derived memory Foxp3þ T cells could

suppress TH2-mediated airway hyper-reactivity when adop-

tively transferred in vivo, suggesting that the converted

ex-TH2 cells could gain not only Foxp3 expression but also

suppressive function [107].

5.4. TREG/TFH conversion
Finally, the plasticity or transient nature of Foxp3 expression

in some TREG cells permitted the conversion of TREG cells to

TFH cells. Under lymphopenic conditions, adoptively trans-

ferred Foxp3þ TREG cells downregulated Foxp3 expression

in the Peyer’s patches clustered around germinal centres

and expressed TFH cell-associated markers CXCR5, IL-21

and Bcl6 [108]. As described above, specialized TREG cells

that upregulated Bcl6 and CXCR5 acquired the ability to pre-

ferentially regulate TFH cells [81,82]. Whether some TFH cells

retain plasticity, with the ability to self-regulate by upregulat-

ing Foxp3, or whether all three populations (TFH, TREG and

TFH/TREG) develop independently is unclear.

In summary, it is clear that some, possibly CD25– or

CD25lo Foxp3þ, cells [69] display elements of plasticity;

losing Foxp3 expression and adopting helper or follicular

helper phenotypes with distinct cytokine-producing capacity.

In the light of the recent study by Miyao et al. [69], whether
exFoxp3 cells described above originate from peripheral

Foxp3þCD25– or Foxp3þCD25lo populations, with variable

IL-2-responsiveness, or not is unclear. These data would

imply that IL-2 signalling in TREG cells is not only required

to maintain TREG stability, but also to prevent plasticity and

TH cell conversion. In keeping with this, in vivo IL-2 blockade

resulted in a loss of peripheral Foxp3þ cells and the develop-

ment of autoimmune gastritis [109]. Whether the pathogenic

T cells, which caused gastritis in this model, originated from

a Foxp3þ population upon IL-2 depletion was unclear.
6. Potential mechanisms of T-cell plasticity
From the studies mentioned above, the ability of CD4þ T cells

to change their phenotype is clear. Whether there is pro-

gression from a less stable to a more stable state, as

suggested by others [110], or whether the T-cell phenotype

is simply a reflection of the transient micro-environment

has yet to be determined. Although not directly tested in

any of the studies mentioned throughout this review,

whether the genetic background of mice used contributes to

plasticity or not is unclear and yet to be tested. With the

advent of well-defined genetic tools, such as the international

Collaborative Cross [111], dissecting genetic determinants of

T-cell responsiveness will now be much easier. However, to

date, several mechanisms that influence T-cell plasticity

have been proposed, generally separable into extrinsic and

intrinsic pathways (see figure 4).
7. Cell extrinsic mechanisms of T-cell
conversion

7.1. Accessory innate cells and innate receptors
Although often bypassed using in vitro T-cell assays, antigen-

presenting cells (APCs) displaying various co-stimulatory mol-

ecules on their surface translate innate antigen recognition

signals into the appropriate instructions for T cells. It has

been well documented that high antigen doses, and higher

affinity peptides, polarize responding naive T cells into TH1

cells, while low antigen doses, and lower affinity peptides,

favour TH2 polarization [112,113]. It is therefore conceivable

that the TH cell response may transition from a pro-inflamma-

tory TH1-, and possibly TH17-, dominant phenotype during

antigen abundance, or high pathogen load in the case of infec-

tion, when cells are also potentially refractory to TREG-

mediated suppression [114], into a TH2 phenotype as the anti-

gen is reduced. Beyond TCR–major histocompatibility

complex II–peptide interactions, co-stimulatory molecules on

APCs, particularly the B7 family members, which greatly

influence T-cell differentiation [112,115,116], may also have

the potential to transform and re-polarize differentiated TH

cells by modulating cytokine responsiveness [117]. Through

germline encoded receptors, including toll-like (TLR) and

NOD-like receptors, APCs can influence the resultant T-cell

response. Ligation of specific TLRs on various innate cells eli-

cits divergent co-stimulatory molecule expression and

cytokine secretion. This feature of highly responsive innate

receptors on APCs is currently being therapeutically targeted

to deviate adaptive immune responses during cancer, and

infectious and allergic diseases (reviewed by Kanzler et al.
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Figure 4. Potential mechanisms of T-cell plasticity. Various mechanisms of T-cell plasticity have been tested, suggested and loosely implied. Intrinsic mechanisms, (1) including
the stage of TH cell maturation may be inversely correlated to plasticity. (2) Post-transcriptional regulation by small RNA molecules, including miRNAs, can dramatically alter the T-
cell phenotype. (3 and 4) Changing TF expression and activation with permissive epigenetic marks at TF binding sites can re-programme entire gene programmes. (5) A change in
nutrient availability may trigger changes in intracellular metabolic pathways and the resultant T-cell phenotype and function. (6 and 7) Extracellular influences, including inter-
actions with innate cell receptors or triggering of cytokine signalling pathways may dynamically alter cytokine receptor expression on T cells, making them permissive to
subsequent re-programming signals. APC, antigen-presenting cell; Eos, eosinophil; ILC, innate-like helper cells; Mac, macrophage; Neut, neutrophil.
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[118]). For example, treatment of allergen-sensitive mice, which

have TH2-polarized TH cells, with CpG-oligodeoxynucleotides

that stimulate TLR9, downregulated B7.2 (CD86) in lung tissue

and deviated TH2 responses towards TH1 responses [119].

Whether TLR9 ligation on APCs relayed a signal to convert

TH2 cells into TH1 cells was not explored. Furthermore, T

cells themselves possess the same germline-encoded innate rec-

ognition receptors as innate cells. In vitro TLR4 ligation on TH

cells during T-cell differentiation did not preferentially alter

TH1, TH2, TH17 or iTREG cytokine responses, but prolonged

survival and expansion, suggesting a common TLR4-driven

signalling pathway in TH cell subsets [120]. However, in vivo
experiments highlighted the requirement of TLR4 ligation for

TH1 and TH17-mediated disease. Disruption of TLR signalling,

by deleting the essential downstream adaptor MyD88 in T

cells, compromised protective TH1-mediated immunity to T.
gondii [121]. Using an EAE model and TLR4 [120] or TLR2-

deficient [122] CD4 T cells, TH17 and TH1-dependent disease

was also significantly abrogated. Further support for TLR4 sig-

nalling in T cells has been reported in a model of colitis [123],

where TLR4/IL-10-deficient T cells were more pathogenic,

compared with IL-10-deficent cells. Although the extent of

TLR signalling on T-cell stability and plasticity has not been

reported, given the requirement for TLR4-mediated signals

for TH17 and TH1 responses, TLR signalling could be an

influential trigger in T-cell phenotype decisions.
Other innate cells, including IL-4-secreting basophils, neu-

trophils in various stages of apoptosis and inducible nitric

oxide-producing macrophages, can promote TH2 [124,125],

TH17 [126] or TH1 [127] differentiation, respectively, and may

also contribute to T-cell plasticity. Finally, the emerging field

of innate-like helper cells (ILCs), which appear to mirror TH

cell subsets [128], can influence naive T-cell differentiation

[129], and potentially differentiate T cells promoting plasticity.

The high levels of IFNg, IL-17A and IL-22 or IL-5 and IL-13

secreted by the three main populations of ILCs have the poten-

tial to deviate T-cell and non-T-cell responses.
7.2. Cytokine micro-environment and cytokine
receptor regulation

The cytokine micro-environment can activate, inhibit and

directly modify differentiated TH cells. With respect to

T-cell plasticity, type-1 IFNs can induce the expression of

IL-12R on TH2 cells, allowing the necessary IL-12 signals to

induce Tbet and IFNg secretion [53] and subsequent TH2

to TH1 conversion. This mechanism of type-1 IFN-mediated

TH2 to TH1 conversion via cytokine receptor regulation sup-

ports observations made over 10 years ago identifying that

IFNg and IFNa mediate the decay of IL-4R [130]. Regulation

of IL-12R and sensitivity to the potent effects of IL-12 [131]
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and IL-18 [132] has long been appreciated in the differentiation

of TH1 and TH2 cells [49]. Initial studies demonstrated that TH2

cells downregulate IL-12R, leaving cells refractory to IL-12,

while TH1 cells operate positive re-enforcement with IFNg-

mediated STAT-1 activating Tbet and up-regulating IL-12R

expression [133]. In our unpublished observations, and

reported by others [50], downregulation of IL-12R did not

completely abrogate IL-12 signalling in TH2 cells. IL-2, an

important T-cell growth factor for all other T cells, downregu-

lates IL-7R [134] and IL-6R, and upregulates IL-4R and IL-

12Rb2, inhibiting TH17 generation [27] but facilitating TH1

and TH2 differentiation [135]. Furthermore, IL-2 is tightly regu-

lated in TH17 cells by Aiolos, a member of the Ikaros family of

TFs [136], preventing IL-2 production and the potential for IL-2

to antagonize TH17 development. Similarly, many studies

have identified the ability of IL-27 to antagonize TH17 differen-

tiation and effector function in a STAT-1-dependent manner

[28,137–141] and increase responsiveness to IL-12 [142]. The

combined ability of IL-12 signalling to re-direct TGF-b-

orchestrated TREG or TH17 programmes [131], coupled with

multiple pathways regulating IL-12 receptor expression and

responsiveness, may explain why TH1 cells may be more

stable. Thus, the conversion of TH17 cells into TH1, TH2 or

TREG cells may involve an IL-2–STAT-5 signal, facilitated by

IL-27–STAT-1 signals for conversion into TH1 cells. Whether

canonical cytokine signalling pathways are required for TH

cell conversion, such as IL-4, IL-12 and IL-6 for TH2, TH1 and

TH17 responses, respectively, is unclear. In the absence of

IL-4 and IL-13, TH1 cells converted into TH2 cells during hook-

worm infection [40], suggesting that a non-canonical pathway

may exist at least for TH1 to TH2 conversion. Collectively, these

studies indicate that the local cytokine environment can

modify the expression and responsiveness of various cytokine

receptors, rendering differentiated T cells susceptible to

alternative differentiation pathways.

7.3. Nutrient availability and metabolic pathways
Throughout T-cell development, differentiation and function,

metabolic needs are intimately linked [1]. Following acti-

vation, helper T cells rapidly upregulate glucose uptake

and glycolysis [143,144]. In contrast, regulatory T cells up-

regulate lipid oxidative metabolism [145], with less glucose

uptake and glycolysis. Inhibition of either of these pathways

prevents activation, proliferation, cytokine secretion and cel-

lular function [146]. Furthermore, the metabolic needs and

pathways of different TH cells diverge, providing another

environmental cue that may influence TH cell phenotype

switching. For example, distinct phosphoinositide 3-kinase/

mammalian target of rapamycin (mTOR) pathways [147],

via two mTOR complexes, mTORC1 or mTORC2, are

employed by TH1 and TH17 or TH2 cells, respectively [148].

Additionally, small concentrations of the small molecule

halofuginone, which induces an amino acid starvation

response, can limit TH17 but not TH1, TH2 or iTREG polariz-

ation in vitro [149]. Hypoxia-induced factor (HIF)1a and

cMyc, two TFs that regulate glycolysis [150], can also modulate

the balance between TH17 and TREG differentiation by control-

ling glycolytic metabolism [151]. Concordantly, mice with

HIF1a-deficient T cells, with subsequently compromised

glycolysis, have increased TREG cells and are protected from

T-cell-mediated autoimmunity [152]. Thus, at the simplest

level, shuttling between glycolysis and lipid oxidation
pathways can favour T-cell differentiation pathways between

TH and TREG cells. It is clear that the T cells have specific meta-

bolic requirements and that these requirements differ between

TH and TREG subsets; it is yet undetermined whether these

metabolic pathways are important for T-cell plasticity in vivo.
8. Potential cell-intrinsic mechanisms of
T-cell conversion

8.1. Cell cycle and phenotype stability
Soon after the description of the TH1 and TH2 lineages, it

was reported that T cells gradually become more fixed in

their phenotype after several rounds of differentiation and

lose their ability to acquire other TH phenotypes [41,48]. This

observation holds true with recent reports identifying that

mature TH17 cells, compared with immature TH17 cells,

became less responsive to IL-4 [24]. Together, these studies

imply that cytokine positive, early differentiating cells are

more plastic than their mature counterparts. Indeed, memory

TH17 cells were shown to have a stable phenotype [36]. Never-

theless, it has been reported that some antigen-specific

memory CD4 cells show substantial plasticity between TH1

and TH2 phenotypes [153]. Thus, TH plasticity may be

intimately linked to not only cell cycle, but also memory status.

8.2. microRNA-mediated control of T-cell phenotype
microRNAs (miRNAs) are a family of small non-coding

RNAs that provide post-transcriptional regulation of gene

expression. There is accumulating evidence that miRNAs

are critical in regulating the expression of key molecules in

TH and TREG subsets. CD4 T cells deficient in dicer, an

enzyme required for miRNA biogenesis, had dysregulated

cytokine production following in vitro culture, including the

co-expression of IFNg and IL-4 in TH2 culture conditions

[154]. Deletion of another component of the miRNA machin-

ery, drosha, specifically in Foxp3-expressing cells resulted in

autoimmunity and overexpression of IFNg and IL-4 [155].

Specific miRNAs that regulate CD4 T-cell phenotypes have

also been identified. For example, miR-29, which targets

Tbet, Eomesodermin and Ifng [156,157], critically controls TH1

cell development. miR-10a regulates Bcl-6 in TREG cells, pre-

venting the development of a TFH cell phenotype from

TREG cells [158]. Finally, miR-326 promotes TH17 differen-

tiation, with miR-326 expression correlating with disease

severity in multiple sclerosis patients [159]. Thus, it is clear

that miRNAs are key regulators of T-cell differentiation,

and it is likely that miRNAs could regulate both upstream

pathways (cytokine receptor, signalling pathways and TF

expression) and downstream (effector cytokine production)

features of T cells contributing to lineage stability and

plasticity, as indicated with miR-10a in TREG cells [158].

8.3. Transcription factor dosing and dominance
For TFs to maintain activated and repressed gene programmes,

the continuous activation, phosphorylation and presence of TFs

in the nucleus is often required. For example in the case of TREG

cells, ablation of Foxp3 in TREG cells results in the loss of Foxp3-

driven suppressor function [88]. Furthermore, decreased Foxp3

expression converts TREG cells into pathogenic effector cells
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[105], suggesting that a significant function of Foxp3 is to repress

the development of TH cell-associated responses. TFs can also

function to reinforce TH phenotypes, as in TH1 cells where

IFNg promotes Tbet via STAT-1, which in turn promotes the

expression of the IL-12 receptor [132,133]. The importance of

TF activation in T-cell phenotypes is supported by forced/ecto-

pic expression experiments. Ectopic expression of Foxp3 in

CD4þ non-TREG cells leads to acquisition of suppressive func-

tion [10,12,160]. Similarly, forced expression of STAT-6 [161],

Tbet [162] or RORgt [29] results in TH2, TH1 or TH17 cell devel-

opment, respectively. Ectopic expression of Tbet in TH2 cells

results in IFNg production [101,133], suggesting that Tbet can

override the transcriptional programme in TH2 cells. Further-

more, there is considerable cross-regulation between TFs in

T-cell subsets. For example, Foxp3 can inhibit RORgt function

[95], Tbet negatively regulates GATA-3 [47] and GATA-3

downregulates STAT-4 [163]. STAT-5 can also repress the TFH

phenotype by suppressing the expression of Bcl-6, among

others [164,165]. Thus, a hierarchy of TF expression and acti-

vation may ultimately dictate the resultant T-cell phenotype.

From these ectopic expression experiments, if sufficient signals

induce and activate TFs, then the phenotype of the cell can be re-

programmed. It is conceivable, therefore, that modifications of

TF expression could be intimately linked with T-cell plasticity.

Indeed, it has been shown that in polarized TH1 cells, Tbet

forms a complex with Bcl-6, preventing its function. Upon limit-

ing IL-2 conditions, the amount of Bcl-6 in the TH1 cells increases

and the cells are able to express TFH-associated genes [166].

Similarly, as described above, expression of Gfi-1 in TH2 cells

prevents the development of a TH17 phenotype; deletion of

Gfi-1 allowed TH2 cells to adopt a TH17 phenotype [44].

The existence of cells co-expressing Foxp3 along with

TH cell-associated TFs, including Tbet, GATA-3 or RORgt

(described in previous sections), calls into question whether

there is a regulated balance between TFs (TF dosage) resulting

in either effector, effector/regulatory or regulatory function.

Furthermore, the ontogeny of these cells remains to be conclus-

ively clarified, whether dual TF-expressing cells derive from TH

or TREG progeny, or independently. If dual TF-expressing TREG

cells derive from TH cells, the upregulation of Foxp3 may

represent a late stage in TH cell differentiation. In this scenario,

‘ex-TH’ cells would retain characteristics of their TH cell past,

including antigen-specificity and appropriate homing recep-

tors. The alternative, that dual TF expressing cells originate

from a Foxp3þ TREG past, is also plausible and has been

reported in several experimental systems.

8.4. Epigenetic modifications
Recent studies have combined gene expression profiling with

ChIP-Seq and high-throughput sequencing to investigate the

chromatin state in resting and effector T cells [167,168].

These studies have revealed important insights into the mech-

anisms of T-cell plasticity and stability. For example, the

proximal promoter of Ifng has permissive methylation marks

in TH1 cells, but repressive marks in TH2 and TH17 cells, indi-

cating that specific effector functions may be regulated

through epigenetics. Interestingly, in various TH cells, bivalent

marks allowing enhancement or repression were found at TF

genes, including bivalent marks at Tbet and Gata3 in TH17

cells, at Gata3 in TH1 cells, at Tbet in TH2 cells, and at Tbet,
Gata3, and Rorc in TREG cells. This suggests the potential for

substantial reversibility at the TF level [32,168]. TH subsets
also show positive marks on the Bcl-6 locus, providing the

possibility for TH cells to take on a TFH phenotype [169]. In

addition, studies using both wild-type and STAT-4 or STAT-6

knockout T cells have revealed that these transcriptional regu-

lators have effects on epigenetic modifications in T cells [170].

Given the bivalent marks at TF genes in TH cells, epigenetic

modifications of effector genes, such as Ifng, Il17a or Il5 in

T cells may be critical regulators of T-cell effector cytokine pro-

duction. Although epigenetic modifications influence TH cell

gene expression, how epigenetic modifications are regulated

in T cells is unclear, and therefore how this mechanism

would directly contribute to T-cell plasticity is uncertain.

Multiple overlapping mechanisms may all contribute to

T-cell plasticity, including epigenetic modifications, post-

transcriptional regulation by miRNAs, changes in metabolic

activity and activation of TFs.
9. T-cell plasticity in immunity: beneficial
or detrimental?

As suggested by others [171], the rapid conversion between

TREG and TH cell and within TH cell populations could be

a very useful feature of the adaptive immune system. Such

dexterity could retain antigen-specificity and subsequent

memory, preserve the appropriate tropism and rapidly

respond to the changing demands and needs of the local

environment. With respect to immunity to infection, we

have previously reported that increased resistance to the hel-

minth parasite Schistosoma mansoni following drug treatment

and IL-10R blockade led to elevated antigen-specific IFNg,

IL-5 and IL-17A production [172]. Similarly, lethal infection

of IL-10-deficient mice with the intestinal whipworm parasite

Trichuris muris led to increased parasite-antigen-induced

IFNg and IL-17A [173]. Whether elevated T-cell-derived

IFNg and IL-17A secretions were from TH2 cells (i.e. poly-

functional) or from converted TH2 cells (i.e. plasticity) is yet

to be determined. Also, the precise involvement of IL-10 in

regulating these responses was not investigated. In highly

regulated environments such as the gut and airways, an effec-

tor response must be able to mature in response to infection

and overcome local regulatory mechanisms. Indeed, the abil-

ity to mount a rapid and lethal TH1 response following oral

T. gondii infection was due to T-cell plasticity, where

Foxp3þ cells converted into pathogenic IFNg-secreting cells

[91]. If plasticity contributed to the observed phenotypes fol-

lowing S. mansoni, T. muris and T. gondii infection, then

despite providing superior pathogen control, significant

immunopathology developed. However, the plasticity of TH

cells without severe consequences has also been observed

in several infection models [40,51,53,153], indicating that

plasticity, when absolutely necessary, can provide T-cell-

mediated immunity. It remains unclear when plasticity is

required to combat infection, under physiological conditions.

Studies in infectious disease models, however, provide ideal

systems to probe T-cell plasticity throughout induction,

expansion and resolution of the T-cell response. Several

studies have identified the plasticity of T cells during autoim-

munity [22,35,94] and allergy [42,45,107]. Whether T-cell

plasticity contributes to the pathogenesis or resolution of

these immunopathologies is too early to tell. Nevertheless,

strategies to deviate T-cell responses in allergy are being

pursued, as described above [118].
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Currently, there is limited evidence showing TH plasticity

occurring in vivo as part of an effective immune response.

Over the coming years, as we move beyond phenomenology,

there is a need to ask what proficient T cells do, in addition to

what T cells can do when forced in vitro. Similarly, the use of

a single primary cytokine for fully differentiated and com-

mitted TH cells may have over-simplified the complexity

and flexibility of T cells. The differences noted between in
vitro and in vivo systems in this review emphasize the impor-

tance of understanding the limitations of experimental

systems. New and improved technical approaches will be

essential in future research, especially with regard to identify-

ing mechanisms of plasticity. It is, as yet, unclear which

mechanisms contribute to plasticity and whether there are

common triggers of plasticity among experimental systems
or even between subsets. Undoubtedly, further research in

this area will help us comprehend not just the extreme capa-

bilities of the immune system but how the immune response

functions best and how this can be harnessed.
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